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1.We consider the problem of a function approximation by finite number of
its Fourier coefficients
1 1 —iznx
fnzzj_lf(x)e dx, |n|SN.
It is well known that approximation of a 2-periodic and smooth function f on
the real line by the truncated Fourier series

N o
Su(f)= 22 fe™
n=—N
is highly effective. When the approximated function has a point of discontinue-
ty, approximation by the partial sum S, (f) leads to the Gibbs phenomenon.

In this paper we consider the L,-optimal rational approximation in combi-

nation with the Krylov-Lanczos approximation and investigate a convergence of
this approach in the regions where the approximated function is smooth.
Denote

Ry (f)=f(x)=Sy(f).
2. First we introduce the Krylov-Lanczos approximation (see [1-3]).
Suppose fe C’[-11]. By A (f)denote the exact value of the jump in the & -th

derivative of f

A(F)=FY )= (-1), k=0,...,q.
The basic idea of the Krylov-Lanczos approximation is the following
representation of the approximated function

P00 =F () + S A8 ),

where B, are 2-periodic Bernoulli polynomials with the Fourier coefficients
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0, n=0
Bk - (_l)u+l

Sn
k+1 7

———— n#0
2(i7m)

and F is a 2-periodic and relatively smooth function on the real line(F e

e C*'(R)) with the Fourier coefficients

F=f-S A(f)B., (1)

Approximation of F by the truncated Fourier series leads to the Krylov-

Lanczos (KL-) approximation
N . q-1
SN.q (f) = 2 Fne’”"" +ZA/< (f)Bk (x)
n=—N k=0
with the error

Ry, ()= 1 (x)=5y, (/)

By || denote the standard norm in the space L,

1 5 172
= (]l Gof ]
The following results we need for further comparison.
Theorem 1 [3]. Suppose fe C/[-11] and fe AC[-11]. Then the

following estimate holds

1
tim N2 Ry, (£)]=[4, (£)|e(a)

N —o0
where
1

c(g)=———r—.
(9) 77 [2g+1
Theorem 2 [4]. Suppose fe C*'[-11] and £ e AC[-L1]. Then the
following estimates hold for || <1

¢N,q (X)
Nq+l

Ry, (f)=4,(f) +o(N), N = e,

where

(1) sin%(2N+1)

X)=
¢N,q ( ) 27Z'q+1 Cosﬂ

for even values of q and

(_1)N+q7+l cos%(2N+1)

X)=
¢N,q( ) 2”q+1 COS%

for odd values of ¢.
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3. Now we introduce the L,-optimal rational approximation for additional
convergence acceleration of the KL-approximation (see [4]).

Consider a finite sequence of complex numbers 6 ={6, }‘i‘zl ,p=land de-
note

0 k k-1 Ak

A, (6.F,)=F, 0, (6.F,) = A, (6.F,) + 6 (A YA(t)sann) (6.F,). k=1,
where sgn(n)=1if n>0 and sgn(n)=-1if n<0.

By A?(F,) we denote the classical finite differences which correspond to

generalized differences AZ (6,F,) with 6=1.

>t n

We have
Ry, (f)=Ry (F)+Ry (F).
where
= ' -Nal
— z Fnelﬂ'ﬂx s R[:[ (F) — Z Fnelﬂ'ﬂx .
n=N+1 n=—co
It can easily be checked that
0F eiﬂ'(N+1)x 1 oo )
Ry (F)=—2" 4 . Al (6,F, )e™ .
N( ) 1+ 6™ 1+ 6™ nz n( n)

=N+1
Reiteration of this transformation up to p times leads to the following expan-
sion

R (F) = e ®(N+1)x N gkAlzcv_l(g’Fn) 1 - 0,.F, )ei™
W)= ;Hf_l(l-l-esemx)+H:_1(1+(9kemx)n—zl\'+l (05

