Extremal states decomposition in quantum spin systems

Daniel Ueltschi

Department of Mathematics, University of Warwick

Stochastic and Analytic Methods in Mathematical Physics Monday 2 September 2019

\Diamond	Quantum	spins,	decomposition	${\rm in}$	extremal	states
------------	---------	--------	---------------	------------	----------	--------

 \diamondsuit Results for the complete graph, for the Heisenberg / XY / quantum interchange models

 \diamondsuit The random interchange model and the joint distribution of cycle lengths

Setting

Spin parameter $S \in \frac{1}{2}\mathbb{N}$, domain $\Lambda \subseteq \mathbb{Z}^d$

Hilbert space
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} : \dim \mathcal{H} = (2S+1)^{|\Lambda|}$$

Hamiltonian
$$H_{\Lambda} = -\sum_{\substack{x,y \in \Lambda \\ \|x-y\|=1}} h_{xy}$$
, where

$$h_{xy} = \begin{cases} S_x^1 S_y^1 + S_x^2 S_y^2 + \Delta S_x^3 S_y^3 & \text{for XY, Heisenberg} \\ T_{xy} & \text{for quantum interchange} \end{cases}$$

 $T_{xy}|\varphi_x\rangle\otimes|\varphi_y\rangle=|\varphi_y\rangle\otimes|\varphi_x\rangle$ is the transposition operator (For $S=\frac{1}{2}$, we have $T_{xy}=2\vec{S}_x\cdot\vec{S}_y+\frac{1}{2}$, [Tóth '93])

Finite-volutme Gibbs state: $\langle \cdot \rangle_{\beta,\Lambda} = \frac{1}{Z(\beta,\Lambda)} \text{Tr} \cdot e^{-\beta H_{\Lambda}}$

Infinite-volume Gibbs state: $\langle \cdot \rangle_{\beta} \lim_{\Lambda \uparrow \mathbb{Z}^d} \langle \cdot \rangle_{\beta,\Lambda}$

Extremal state decomposition

Let \mathcal{G}_{β} : set of infinite-volume states (KMS condition) at inverse temperature β

The goal is to characterise \mathcal{G}_{β}

General results: \mathcal{G}_{β} is a Choquet simplex, i.e. a compact convex subset of a normed space where every point is given by a convex combination of extremal points. That is, there exists an index set ψ_{β} and a probability measure μ_{β} on ψ_{β} s.t.

$$\langle \cdot \rangle_{\beta} = \int_{\psi_{\beta}} \langle \cdot \rangle_{\psi} d\mu(\psi)$$

Infinite-volume states are *clustering*:

$$\lim_{\|x\| \to \infty} \left[\langle A \tau_x B \rangle_{\psi} - \langle A \rangle_{\psi} \langle \tau_x B \rangle_{\psi} \right] = 0$$

(Think of a ferromagnetic state)

"Spin-density" Laplace transform of μ

Tom Spencer's suggestion: Look at the "spin-density" Laplace transform of μ

Let A an operator on \mathbb{C}^{2S+1} and $A_x = A \otimes \mathbb{1}_{\Lambda \setminus \{x\}}$

Define
$$\Phi_{\beta}(h) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \langle e^{\frac{h}{|\Lambda|} \sum_x A_x} \rangle_{\beta,\Lambda}$$

We expect that

$$\lim_{\Lambda \uparrow \mathbb{Z}^{d}} \left\langle e^{\frac{h}{|\Lambda|} \sum_{x \in \Lambda} A_{x}} \right\rangle_{\beta,\Lambda} \stackrel{(?)}{=} \lim_{\Lambda \uparrow \mathbb{Z}^{d}} \lim_{\Lambda' \uparrow \mathbb{Z}^{d}} \left\langle e^{\frac{h}{|\Lambda|} \sum_{x \in \Lambda} A_{x}} \right\rangle_{\beta,\Lambda'}$$

$$= \lim_{\Lambda \uparrow \mathbb{Z}^{d}} \int_{\psi_{\beta}} \left\langle e^{\frac{h}{|\Lambda|} \sum_{x} A_{x}} \right\rangle_{\psi} d\mu(\psi)$$

$$= \int_{\psi_{\beta}} e^{h\langle A_{0} \rangle_{\psi}} d\mu(\psi)$$

Our models have continuous symmetry (XY: U(1); Heisenberg: SU(2); interchange: SU(2S+1)), given by the group G

