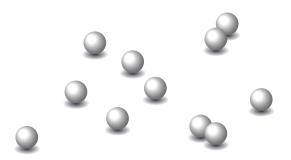
Integration by parts for pinned point processes

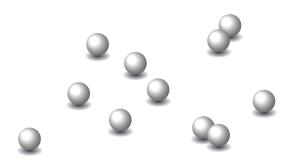
Mathias Rafler Justus-Liebig-Universität Gießen

Stochastic and Analytic Methods in Mathematical Physics Yerevan, September 2–7, 2019

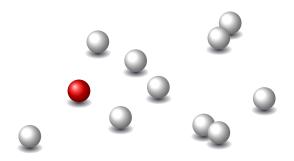
Plan of the talk

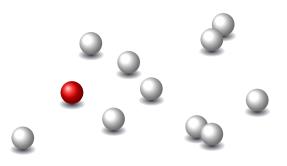
- 1 How to describe point processes
- 2 Pinning and examples
- Characterization
- 4 Key steps
- 5 Remarks on further examples



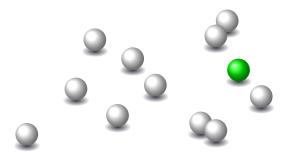


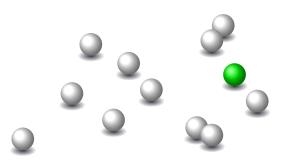
static: total number of points and joint law





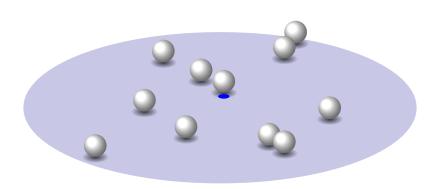
dynamic: how to remove

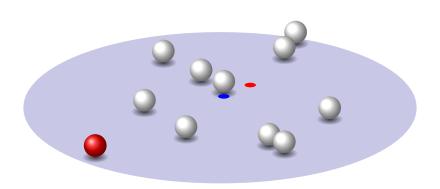


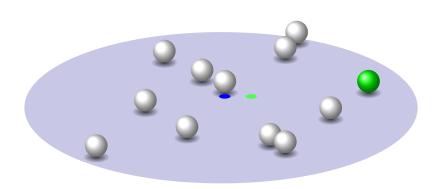


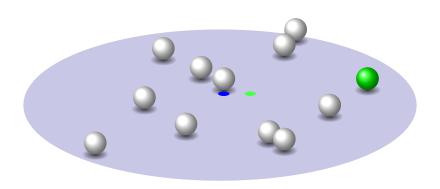
dynamic: how to add

- dynamics for Markov process (existence different story)
 - ▶ add birth
 - ▶ remove death
- existence and uniqueness of stationary/reversible distribution

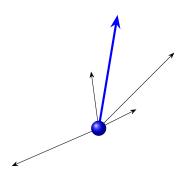


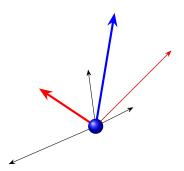


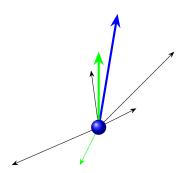


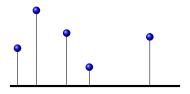


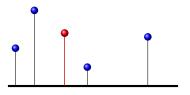
task: modify configuration without disbalancing

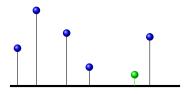


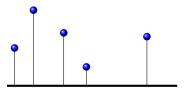












task: modify measure without changing total mass

Application to simulation

Monte-Carlo simulation via birth-and-death processes

- simple
- functionals b and m not invariant
- $\{\mathfrak{b}=a\}$ unlikeli

Simulation of pinned point configuration Rejection method more or less unfeasible

Application to simulation

Monte-Carlo simulation

via birth-and-death processes

- simple
- functionals b and m not invariant
- $\{\mathfrak{b}=a\}$ unlikeli

Simulation of pinned point configuration

Rejection method more or less unfeasible

Previous Work

- G. Conforti, T. Kosenkova, S. Rœlly: Conditioned point processes with application to Lévy bridges (2018)
- ▶ large class of Poisson processes and pinning of first moment
- application to Lévy bridges
- ▶ idea:
 - remove two distinct points and add a suitably chosen one
 - remove one point and add one point together with a suitably chosen one

number of points increases/decreases by one

Transformations and Invariance

Tranformations of point configurations

for point configuration μ and points $x, y \in \mu$,

$$\mu \mapsto \mu - \delta_x - \delta_y + \delta_z$$

Invariance

functionals b and m shall remain invariant

$$\mathfrak{b}(\mu) = \mathfrak{b}(\mu - \delta_x - \delta_y + \delta_z) \qquad \Leftrightarrow \qquad z = x + y - \mathfrak{b}\mu;$$

$$\mathfrak{m}(\mu) = \mathfrak{m}(\mu - \delta_x - \delta_y + \delta_z) \qquad \Leftrightarrow \qquad z = x + y.$$

- for any two points, the one is determined
- further functionals?

State space and conditions

Choose ...