Similar expansion of Ry (F) reduces to the following rational (by ™)

approximation
N
Nq p ZA x)+ ZN Fnelmlx

: U eA“(eF) 2 6,A(6.F,)
_em’(N-H)xZ k=N >tn _ —m' N+1xz —k

=) I R = HS_1(1+ 6.c)
with the error

RN,q,p (f):f(x)_SN,q,p(f):RIJ\r/,q,p (f)+R1:',q,p (f)’

where

X - _
PO, —— VP P @
N.g.p (f) H::1(1+9ike¢i,;x) n:ZNH + ( )e

Different methods are known for determination of the unknown
parameter 6 . One method is described in [4] which leads to the L,-optimal rati-

onal approximation. In particular, parameters ¢, and 6_, are chosen as follows
(see Theorem 3)
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Ty ..
6, =6, =1_W’k =L..p.5>0,7; #7,j#1,
where the new parameters 7; minimize the constant ¢, (g) in Theorem 3.

By 7. (p) denote the coefficients of the polynomial

p

H(1+Tkx)=iz'k (p)xk.

k=1 k=0

Theorem 3 [4]. Suppose f e C**”[-1,1] and f"") e AC[-1,1].Tf
6, =6, =1—%,k LTy > 0,7, £ T 2,

then the following estimate holds

1
lim N2 "RN,q,p (f)" =|Aq (f)|cp (9),

N —o0

where

- 1/2

1
c,(q)= ] [I|¢p,q(t)| dt] ’

1

and
1) 1< -7;(e-1) P . p=k-1 i
¢p,q(t):( ) 2 zyk(l’)(_l)k : (6]+p—k—m—1)!‘[j .

[ p
17 14 _
T iz (-7, )k=0 m=0

i#]
Table 1 presents the numerical values of ¢, (¢) by using parameters 7, that

minimize it. Note that ¢, (¢)=c(g).

Table 1
Numerical values of ¢(g) and <, (¢) by using the optimal values of parameters
q 1 2 3 4 5 6

c(q) | 58102 | 14102 | 3.9-10° | 1.1-107 | 3.1-10* | 9.2:107°
1.0-107% | 16107 | 32:107* | 7.0-107° | 1.7-107° | 4.2.107
28107 | 3.1-10°* | 47-.10° | 85-10° | 1.7-10° | 3.7-107
95107 | 7.8-10° | 9.4-10° | 1.4.10° | 24.107 | 46-107°
3.7-107% | 2.3-107° | 23-10° | 29107 | 43-10° | 7.0-107°
1.6-10* | 7.8-10° | 63-107 | 6.8-10° | 8.7-10° | 1.3-107°

o

o
w
=
—_— - — | —= |-

4. In this section we investigate the pointwise convergence of approxima-

tion Sy, , (f) in the regions away from the singularities (|x| <1).
The main result of this paper is:

Theorem 4. Let fe C*?* [-11] and £ e AC[-11]. T
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9;6_67,(_1-W

then the following estimates hold for || <1

Dy g\ X g
Buop ()=, (N ety e
where
q
(—1)N+p+5 sin 72X (ZN p+1) »
0 x)= (p—k+q)(p
N,q,P( ) 2”+17rq+1q! cos p+1 ﬂ;c kZ: ) k( )

for even values of g and

(_1)N+p+q7+1 cos%(ZN—p +1) P

D) (p—k+a) 7 (p)

! X
q: COSp+1 — k=0

Pn.qp (%)= 2P g
for odd values of ¢.

Proof. Taking into account that §, —1 as N —  then we need to estimate
only the last sum in (2). By the Abel transformation we get

- +iz(N+1)x o p
+im(N+1)x
—mAlﬂv (Af (Q’Fn)) (3)
+e

oo

+; Z Ain( (G’F;z)) *zmzx.

