Iterative Scheme for Elliptic Optimal Multiple Switching Problem

R.H. Barkhudaryan, T.L. Gharibyan, M.P. Poghosyan

Institute of Mathematics NAS Armenia
Yerevan State University
E-mail: rafayel@instmath.sci.am, gtatev@instmath.sci.am,
michael@ysu.am

Key Words: Iterative scheme, Free boundary, optimal switching Mathematics Subject Classification 2000: 65M12

Introduction and main results. The paper considers so-called *elliptic optimal switching problem*, which is the elliptic counterpart of parabolic optimal switching problem, considered in [1]. The problem can be described as a system of two interconnected obstacle-type elliptic problems in a given bounded domain $\Omega \subset \mathbb{R}^n$: find a pair (u, v) satisfying

$$\begin{cases}
\min \left\{ -\Delta u - f_1; u - (v - \psi_1) \right\} = 0, & in \quad \Omega \\
\min \left\{ -\Delta v - f_2; v - (u - \psi_2) \right\} = 0, & in \quad \Omega \\
u = g_1 \quad and \quad v = g_2 \quad on \quad \partial\Omega
\end{cases} \tag{1}$$

where $f_1, f_2, \psi_1, \psi_2 : \Omega \to \mathbb{R}$ are strictly positive functions and $g_1, g_2 : \partial \Omega \to \mathbb{R}$. We assume that ψ_1 and ψ_2 are continuously differentiable in Ω .

Our purpose is to construct a sequence of functions which will converge to the viscosity solution of (1). We start by u_0 , v_0 , which are the solutions of the following Dirichlet problems:

$$\begin{cases} -\Delta u_0 - f_1 = 0, \\ u_0|_{\partial\Omega} = g_1, \end{cases} \quad and \quad \begin{cases} -\Delta v_0 - f_2 = 0, \\ v_0|_{\partial\Omega} = g_2 : \end{cases}$$
 (2)

Then we define u_k, v_k inductively by the following recurrent relations

$$\begin{cases}
\min\{(-\Delta u_k - f_1), (u_k - (v_{k-1} - \psi_1))\} = 0, & u_k|_{\partial\Omega} = g_1, \\
\min\{(-\Delta v_k - f_2), (v_k - (u_k - \psi_2))\} = 0, & v_k|_{\partial\Omega} = g_2.
\end{cases}$$
(3)

 $^{^{1}\}mathit{The}$ authors thanks Goran Gustafsson foundation for visit appointment to KTH.

As it follows from the definition of u_k and v_k , in every step we are solving obstacle problem with known obstacle: in the k-th step we solve the obstacle problem with $v_{k-1}-\psi_1$ as an obstacle, and this gives us u_k , then, we solve another obstacle problem with already known obstacle $u_k-\psi_2$ to find the value of v_k .

The main result of the paper states that the constructed sequence converges to the viscosity solution of (1):

Theorem 1. The sequences $\{u_k\}$ and $\{v_k\}$ defined by (3) are increasing and bounded sequences and if denote by u and v the pointwise limits of $\{u_k\}$ and $\{v_k\}$, respectively, then the pair (u,v) is a viscosity solutions of (1).

Numerical Results.

The following two examples (one and two dimensional, respectively) were solved numerically by the proposed iterative scheme using finite difference discretization and PSOR (Projected Successive Over-Relaxation) algorithm.

Example 1. We consider the following problem:

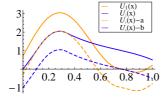
$$\begin{cases}
\min \left\{ u(x) - (v(x) - 1); -u''(x) - \psi_1(x) \right\} = 0, & x \in (0, 1) \\
\min \left\{ v(x) - (u(x) - 1); -v''(x) - \psi_2(x) \right\} = 0, & x \in (0, 1) \\
u(0) = 0.7, u(1) = 0.2, & v(0) = 0, v(1) = 0.5,
\end{cases} (4)$$

where

$$\psi_1(x) = 70 \sin 6x$$
 and $\psi_2(x) = 20 \left(x^2 - \frac{1}{2}\right)$.

The iterative algorithm gives the solution for (4) represented in Figure 1. The graph of the function u is the orange solid line, and the orange dotted line is the obstacle for the second equation – that is, u-1. The blue solid line represents the graph of v, and the blue dotted line is v-1.

It is easy to see on this picture, that the solutions u and v consist of two parts: the first part, where they touch the dotted obstacle v-1 or u-1 (the so-called *coincidence sets*), respectively, and the second part, where they are above the obstacles and hence the solutions to the differential equations $-u'' = \psi_1$ and $-v'' = \psi_2$ (non-coincidence sets). The points, that divide the coincidence set from non-coincidence set forms the free boundary of the problem.



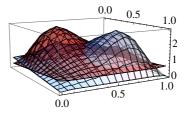


Figure 1: 1D Optimal Switching

Figure 2: 2D Optimal Switching

Example 2. As a second example, we consider the following two dimensional elliptic optimal switching problem:

$$\begin{cases} \min\left\{u(x,y) - \left(v(x,y) - 1\right); -\Delta u(x,y) - \psi_1(x,y)\right\} = 0, \\ \min\left\{v(x,y) - \left(u(x,y) - 1\right); -\Delta v(x,y) - \psi_2(x,y)\right\} = 0, \\ u(0,y) = 0.2, \quad u(1,y) = 0.6, \\ u(x,0) = u(x,1) = 0.4x + 0.2, \\ v(0,y) = 0.7, \quad v(1,y) = 0.1, \\ v(x,0) = v(x,1) = -0.6x + 0.7, \end{cases}$$

$$(5)$$

where $x, y \in (0, 1)$,

$$\psi_1(x,y) = 120e^{-20(x-1/4)^2 - 20(y-1/4)^2}$$

and

$$\psi_2(x,y) = (165x + y)e^{-20(x-3/4)^2 - 20(y-3/4)^2}.$$

The solution represented in Figure 2 has been obtained for (5).

References

[1] T. Arnarson, B. Djehiche, M. Poghosyan, and H. Shahgholian. A PDE approach to regularity of solutions to finite horizon optimal switching problems. *Nonlinear Anal.*, 71(12):6054–6067, 2009.