We expect that the set of extremal states is given by a *single* state $\langle \cdot \rangle_0$ and its orbit by G

Then $\psi_{\beta} \equiv G$ and $\langle A \rangle_{\psi} = \langle U_{\psi}^{-1} A U_{\psi} \rangle_{0}$. Then

$$\Phi_{\beta}(h) = \int_{\psi_{\beta}} e^{h\langle U_{\psi}^{-1} A U_{\psi} \rangle_{0}} d\mu(\psi)$$

where μ is the Haar measure on G

Given an explicit ψ_{β} , this is usually easy to calculate

Notice that $\Phi_{\beta}(h)$ does not depend much on the dimension d of \mathbb{Z}^d

 β small: If $\int \langle A \rangle_{\psi} d\mu(\psi) = 0$, then $\Phi_{\beta}(h) = 1$ for all h, as can be proved by cluster expansion, see e.g. [Poghosyan et.al.]

Model 1 — Heisenberg ferromagnet

On the complete graph, $\Lambda = \{1, \ldots, n\}$: $H_{\Lambda} = -\frac{1}{n} \sum_{x,y=1}^{n} \vec{S}_x \cdot \vec{S}_y$

Theorem [Björnberg, Fröhlich, U '19]

There exists $m^*(\beta) \ge 0$ such that

$$\lim_{n \to \infty} \left\langle \exp \frac{h}{n} \sum_{x=1}^{n} S_x^{(3)} \right\rangle_{\beta,n} = \frac{\sinh(hm^*(\beta))}{hm^*(\beta)}$$

Further,
$$m^*(\beta) > 0$$
 iff $\beta > \beta_c = \frac{3/2}{S^2 + S}$

Remark: For $S = \frac{1}{2}$, this goes back to [Tóth '91; Penrose '92]

The proof: Since $H_{\Lambda} \simeq \frac{1}{n} (\sum_{x} \vec{S}_{x})^{2}$, we can use the theory of additions of spins and asymptotic analysis

Symmetry breaking

Symmetry breaking: $G = \psi_{\beta} = \mathbb{S}^2$. For $\vec{a} \in \mathbb{S}^2$:

$$\langle \cdot \rangle_{\vec{a}} = \lim_{\eta \to 0+} \lim_{n \to \infty} \langle \cdot \rangle_{H_{\Lambda} - \eta \sum_{x} \vec{a} \cdot \vec{S}_{x}}$$

Let $m^*(\beta) = \langle S_1^{(3)} \rangle_{\vec{e_3}}$. Then

$$\Phi_{\beta}(h) = \int_{\mathbb{S}^2} e^{h\langle \vec{a} \cdot \vec{S}_1 \rangle_{\vec{e}_3}} d\vec{a}$$
$$= \int_{\mathbb{S}^2} e^{ha_3 m^*(\beta)} d\vec{a}$$
$$= \frac{\sinh(hm^*(\beta))}{hm^*(\beta)}$$

Model 2 — Quantum XY

Theorem [Björnberg, Fröhlich, U '19]

For the same $m^*(\beta) \ge 0$ as before, we have

$$\lim_{n \to \infty} \left\langle \exp \frac{h}{n} \sum_{x=1}^{n} S_x^{(1)} \right\rangle_{\beta, n} = \sum_{k \ge 0} \frac{1}{(k!)^2} (\frac{1}{2} m^*(\beta))^{2k}$$

As before,
$$m^*(\beta) > 0$$
 iff $\beta > \beta_c = \frac{3/2}{S^2 + S}$

We can also check that

$$\Phi_{\beta}(h) = \int_{\mathbb{S}^1} e^{h\langle \vec{a} \cdot \vec{S}_1 \rangle_{\vec{e}_1}} d\vec{a} = \sum_{k > 0} \frac{1}{(k!)^2} (\frac{1}{2} m^*(\beta))^{2k}$$