(1+ i””)z n=N+l
Now we estimate the sequences AgN(A,’,’(e,Fn)), AE_,N(A,’,’(Q,F,,)) and

Ain(A,’,’(e,Fn)) as N —oeoand n>N+1.
It is easy to verify that
2 () 7(p) ok
A’l') (9’ F" ) = kZ_(:)TAs—sgn(n)k (F" )’
where the classical finite differences can be calculated by the formula
2 (k
k —
An (Fn ) - Z(;{j]Fn—sgn(n)j :
=
Taking into account that A (A,’j‘k (F”)) =AVPR(F,), we get
w 2 (1) 7 (p) " (w+ p—k
A, (Arll) (97 F, )) = ZT Z j F;z—sgn(n)(k+j)' “4)
k=0 =0

Smoothness of F leads to the following asymptotic expansions of the Fourier
coefficients
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-1 n+l g+ p—k+1 A
p oD (1)
2 = (izn)
Substituting this into (4), we derive

A;“(A,’Z(e,Fn))=ﬂ y szp: (_1)1'{“1’"‘]‘”5:* A, (f)

2 = Nk ] po (iﬂ'n)ﬁ—l

—g—p+k+2
+0(nq” ),n—)oo, k=0,....,p

j=0

! +0(n_q_p_2)

X(l_i(k;j)]m

Ll Dt [T R

k=0 t=0 5=0

where
w+p—k
i(w+p—k s
a= 2 ([ e
= J
and "+" sign corresponds to positive values of n an sign to negative values.
It is well known [4] that &,  (w)=0 fors<w+ p—k , hence for s>w+ p—k and

non

consenquently > w+ p—k , after simple manipulations, we derive

n+

AW (Ap (0 Fy ) q+1 i N z ﬂtpk k+t) +0(n—q—p—2 )’ ®)

k=0 t=w

where

. +5— -k —s+
/3tk z 1’ k[t-’rp +q]AtA—q£f)ak,s+p—k(w)'

p—k+s (m-)’ $

Asymptotic expansion (5) immediately shows that A2 (A]’i, (e, Fn))zo(n_"“”z)

S=w

and the third term in the right hand side of (3) is o(N""”_l) as N — oo,
Taking n=+N in (5), we get

( N+1 P 1 '*l”‘ t( )
Ay (a7 (6.F,)) = o > %p Z +o(n717772). (6)

(+7Z'N q+1 e

t=w

0
From here we conclude that Al (A (e, F”)) (N pma- 2) as N — oo . Then

#Z(il)ﬂA 7 (1) Bok (0)+ O(N-p—q—z) _

N"3S
Taking into account the relations

0 B 0=, " 0

AgN (AS (Q’F;z))z g+l

p—k
g e

346



-4, )y

we get
(_1)N+1)+1 P

(1) (p-k+q)t (p)+0(N 2.

Ay (AP (0,F,))=A, (f)—————
iN( ( )) q( )Z(iiirN)q+1Npq!k:o

Now it follows from (3) that

eii;r(N+1)x ( 1)N+p A ) &
v -p—q-1
Ry (£)= sime | P QNP 12 p_k"'q)!?’k(l’)'“’(N pq )
(1+ _m'x) 2N pn
Finally
( 1)N+p A p
Ry.q.p (f) - Np+q+1 ! ﬂ-q+l Z P k+q)!7k (p)
k=
ei/z'(N+1)x
Re| —M8 +0(N—p—q—l).
p+l

iq+1 (1+ei7z'x)
This completes the proof.
5. In this section we compare the convergence of the KL and L, -optimal

rational approximations in the regions away from the singularities and show
how the parameters p and ¢ can be chosen in practice for better approxima-

tion. We will show that utilization of all available jumps is not always reaso-
nable and more accuracy can be achieved with less jumps in combination with
rational corrections.

It is important to notice that Theorem 4 puts additional smoothness re-
quirements on the approximated functions compared to Theorem 2 so in com-
parisons it must be taken into account. If g is the number of available jumps

and p >0 is chosen such that the requirements of Theorem 4 are valid (e.g.
when function is infinitely differentiable) then L,-optimal rational approxi-

mation is more precise (however asymptotically) than the KL-approximation
which follows from comparison of Theorems 2 and 4.

