Canonical DLR equations for the Sine-beta process

David Dereudre, University of Lille (joint work with A. Hardy, T. Leblé and M. Maïda)

Stochastic and Analytic Methods in Mathematical Physics, Yerevan 2nd-7th Sept 2019

- 1 The Sine-beta Process
- 2 DLR equations
- 3 Application 1: the Number-Rigidity
- 4 Application 2: a Central Limit Theorem

The Sine-beta process is the universal 1d-log gas.

$$H(\gamma) = \sum_{x \neq y \in \gamma} -\log(|x - y|),$$

where γ is a finite configuration of points in \mathbb{R} .

The Sine-beta process is the universal 1d-log gas.

$$H(\gamma) = \sum_{x \neq y \in \gamma} -\log(|x - y|),$$

where γ is a finite configuration of points in \mathbb{R} .

For $\beta > 0$, $n \ge 1$ and $\Lambda_n = [-n/2, n/2]$, we define on Λ_n^n the probability measure

$$\mathbb{P}_{n}^{\beta}(dx_{1}, dx_{2}, \dots, dx_{n}) = \frac{1}{Z_{n}} e^{-\beta H(\{x_{1}, x_{2}, \dots, x_{n}\})} dx_{1} dx_{2} \dots dx_{n}.$$

The Sine-beta process is the universal 1d-log gas.

$$H(\gamma) = \sum_{x \neq y \in \gamma} -\log(|x - y|),$$

where γ is a finite configuration of points in \mathbb{R} .

For $\beta > 0$, $n \ge 1$ and $\Lambda_n = [-n/2, n/2]$, we define on Λ_n^n the probability measure

$$\mathbb{P}_{n}^{\beta}(dx_{1}, dx_{2}, \dots, dx_{n}) = \frac{1}{Z_{n}} e^{-\beta H(\{x_{1}, x_{2}, \dots, x_{n}\})} dx_{1} dx_{2} \dots dx_{n}.$$

We define P_n^{β} its associated point process; the distribution of the random configuration

$$\{X_1,X_2,\ldots,X_n\},\,$$

where
$$(X_1, X_2, \ldots, X_n) \sim \mathbb{P}_n^{\beta}$$
.

Theorem

The following limit exists

$$\lim_{n\to\infty} P_n^{\beta} = P^{\beta},$$

 P^{β} is called the Sine-beta process (changing the scale for having intensity one)

Theorem

The following limit exists

$$\lim_{n\to\infty}P_n^\beta=P^\beta,$$

 P^{β} is called the Sine-beta process (changing the scale for having intensity one)

The theorem is true with the weak topology or with the local convergence topology.

Theorem

The following limit exists

$$\lim_{n\to\infty}P_n^\beta=P^\beta,$$

 P^{β} is called the Sine-beta process (changing the scale for having intensity one)

The theorem is true with the weak topology or with the local convergence topology.

Proved by: [Valko-Virag 2009], [Bourgade, Erdös, Yau 2012]

Motivations

• Classical continuum particle system with 2d-Coulomb interaction, restricted to a 1d-space.

Motivations

- Classical continuum particle system with 2d-Coulomb interaction, restricted to a 1d-space.
- Distribution of eigenvalues for random matrices:
 - $(\beta = 1)$ with Gaussian real input
 - $(\beta = 2)$ with Gaussian complex input
 - $(\beta = 4)$ with Gaussian Quaternion input

Motivations

- Classical continuum particle system with 2d-Coulomb interaction, restricted to a 1d-space.
- Distribution of eigenvalues for random matrices:
 - $(\beta = 1)$ with Gaussian real input
 - $(\beta = 2)$ with Gaussian complex input
 - $(\beta = 4)$ with Gaussian Quaternion input
- Universal with respect to the boundary conditions (β -ensembles, β -Circular-ensembles).

• Determinantal structure for $\beta = 2$.

- Determinantal structure for $\beta = 2$.
- Explicit pair correlation functions for $\beta \in \mathbb{Q}^+$ (with very complicated formulas [Forrester ch13])

- Determinantal structure for $\beta = 2$.
- Explicit pair correlation functions for $\beta \in \mathbb{Q}^+$ (with very complicated formulas [Forrester ch13])
- Hyperuniform: $Var_{P\beta}(N_{\Lambda}) \sim \log(|\Lambda|)$.