- state space
 - $ightharpoonup \mathbb{R}^d$ $ightharpoonup \mathbb{Z}^d$ or any grid
- pinning of
- focus on \mathbb{R}^d and \mathfrak{b}

Papangelou processes

Defining equation and examples

$IBPF(\pi)$

A point process N is a Papangelou process if

$$\mathbf{E}\left[\int h(x,N)N(\mathrm{d}x)\right] = \mathbf{E}\left[\int h(x,N+\delta_x)\pi(N,\mathrm{d}x)\right]$$

rate of removal N(dx), rate of addition $\pi(N, dx)$

Examples

- **1** Poisson process $\pi(\mu, dx) = \rho(dx)$
- **2** Gibbs process $\pi(\mu, dx) = \exp(-U(x \mid \mu)) dx$

Papangelou processes Basic assumptions

- **1** Absolute continuity of π
 - density denoted by π
 - rules out some examples with e.g. reinforcement
- 2 Compatibility with transformation
 - $\pi^{(2)}(\mu \delta_z; z y \mathfrak{b}\mu, y) > 0$ implies $\pi(\mu \delta_z, z) > 0$

Papangelou processes

Second-order IBPF

$IBPF-2(\sigma)$

Let N be a solution of IBPF (π) , then

$$\mathbf{E}\left[\int h(x, y, N) N^{(2)}(\mathrm{d}x, \mathrm{d}y)\right]$$

$$= \mathbf{E}\left[\int h(x, y, N + \delta_{z-y-\mathfrak{b}} + \delta_y - \delta_z) \sigma(N, y, z) \mathrm{d}y N(\mathrm{d}z)\right]$$

where

$$\sigma(N, y, z) = \frac{\pi^{(2)}(N - \delta_z, z - y - \mathfrak{b}, y)}{\pi(N - \delta_z, z)}, \qquad z \in N.$$

- $ightharpoonup \sigma$ measures preference
- ▶ IBPF-2 is no characterization

Pinning point processes Simple properties

Pinning and properties

Let N be a finite point process, $a \in \mathbb{R}^d$

- $\mathcal{L}(\mathfrak{b})=: au$, distribution on $\mathbb{R}^d\cup\{o\}$ and absolutely continuous on \mathbb{R}^d
- ▶ N^a is N conditioned on $\{\mathfrak{b} = a\}$
- ▶ $N^a \neq 0$ a.s. for τ -a.e. $a \in \mathbb{R}^d$

IBPF-2(σ) for pinned Papangelou processes

If N satisfies IBPF-2(σ), then N^a satisfies IBPF-2(σ) for τ -a.e. $a \in \mathbb{R}^d$.

Pinning point processes Simple properties

Pinning and properties

Let N be a finite point process, $a \in \mathbb{R}^d$

- $\mathcal{L}(\mathfrak{b})=: au,$ distribution on $\mathbb{R}^d\cup\{o\}$ and absolutely continuous on \mathbb{R}^d
- ▶ N^a is N conditioned on $\{\mathfrak{b} = a\}$
- ▶ $N^a \neq 0$ a.s. for τ -a.e. $a \in \mathbb{R}^d$

IBPF-2(σ) for pinned Papangelou processes

If N satisfies IBPF-2(σ), then N^a satisfies IBPF-2(σ) for τ -a.e. $a \in \mathbb{R}^d$.

Pinning point processes Characterization

Characterization

Let Q be the distribution of some point process N such that

- ① Q solves IBPF-2,
- 2 $Q(\mathfrak{b} \neq a) = 0$ for some $a \in \mathbb{R}$,
- ${f 3}$ kernel π is positive and compatible,

then Q is the distribution of a pinned Papangelou process.

▶ simple dynamic leaving 𝔥 invariant

Pinning point processes

Key properties and key arguments

Diminished point process

For point process N, let N^- be N with a uniformly chosen point removed.

- diminution destroys pinning
- $\mathcal{L}((N^a)^-) \ll \mathcal{L}(N)$ with density

$$\frac{\pi(\mu,(\mu(X)+1)a-\mu(X)\cdot\mathfrak{b}(\mu))}{\tau(a)}$$

• $(\mu(X) + 1)a - \mu(X) \cdot \mathfrak{b}(\mu)$ is location of removed point

Pinning point processes Key step

Recover diminished law

If Q solves IBPF-2(σ), Q is pinned to $a \in \mathbb{R}^d$ and π is positive. Then $Q^- \ll \mathcal{L}(N)$ with density

$$rac{\pi(\mu,(\mu(X)+1)\mathsf{a}-\mu(X)\cdot\mathfrak{b}(\mu))}{ au(\mathsf{a})}$$
 .

Recover law (CKR)

If Q is pinned to some $a \in \mathbb{R}$ and $Q^- = \mathcal{L}\big((N^a)^-\big)$, then $Q = \mathcal{L}(N^a)$.

Pinning point processes Key step

Recover diminished law

If Q solves IBPF-2(σ), Q is pinned to $a \in \mathbb{R}^d$ and π is positive. Then $Q^- \ll \mathcal{L}(N)$ with density

$$rac{\pi(\mu,(\mu(X)+1)\mathsf{a}-\mu(X)\cdot\mathfrak{b}(\mu))}{ au(\mathsf{a})}$$
 .

Recover law (CKR)

If Q is pinned to some $a \in \mathbb{R}$ and $Q^- = \mathcal{L}((N^a)^-)$, then $Q = \mathcal{L}(N^a)$.

Further situations

First moment m

- ightharpoonup state space \mathbb{R}^d and \mathfrak{m}
 - pinning on $\mathfrak{m} = a \neq 0$ rules out empty configurations
- invariance in case of z = x + y
- assumptions
 - absolute continuity condition
 - compatibility condition
- adjustments in IBPF-2(σ)
 - \triangleright $z y + \mathfrak{b}$ replaced by z y
 - (also in σ)

Further situations

First moment m

- ightharpoonup state space \mathbb{Z}^d and \mathfrak{m}
- not allowed in CKR
- absolute continuity with respect to counting measure
- adjustment in proof of IBPF-2(σ)

Finally

- derived IBPF-2 for pinned Papangelou process
- ▶ IBPF-2+pinning characterizes law
- description of all laws of IBPF-2?