Let fecM* [—1,1],f(M+1) € AC[-1,1], M >1. According to Theorems 2
and 4 if the values of ¢ and g satisfy the condition g+ p=M then both Theo-

rems 2 and 4 are valid and comparison of corresponding approximations is
legal. Then, asymptotic estimates of these theorems will show which values of
parameters p and ¢ provide with better accuracy. We show this process

for a specific example. Let

f(x)=sin(ax—1),
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where a is some parameter. We use the values a=1/5,3,50 and in Table 2

4, (/)

calculate the values of -——1
NITPH i 05 05]

|¢’N ap )| for N =512 and for different

values of p and ¢ with condition ¢+ p=5. Recall that p=0 corresponds to
the KL-approximation.

Table 2
Values of |A (f)| |€0 )| for N=512, g+p=5, p=0,...,4 and
Natptl xe[osos] N.q.p ’ ’ v
f(x)=sin(ax—1)

q=5 q=4 q=3 q=2 q=1

p=0 p=1 p=2 p=3 p=4
a=1/5 42-10%* | 22:10% | 5110 7.7-107% 24107
a=3 2310718 7.9.107" 1.2-10718 1.2-10718 2.6-10718
a=50 55.10712 1.1-1075 1.1-107 6.4-1071° 8.0-107"7

The table shows that for a=1/5 the KL-approximation Sy s(f) is the
best, for a=3the L,-optimal rational approximation Sy, (f) is the best and
for a =50 the approximation Sy, () is the best.

Overall conclusion based on this specific example and on comparison of
the asymptotic estimates of Theorems 2 and 4 is the following: not always utili-
zation of all available jumps, by the KL-approximation, leads to the best appro-
ximation. This is due to the factor A, (f) in the estimates. When the values of

jumps are rapidly increasing then better accuracy can be achieved by utilization
of smaller number of jumps and appropriately chosen corrections based on the
smoothness of the approximated function. Which choice of g and pis the best

can be concluded from comparison of the corresponding estimates as we did
above.

It must be also mentioned that when the jumps are rapidly increasing then
getting their approximations is problematic so in that case utilization of the
rational corrections is unavoidable for better accuracy.

Institute of Mathematics of NAS RA

A. V. Poghosyan
On a Convergence of the L,-Optimal Rational Approximation

We investigate a convergence of the L,-optimal rational approximation in the
regions away from singularities where the approximated function is smooth. Theoretical
estimates show that the rate of convergence is greater than for the classical Krylov-
Lanczos method by the order which equals to the order of denominator of the rational
approximants.
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U. 9. Mnnnuyui
L2-oyyunhdw) nwghnbiw] Unnnupldw gniquihinnipjut dwuht

Nuunudtwuphpynud £ L-oyyunhuw] nwghntw] dnnwpluwi gniquuhwnnipniip
hwwnqubh tukpunud, npnkn $niujghwts nnnpy k: Skuwljwt guwhwnwljwutpp gnyg L
wnuihu, np gniquihinnipjub wpugnipmniip hudbdwinws guuwlwi Ynhiny-Lugnoh
dbpnnh hbtw, wwppbipynud t Jupgny, npp hwjwuwp b pwghntwy $niulghuyh
hwjnwpuph Jupght:

A. B. ITorocsun

O cxoguMoCTH Lz-OHTHMaJIbHOﬁ paHHOHaJIbHOﬁ AllMIPpOKCUMAallUA

N3yuaercs cxoquMocTh L,-onTuManbHON palMoHaIbHOW anlpOKCHMALUA BHYTPU
oTpesKa, rae GyHKIus rmaakas. TeopeTHueckne OIeHKH ITOKa3bIBAIOT, YTO PALlOHAIb-
Hasl almpoKCUMAaIMs TOUHee Kiaccudeckoro merona Kpsutoa — JlaHioma u pa3Hula B
MOPSIAKE CXOAUMOCTH paBHA MOPSAAKY 3HAMEHATENsl palliOHAJILHOTO allIPOKCUMAaHTA.
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