Model 3 — Quantum interchange

On the complete graph $\Lambda = \{1, ..., n\}$: $H_{\Lambda} = -\frac{1}{n} \sum_{x,y=1}^{n} T_{xy}$ with T_{xy} the transposition operator

Theorem [Björnberg, Fröhlich, U '19]

There exists $m^*(\beta) \ge 0$ such that

$$\lim_{n \to \infty} \left\langle \exp \frac{h}{n} \sum_{x=1}^{n} S_x^{(3)} \right\rangle_{\beta, n} = \left(\frac{\sinh(hm^*(\beta))}{hm^*(\beta)} \right)^{2S}$$

Further,
$$m^*(\beta) > 0$$
 iff $\beta > \beta_c = \begin{cases} 2 & \text{if } S = \frac{1}{2} \\ \frac{4S}{2S-1} \log(2S) & \text{if } S \geqslant 1 \end{cases}$

The proof is easy for $S=\frac{1}{2}$ (Heisenberg model) but not for $S\geqslant 1$. It uses representation theory for the symmetric group, results from [Alon, Kozma '13] and [Berestycki, Kozma '15], and also symmetric polynomials

Symmetry breaking of quantum interchange model

We expect that extremal states are given by

$$\langle \cdot \rangle_Q = \lim_{\eta \to 0+} \lim_{n \to \infty} \langle \cdot \rangle_{H_{\Lambda} - \eta \sum_x Q_x},$$

where Q is a rank-1 projector in \mathbb{S}^{2S+1}

The group is then \mathbb{CP}^{2S} (i.e. complex vectors of 2S+1 components, of norm 1, where $\vec{a} \sim \vec{b}$ if $\vec{a} = e^{i\alpha} \vec{b}$ for some α)

We have
$$\int_{\mathbb{CP}^{2S}} e^{\langle A_1 \rangle_{\vec{a}}} d\vec{a} = \int_{\mathcal{U}(2S+1)} e^{\langle U^{-1}A_1 U \rangle_0} dU$$

Using the Harish-Chandra-Itzykson-Zuber formula, and further calculations, we get that $\Phi_{\beta}(h)$ is indeed given by the formula of the theorem

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

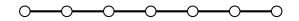
Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$

 $\mathcal{L}(\omega)$: set of loops

Partition function:

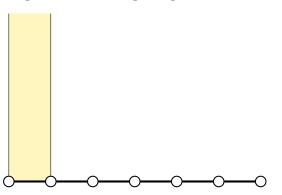
$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$



Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

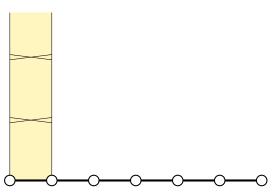
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

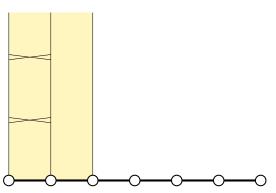
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

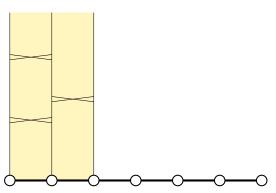
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

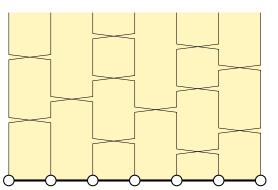
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

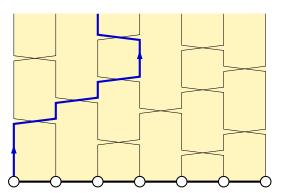
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

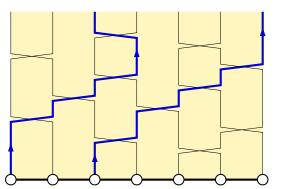
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

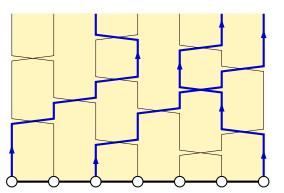
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