- Determinantal structure for $\beta = 2$.
- Explicit pair correlation functions for $\beta \in \mathbb{Q}^+$ (with very complicated formulas [Forrester ch13])
- Hyperuniform: $Var_{P^{\beta}}(N_{\Lambda}) \sim \log(|\Lambda|)$.
- ullet Variational principle and LDP [Leblé-Serfaty 19]: P^{eta} is the unique minimizer of the free excess energy=Entropy+mean Energy

- The Sine-beta Process
- 2 DLR equations
- 3 Application 1: the Number-Rigidity
- 4 Application 2: a Central Limit Theorem

The DLR equations setting

For $\Lambda \subset \mathbb{R}$:

(as usual) the local distributions are not tractable;

$$P^{\beta}(d\gamma_{\Lambda}).$$

The DLR equations setting

For $\Lambda \subset \mathbb{R}$:

(as usual) the local distributions are not tractable;

$$P^{\beta}(d\gamma_{\Lambda}).$$

• the DLR (Dobrushin-Lanford-Ruelle) equations provide the local conditional densities of P^{β} ;

$$P^{\beta}(d\gamma_{\Lambda}|\gamma_{\Lambda^c})$$
?

The DLR equations setting

For $\Lambda \subset \mathbb{R}$:

(as usual) the local distributions are not tractable;

$$P^{\beta}(d\gamma_{\Lambda}).$$

• the DLR (Dobrushin-Lanford-Ruelle) equations provide the local conditional densities of P^{β} ;

$$P^{\beta}(d\gamma_{\Lambda}|\gamma_{\Lambda^c})$$
?

• the canonical DLR equations provide the local conditional densities of P^{β} given the number of points;

$$P^{\beta}(d\gamma_{\Lambda}|\gamma_{\Lambda^{c}}, \#\gamma_{\Lambda}=k)?$$

What is the energy of a point?

For any stationary point process P, for any $x \in \mathbb{R}$ and for P a.e. γ

$$\sum_{y \in \gamma} -\log(|x-y|) = -\infty.$$

The Log-energy of x in γ is senseless.

What is the energy of a point?

For any stationary point process P, for any $x \in \mathbb{R}$ and for P a.e. γ

$$\sum_{y \in \gamma} -\log(|x-y|) = -\infty.$$

The Log-energy of x in γ is senseless.

The DLR equations seem impossible to obtained (but wait a couple of slides!)

What is the energy of a point?

For any stationary point process P, for any $x \in \mathbb{R}$ and for P a.e. γ

$$\sum_{y \in \gamma} -\log(|x-y|) = -\infty.$$

The Log-energy of x in γ is senseless.

The DLR equations seem impossible to obtained (but wait a couple of slides!)

For P^{β} -almost all γ and $x \in \mathbb{R}$, the following limit exists

$$V(x,\gamma) = \sum_{y \in \gamma} \log(|y|) - \log(|x-y|).$$

It is the Log-energy we need for moving a particle from 0 to x in γ .

Our canonical DLR equations

Theorem (D.-Hardy-Leblé-Maïda, 2019)

For any bounded $\Lambda \subset \mathbb{R}$, any $k \geq 0$ and P^{β} -almost all γ

$$P^{\beta}(dx_{1},\ldots,dx_{k}|\gamma_{\Lambda^{c}},N_{\Lambda}=k) = \frac{1}{Z_{\Lambda}(k,\gamma_{\Lambda^{c}})}e^{-\beta H(\{x_{1},x_{2},\ldots,x_{k}\})}$$
$$\prod_{i=1}^{k}e^{-\beta V(x_{i},\gamma_{\Lambda^{c}})}dx_{1}^{\Lambda}dx_{2}^{\Lambda}\ldots dx_{k}^{\Lambda}$$

Locally, the Sine-beta process is a β -ensemble with confining potential V.

A canonical GNZ (Georgii-Nguyen-Zessin) equation

$\mathsf{Theorem}$

There exists a probability mesure Q^{β} such that for any positive bounded function f

$$E_{P^{\beta}}\left(\sum_{x\in\gamma}f(x,\gamma\backslash x)\right)=E_{Q^{\beta}}\left(\int_{\mathbb{R}}e^{-\beta V(x,\gamma)}f(x,\gamma)dx\right)$$

A canonical GNZ (Georgii-Nguyen-Zessin) equation

$\mathsf{Theorem}$

There exists a probability mesure Q^{β} such that for any positive bounded function f

$$E_{P^{\beta}}\left(\sum_{x\in\gamma}f(x,\gamma\backslash x)\right)=E_{Q^{\beta}}\left(\int_{\mathbb{R}}e^{-\beta V(x,\gamma)}f(x,\gamma)dx\right)$$

Are Q^{β} and P^{β} equivalent? Are they singular? If $Q^{\beta} \ll P^{\beta}$, a standard GNZ equation exists.

