

To recovering the moments from the spherical mean Radon transform

Rafik H. Aramyan ${ }^{\text {a,* }}$, Robert M. Mnatsakanov ${ }^{\text {b }}$
${ }^{a}$ Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia
b West Virginia University, 94 Beechurst Ave., Morgantown, WV 26506, USA

A R T I C L E I N F O

Article history:
Received 10 December 2019
Available online 30 June 2020
Submitted by R.M. Aron

Keywords:

Spherical Radon transform Bivariate moment problem Inverse problem

Abstract

This article deals with characterizations of a function in terms of its circular mean Radon transform. We present a new approach (the consistency method) showing how to describe the class of real-valued, planar functions f which have the given circular mean Radon transform $\mathcal{M} f$ over circles centered on the unit circle. Also, expressions are derived for the geometric moments of an unknown function in terms of its circular mean Radon transform.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and formulation of the problem

The problems studied in this article are related to Computed Tomography. X-ray Tomography is based on the classical Radon transform that maps a function to its integrals over straight lines. Recently, new methods for computed tomography have been developed. Of these, thermoacoustic tomography (TAT) is the most successful method, as described in [7-9,16-18,22-24,26,27]. In TAT, one effectively measures the integrals of the energy-absorption distribution function f over all spheres centered at the detector locations. Thus, to recover f, one needs to invert the spherical mean Radon transform of f.

Consider the Euclidean n-dimensional space $\mathbf{R}^{n}(n \geq 2)$. By \mathcal{C}^{∞} we denote the class of real-valued functions for which the derivatives of all orders exist, and by $S(P, t)$, we denote the sphere of radius $t>0$ centered at $P \in \mathbf{R}^{n}$. The main mathematical problem is to recover a real-valued function f, supported on a compact region $G \subset \mathbf{R}^{n}$, from the mean value $\mathcal{M} f$ of f over spheres, centered on some set L, i.e., to invert the spherical mean Radon transform.

[^0]

Fig. 1. The scheme of modeling the spherical mean Radon transform.

Agranovsky and Quinto in [2] gave a complete characterization of sets of uniqueness (sets of centers) for the circular mean Radon transform on compactly supported functions in the plane. Articles [4] and [1] describe the complete range of the spherical mean Radon transform for different geometries of detectors.

In \mathbf{R}^{n}, several inversion formulas are derived for the spherical mean Radon transform for different geometries of detectors (including the cases with incomplete data) (see [3,6,8,9,14,18,23,24,26]). Recently, in [11], the 2D 'local reconstruction formula' was obtained for detectors on a line.

It should be noted that the problem of recovering functions from the values of the Radon transform is related to the bivariate moment problem, which has a rich history (see [5,15,25]).

Goncharov [13] and Milanfar [19] showed that the Radon transform of a function can be converted into its moments. Mnatsakanov [20] suggested a new explicit moment-recovered formula, which gives an algorithm to recover a positive function via its exponential moments. Using the moment-recovered formula in [21], the rate of approximation of a positive function, via the values of a modified Radon transform, was also derived (see [12]).

The purpose of this article is to describe the class of real-valued functions defined in \mathbf{R}^{2} (not necessarily with compact support), which have the given circular mean Radon transform $\mathcal{M} f$ defined over the circles with the centers on \mathbf{S}^{1}, using the consistency method suggested by Aramyan in [10].

Also, in this paper we study the relationship between the moments (also known as the multi-indexed moments) of a real-valued function f and the values of its circular mean Radon transforms in \mathbf{R}^{2}. The results obtained in this article are formulated for the two-dimensional case, but they can be extended to higher dimensions.

We now introduce the circular mean Radon transform $\mathcal{M} f$ that integrates a function f defined on \mathbf{R}^{2} over circles. Let $S(P, t)$ be the circle with center $P=(\cos p, \sin p) \in \mathbf{S}^{1}$ and radius $t>0$. Note that the point $P \in \mathbf{S}^{1}$ is uniquely determined by the corresponding angle $p \in[0,2 \pi)$ (see Fig. 1). In the sequel, the point $P \in \mathbf{S}^{1}$ is identified with p. We define $\mathcal{M} f(p, t)$ as the integral of f over $S(P, t)$, i.e.,

$$
\begin{equation*}
\mathcal{M} f(p, t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(P+t \omega) d \varphi, \quad \text { for }(p, t) \in[0,2 \pi) \times[0, \infty) . \tag{1}
\end{equation*}
$$