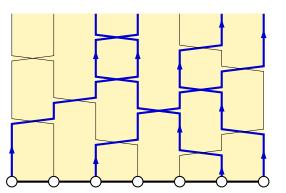
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

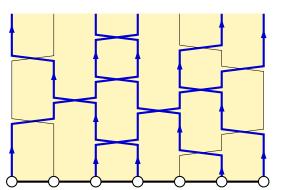
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$



 $\mathcal{L}(\omega)$: set of loops

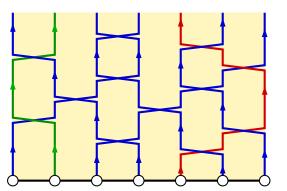
Partition function:

$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

Arbitrary finite graph (Λ, \mathcal{E}) . On each edge $e \in \mathcal{E}$ is associated the interval $[0, \beta]$

Independent Poisson point processes on each interval. Notation: $\rho(d\omega)$

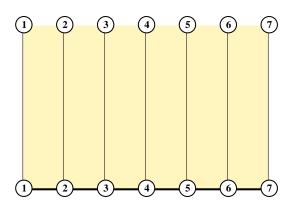


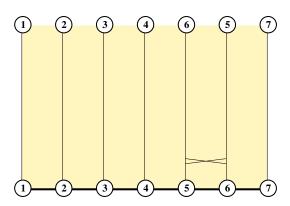
 $\mathcal{L}(\omega)$: set of loops

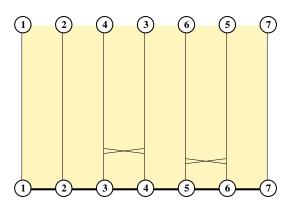
Partition function:

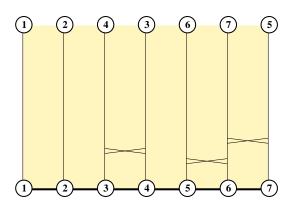
$$Z = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega)$$

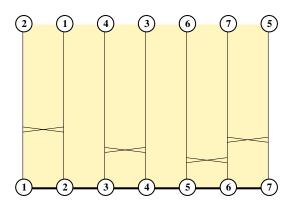
$$\frac{1}{Z}2^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)$$