- 1 The Sine-beta Process
- 2 DLR equations
- 3 Application 1: the Number-Rigidity
- 4 Application 2: a Central Limit Theorem

Number-Rigidity

Definition

A point process P in \mathbb{R}^d is said Number-Rigid if for any bounded set $\Lambda \subset \mathbb{R}^d$, there exists a function f_{Λ} such that for P-a.e. γ

$$N_{\Lambda}(\gamma) = f_{\Lambda}(\gamma_{\Lambda^c}).$$

The outside configuration determines the number of points inside Λ .

Number-Rigidity

Definition

A point process P in \mathbb{R}^d is said Number-Rigid if for any bounded set $\Lambda \subset \mathbb{R}^d$, there exists a function f_{Λ} such that for P-a.e. γ

$$N_{\Lambda}(\gamma) = f_{\Lambda}(\gamma_{\Lambda^c}).$$

The outside configuration determines the number of points inside Λ .

Obviously, Poisson point processes or classical Gibbs point processes are not Number-Rigid.

Number-Rigidity

Definition

A point process P in \mathbb{R}^d is said Number-Rigid if for any bounded set $\Lambda \subset \mathbb{R}^d$, there exists a function f_{Λ} such that for P-a.e. γ

$$N_{\Lambda}(\gamma) = f_{\Lambda}(\gamma_{\Lambda^c}).$$

The outside configuration determines the number of points inside Λ .

Obviously, Poisson point processes or classical Gibbs point processes are not Number-Rigid.

Other kind of XXXXXX-rigidity can be considered as well.

Sly-Peres Theorem

The Gaussian perturbed lattice is defined by:

$$\Gamma = \bigcup_{z \in \mathbb{Z}^d} \{z + X_z\},\,$$

where $(X_z)_{z\in\mathbb{Z}^d}$ are i.i.d $\mathcal{N}(0,\sigma^2)$.

Sly-Peres Theorem

The Gaussian perturbed lattice is defined by:

$$\Gamma = \bigcup_{z \in \mathbb{Z}^d} \{z + X_z\},\,$$

where $(X_z)_{z\in\mathbb{Z}^d}$ are i.i.d $\mathcal{N}(0,\sigma^2)$.

Theorem (Sly-Peres 2014)

In dimension d=1,2 the Gaussian perturbed lattice is Number-Rigid. For any $d\geq 3$, there exists $\sigma_d>0$ such that

- for $\sigma < \sigma_d$, the Gaussian perturbed lattice is number-rigid.
- for $\sigma > \sigma_d$, the Gaussian perturbed lattice is not number-rigid.

Number-Rigidity criterion

Theorem (Ghosh-Peres, 2012)

Let P be a point process. Assume that for any bounded $\Lambda \subset \mathbb{R}^d$ and any $\varepsilon > 0$, there exists a function $f : \mathbb{R}^d \to \mathbb{R}$ with compact support such that

- f(x) = 1 for all $x \in \Lambda$
- $Var_P(\sum_{x \in \Gamma} f(x)) \le \varepsilon$.

Then P is Number-Rigid.

Number-Rigidity criterion

Theorem (Ghosh-Peres, 2012)

Let P be a point process. Assume that for any bounded $\Lambda \subset \mathbb{R}^d$ and any $\varepsilon > 0$, there exists a function $f : \mathbb{R}^d \to \mathbb{R}$ with compact support such that

- f(x) = 1 for all $x \in \Lambda$
- $Var_P(\sum_{x \in \Gamma} f(x)) \le \varepsilon$.

Then P is Number-Rigid.

Applications: Theorem by Ghosh-Peres, the determinantal Ginibre process is Number-Rigid, etc...

Theorem (D.-Hardy-Maïda-Leblé 2019)

For any $\beta > 0$, the Sine-beta process P^{β} is Number-Rigid and any other rigidity does not occur.

Theorem (D.-Hardy-Maïda-Leblé 2019)

For any $\beta > 0$, the Sine-beta process P^{β} is Number-Rigid and any other rigidity does not occur.

-Chaïbi and Najnudel proved simultaneously the Number-Rigidity of the Sine-beta process with a completely different proof.

Theorem (D.-Hardy-Maïda-Leblé 2019)

For any $\beta > 0$, the Sine-beta process P^{β} is Number-Rigid and any other rigidity does not occur.

- -Chaïbi and Najnudel proved simultaneously the Number-Rigidity of the Sine-beta process with a completely different proof.
- -Our proof does not use the Ghosh-Peres Criterion. It is a first step toward the general Coulomb case.

Theorem (D.-Hardy-Maïda-Leblé 2019)

For any $\beta > 0$, the Sine-beta process P^{β} is Number-Rigid and any other rigidity does not occur.

- -Chaïbi and Najnudel proved simultaneously the Number-Rigidity of the Sine-beta process with a completely different proof.
- -Our proof does not use the Ghosh-Peres Criterion. It is a first step toward the general Coulomb case.
- Our proof is based on the canonical GNZ equation. We show that Q^{β} and P^{β} are singular.

DLR equations for the Sine-beta Process

Theorem (D.-Hardy-Maïda-Leblé 2019)

For any bounded $\Lambda \subset \mathbb{R}$ and P^{β} -almost all γ

$$P^{\beta}(d\gamma_{\Lambda}|\gamma_{\Lambda^{c}}) = P^{\beta}(d\gamma_{\Lambda}|\gamma_{\Lambda^{c}}, N_{\Lambda} = f_{\Lambda}(\gamma_{\Lambda^{c}}))$$

$$= \frac{1}{Z_{\Lambda}(f_{\Lambda}(\gamma_{\Lambda^{c}}), \gamma_{\Lambda^{c}})} e^{-\beta H(\{x_{1}, x_{2}, \dots, x_{f_{\Lambda}(\gamma_{\Lambda^{c}})}\})}$$

$$\prod_{i=1}^{f_{\Lambda}(\gamma_{\Lambda^{c}})} e^{-\beta V(x_{i}, \gamma_{\Lambda^{c}})} dx_{1}^{\Lambda} dx_{2}^{\Lambda} \dots dx_{f_{\Lambda}(\gamma_{\Lambda^{c}})}^{\Lambda}$$

Unfortunately, the function $f_{\Lambda}(\gamma_{\Lambda^c})$ is not tractable.

- The Sine-beta Process
- 2 DLR equations
- 3 Application 1: the Number-Rigidity
- 4 Application 2: a Central Limit Theorem

The setting

Let P be a point process on $\mathbb R$ with intensity one and φ be a function from $\mathbb R$ to $\mathbb R$ with compact support.

The setting

Let P be a point process on $\mathbb R$ with intensity one and φ be a function from $\mathbb R$ to $\mathbb R$ with compact support.

The centred linear statistic of φ at the scale $n \ge 1$ is defined by

$$\mathcal{L}^{n}(\varphi) = \sum_{x \in \gamma} \varphi(x/n) - E_{P} \left(\sum_{x \in \gamma} \varphi(x/n) \right)$$
$$= \sum_{x \in \gamma} \varphi(x/n) - \int_{\mathbb{R}} \varphi(x/n) dx$$

The setting

Let P be a point process on $\mathbb R$ with intensity one and φ be a function from $\mathbb R$ to $\mathbb R$ with compact support.

The centred linear statistic of φ at the scale $n \geq 1$ is defined by

$$\mathcal{L}^{n}(\varphi) = \sum_{x \in \gamma} \varphi(x/n) - E_{P} \left(\sum_{x \in \gamma} \varphi(x/n) \right)$$
$$= \sum_{x \in \gamma} \varphi(x/n) - \int_{\mathbb{R}} \varphi(x/n) dx$$

Typical CLT: there exists a sequence $(\alpha_n)_{n\geq 1}$ and $\sigma(\varphi)>0$ such that

$$\alpha_n \mathcal{L}^n(\varphi) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \sigma(\varphi)^2).$$

Poisson case:
$$\alpha_n = n^{-1/2}$$
 and $\sigma(\varphi)^2 = \int_{\mathbb{R}} \varphi^2(x) dx$.

CLT for the Sine-beta process

Theorem (Leblé 2019)

The Sine-beta process P^{β} satisfied the CLT for any $\varphi \in \mathcal{C}^4_c(\mathbb{R},\mathbb{R})$

$$\mathcal{L}^n(\varphi) \xrightarrow[n\to\infty]{(d)} \mathcal{N}(0, \sigma(\varphi)^2),$$

with

$$\sigma(\varphi)^2 = \frac{2}{\beta} \int \int \left(\frac{\varphi(x) - \varphi(y)}{x - y} \right)^2 dx dy.$$

Recall: $\mathcal{L}^{n}(\varphi) = \sum_{x \in \gamma} \varphi(x/n) - \int_{\mathbb{R}} \varphi(x/n) dx$.

The DLR equations furnish a central description in the proof, based on a fine analysis of the Laplace transforms.