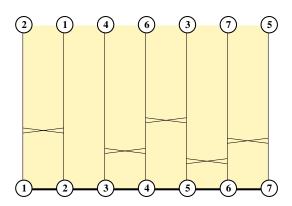


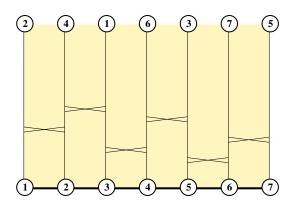


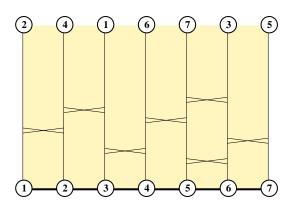


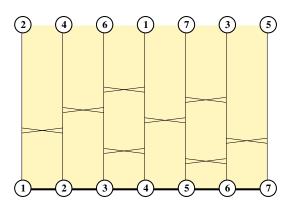


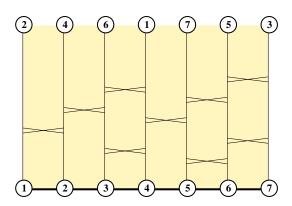


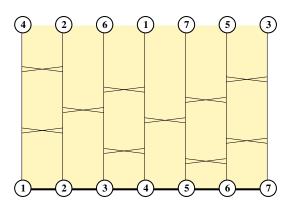


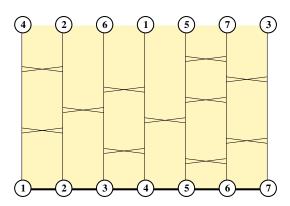


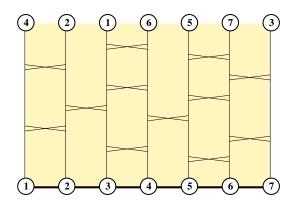






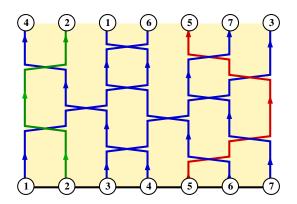






Random interchange model

Stochastic process that gives lattice permutations



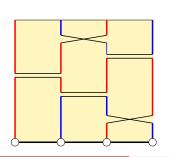
Extension of the representation

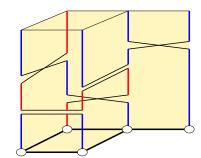
Let ρ be independent Poisson point processes on $\underset{\rho \in \mathcal{E}}{\times} [0, \beta]$, where:

- crosses appear with intensity u
- double bars appear with intensity 1-u

 $\mathcal{L}(\omega)$: set of loops of the realisation ω

Relevant probability measure:
$$\left[\frac{1}{Z}\theta^{|\mathcal{L}(\omega)|}\rho(\mathrm{d}\omega)\right]$$
 with $\theta>0$



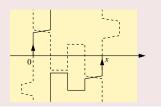


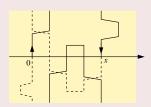
Relations between quantum spins and random loops

Hamiltonian
$$H^{(u)} = -\sum_{\|x-y\|=1} \left(S_x^1 S_y^1 + (2u-1) S_x^2 S_y^2 + S_x^3 S_y^3 \right)$$

Theorem [Tóth '93; Aizenman, Nachtergaele '94; U '13]

$$\begin{split} &\text{Tr } \mathbf{e}^{-\beta H^{(u)}} = \int 2^{|\mathcal{L}(\omega)|} \rho(\mathrm{d}\omega) \\ &\langle S_0^1 S_x^1 \rangle_\beta = \langle S_0^3 S_x^3 \rangle_\beta = \frac{1}{4} \mathbb{P}_{L,\beta,u,2} \big(0 \leftrightarrow x \big) \\ &\langle S_0^2 S_x^2 \rangle_\beta = \frac{1}{4} \big[\mathbb{P} \big(0 \leftrightarrow x, \text{same direction} \big) - \mathbb{P} \big(0 \leftrightarrow x, \text{opposite dir.} \big) \big] \end{split}$$





Joint distribution of the lengths of the loops

Given realisation ω , let $\ell_1(\omega), \ell_2(\omega), \dots, \ell_{K(\omega)}(\omega)$ be the lengths of the loops in decreasing order. This is a **random partition** of the interval [0,1]:

$$\left(\frac{\ell_1(\omega)}{|\Lambda|}, \frac{\ell_2(\omega)}{|\Lambda|}, \dots, \frac{\ell_{K(\omega)}(\omega)}{|\Lambda|}\right)$$

Small loops have lengths of order 1, so the random partition looks like:

Proved: $\mathbb{E}(\frac{\ell_0}{|\Lambda|}) > c$ for Λ a box in \mathbb{Z}^d , $d \ge 3$.

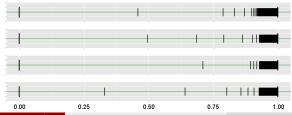
Joint distribution of the lengths of the loops

Given realisation ω , let $\ell_1(\omega), \ell_2(\omega), \dots, \ell_{K(\omega)}(\omega)$ be the lengths of the loops in decreasing order. This is a **random partition** of the interval [0,1]:

$$\left(\frac{\ell_1(\omega)}{|\Lambda|}, \frac{\ell_2(\omega)}{|\Lambda|}, \dots, \frac{\ell_{K(\omega)}(\omega)}{|\Lambda|}\right)$$

Small loops have lengths of order 1, so the random partition looks like:

Proved: $\mathbb{E}(\frac{\ell_0}{|\Lambda|}) > c$ for Λ a box in \mathbb{Z}^d , $d \geqslant 3$. Numerical results [Barp², Briol, U '15]:



Universal behaviour for $d \ge 3$

Here: random interchange model $(u = 1, \theta = 1)$

Conjecture: There exists $m = m(\beta) \in [0, 1)$ such that

•
$$\sum_{i=1}^{k} \frac{\ell_j(\omega)}{L^d} \overset{L \to \infty}{\underset{k \to \infty}{\longrightarrow}} m$$
 a.s.

•
$$\left(\frac{\ell_1(\omega)}{L^d}, \dots, \frac{\ell_k(\omega)}{L^d}\right) \xrightarrow[k \to \infty]{} \operatorname{PD}_1[0, m]$$
 in distribution

Universal behaviour for $d \ge 3$

More general model, $u \in [0,1]$, $\theta > 0$

- $\sum_{j=1}^{k} \frac{\ell_j(\omega)}{L^d} \stackrel{|\Lambda| \to \infty}{\underset{k \to \infty}{\longrightarrow}} m$ a.s.
- $\bullet \left(\frac{\ell_1(\omega)}{L^d}, \dots, \frac{\ell_k(\omega)}{L^d}\right) \overset{|\Lambda| \to \infty}{\underset{k \to \infty}{\longrightarrow}} \mathrm{PD}_{\vartheta}[0, m] \text{ in distribution,}$ where $\boxed{\vartheta = \theta}$ for u = 0, 1 and $\boxed{\vartheta = \theta/2}$ for $u \in (0, 1)$

Proof for annealed spatial permutations [Betz, U '11] Numerical results:

- [Grosskinsky, Lovisolo, U '12] for lattice permutations
- [Nahum, Chalker et.al. '13] for O(N) loop models (they also calculate moments of joint distribution using "supersymmetry")
- [Barp², Briol, U '15] for random loops

Rigorous results for the random interchange model on the complete graph

Let
$$q(t) = \frac{1}{\theta} \left(e^{-St} + e^{-(S-1)t} + \dots + e^{St} \right) = \frac{\sinh(\frac{\theta}{2}t)}{\theta \sinh(\frac{1}{2}t)}$$
 where $2S + 1 = \theta$

Theorem [Björnberg, Fröhlich, U '19]

Let $\theta = 2, 3, 4, \ldots$ For all $h \in \mathbb{C}$, we have

$$\lim_{n \to \infty} \mathbb{E}_{n,\beta,\theta} \left[\prod_{i \geqslant 1} q(\frac{h}{n} \ell_i) \right] = \left[\frac{\sinh(\frac{1}{2}hm^*(\beta))}{\frac{1}{2}hm^*(\beta)} \right]^{2S}$$
$$= \mathbb{E}_{\text{PD}(\theta)} \left[\prod_{i \geqslant 1} q(hm^*(\beta)X_i) \right]$$

In the case $\theta = 1$, stronger results have been proved [Schramm '05] Interesting question: How good is this characterisation of the random partition? (Partial results in [Björnberg, Mailler, Mörters, U '19])

• The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ
- This property is expected to be very general, but it can only be proved in simple situations (here: complete graph)

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ
- This property is expected to be very general, but it can only be proved in simple situations (here: complete graph)
- Some quantum spin systems can be written as loop soups

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ
- This property is expected to be very general, but it can only be proved in simple situations (here: complete graph)
- Some quantum spin systems can be written as loop soups
- Many interesting results on these loop models in various graphs, notably [Betz et.al.]

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ
- This property is expected to be very general, but it can only be proved in simple situations (here: complete graph)
- Some quantum spin systems can be written as loop soups
- Many interesting results on these loop models in various graphs, notably [Betz et.al.]
- Universal behaviour of loop soups in $d \ge 3$: Poisson-Dirichlet

- The symmetric Gibbs state is given by a convex combination of extremal states; this convex combination is given by the measure μ
- "Spin-density" Laplace transform of the measure μ
- This property is expected to be very general, but it can only be proved in simple situations (here: complete graph)
- Some quantum spin systems can be written as loop soups
- Many interesting results on these loop models in various graphs, notably [Betz et.al.]
- Universal behaviour of loop soups in $d \ge 3$: Poisson-Dirichlet
- The spin-density Laplace transform of quantum spins is equal to the expectation of certain functions in the random partitions formed by loop lengths

THANK YOU!