Here $\varphi \in[-\pi, \pi]$ is the angular coordinate of a point on $S(P, t)$ (we measure φ from the direction $\overrightarrow{P O}$ (see Fig. 1)); $\omega \in \mathbf{S}^{1}$ is the unit direction corresponds to φ. Consider $\mathcal{M} f$ as a function on the unit cylinder

$$
\mathrm{C}^{1}=\{(p, t): p \in[0,2 \pi), t \in[0, \infty)\} .
$$

For a fixed $P=(\cos p, \sin p) \in \mathbf{S}^{1}$, one can use the usual polar system of coordinates (t, φ) on the plane with respect to P. Thus, we have $(x, y)=(P, t, \varphi)$.

Here, and in the sequel, for a fixed $(P, t) \in \mathbf{S}^{1} \times[0, \infty)$, the restriction of f to the circle $S(P, t)$ is written in the form

$$
\begin{equation*}
f_{p, t}(\varphi), \quad \varphi \in[-\pi, \pi] . \tag{2}
\end{equation*}
$$

It is known that a 2π-periodic, differentiable function f with continuous derivative can be written as its Fourier series expansion. For any $(p, t) \in C^{1}$, the Fourier series expansion of the restricted f is

$$
\begin{equation*}
f_{p, t}(\varphi)=\sum_{k=0}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right) . \tag{3}
\end{equation*}
$$

Taking into account (1) we have

$$
\begin{equation*}
f_{p, t}(\varphi)=\mathcal{M} f(p, t)+\sum_{k=1}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right), \tag{4}
\end{equation*}
$$

where for $k \geq 1$,

$$
\begin{equation*}
a_{k}(p, t)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{p, t}(\varphi) \cos k \varphi d \varphi \quad \text { and } \quad b_{k}(p, t)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{p, t}(\varphi) \sin k \varphi d \varphi \tag{5}
\end{equation*}
$$

It is obvious that the restrictions $f_{p, t}(\varphi)$, of the function f defined on \mathbf{R}^{2}, are consistent in the following sense: for a point $(x, y) \in \mathbf{R}^{2}$ and for the bundle of circles $S(P, t)\left(P \in \mathbf{S}^{1}\right)$ containing (x, y), we have

$$
\begin{equation*}
f_{p, t}(\varphi)=f(x, y) \text { for all }(P, t, \varphi)=(x, y) \tag{6}
\end{equation*}
$$

i.e., there is no dependence on a circle from the bundle containing (x, y).

The opposite statement is also true. Let $G_{p, t}(\varphi)$ be a family of functions defined on $S(P, t)((P, t) \in$ $\mathbf{S}^{1} \times[0, \infty)$) that are consistent. Then $G_{p, t}(\varphi)$ represents the restrictions of a function f defined on \mathbf{R}^{2}. Indeed, one can produce f via the definition: for $(x, y) \in \mathbf{R}^{2}$,

$$
\begin{equation*}
f(x, y)=G_{p, t}(\varphi) \text { for } \quad(P, t, \varphi)=(x, y) \tag{7}
\end{equation*}
$$

The principle of consistency defined above was introduced and applied in other models as well (cf. with [10] and [11]).

In this article we apply the consistency method: we consider equation (1) as an integral equation on the circle $S(P, t)$ for every $(P, t) \in \mathbf{S}^{1} \times[0, \infty)$; we write the general solution of the integral equation in terms of a Fourier series expansion with unknown coefficients; then, we seek the unknown coefficients to find a family of consistent solutions. Thus, we reduce the problem of recovering a real valued function f from the mean value $\mathcal{M} f$ over circles, centered on \mathbf{S}^{1}, to finding consistent solutions of integral equations (1).

Now we present the main results. Let $f \in \mathcal{C}^{\infty}$ be a real valued function defined on \mathbf{R}^{2} and $\mathcal{M} f$ be the circular mean Radon transform of f over circles with the centers on \mathbf{S}^{1}. Lemma 1 (see below) shows that the Fourier coefficients, $a_{k}(p, t)$ and $b_{k}(p, t), k=1,2, \ldots$, of the restrictions $f_{p, t}(\varphi)$, of f onto $S(P, t)$, satisfy the system of differential equations (15) and (16) with boundary conditions (17). Using Lemma 1 we get the following theorem:

Theorem 1. Let $\mathcal{M} f$ be the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^{1} and let $a_{1}(p, t)$, which has continuous partial derivatives and $a_{1}(p, 0)=0$, be a function defined on the
unit cylinder C^{1}. Let $a_{k}(p, t), k=2,3, \ldots$, and $b_{k}(p, t), k=1,2, \ldots$, be the unique solutions of the system of differential equations (15) and (16) with boundary conditions (17). If for any $(p, t) \in \mathrm{C}^{1}$ the series

$$
\begin{equation*}
\mathcal{M} f(p, t)+\sum_{k=1}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right) \tag{8}
\end{equation*}
$$

converges to $f_{p, t}(\varphi)$, then the family of functions $f_{p, t}$ is consistent and produces a solution of (1) via definition (7).

As a consequence of Theorem 1, we have
Theorem 2. Let $\mathcal{M f}$ be the circular mean Radon transform of a function f over circles with the centers on \mathbf{S}^{1}. The function f is uniquely determined by its circular mean Radon transform $\mathcal{M} f$, i.e., equation (1) has a unique solution, if and only if the first Fourier coefficient of the restriction of f onto $S(P, t)$,

$$
a_{1}(p, t)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{p, t}(\varphi) \cos \varphi d \varphi,
$$

is uniquely determined by $\mathcal{M} f$.
In section 3, we establish a new linear relationship between the moments of an unknown function f and the values of its circular mean Radon transform $\mathcal{M} f$ (see Theorem 3). Using this relationship one can recover the moments of f from the values of $\mathcal{M} f$, and then approximate f from its moments.

2. The consistency condition and proof of Theorem 1

For a fixed point $(x, y) \in \mathbf{R}^{2}$, we consider the bundle of circles $S(P, t)\left(P \in \mathbf{S}^{1}\right)$ containing (x, y). Any circle from the bundle is uniquely determined by its center $P=(\cos p, \sin p) \in \mathbf{S}^{1}$. For the polar coordinates (t, φ) of the point (x, y) on the plane with respect to P, we have (see Fig. 1)

$$
\left\{\begin{array}{l}
x=\cos p-t \cos (p+\varphi) \tag{9}\\
y=\sin p-t \sin (p+\varphi)
\end{array}\right.
$$

We need to calculate the derivatives of the polar coordinates (t, φ) of the point (x, y) with respect to p. We denote the (partial) derivative of a function f with respect to a variable, say v, by f_{v}^{\prime}. Taking the derivative of both sides of the equations of (9) with respect to p, we obtain

$$
\left\{\begin{array}{l}
-\sin p-t_{p}^{\prime} \cos (p+\varphi)+t \sin (p+\varphi)\left(1+\varphi_{p}^{\prime}\right)=0 \tag{10}\\
\cos p-t_{p}^{\prime} \sin (p+\varphi)-t \cos (p+\varphi)\left(1+\varphi_{p}^{\prime}\right)=0
\end{array}\right.
$$

From (10) we get:

$$
\begin{equation*}
\varphi_{p}^{\prime}=\frac{\cos \varphi}{t}-1, \quad t_{p}^{\prime}=\sin \varphi . \tag{11}
\end{equation*}
$$

We now find the coefficients $a_{k}(p, t), b_{k}(p, t)(k=1,2, \ldots)$ in (4) as functions of $(p, t) \in C^{1}$ from the consistency condition. For a fixed point $(x, y) \in \mathbf{R}^{2}$ we write f in polar coordinates and require that the right-hand side of (4) should not depend on p :

$$
\begin{array}{r}
(f(x, y))_{p}^{\prime}=\left(f_{p, t}(\varphi)\right)_{p}^{\prime}= \tag{12}\\
\left(\mathcal{M} f(p, t)+\sum_{k=1}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right)\right)_{p}^{\prime}=0
\end{array}
$$

Termwise differentiation using the expressions in (11) yields

$$
\begin{array}{r}
-t(\mathcal{M} f(p, t))_{p}^{\prime}-t(\mathcal{M} f(p, t))_{t}^{\prime} \sin \varphi= \tag{13}\\
\sum_{k=1}^{\infty}\left[t\left(\left(a_{k}(p, t)\right)_{p}^{\prime}+\left(a_{k}(p, t)\right)_{t}^{\prime} \sin \varphi\right) \cos k \varphi-k a_{k}(p, t) \sin k \varphi(\cos \varphi-t)+\right. \\
\left.t\left(\left(b_{k}(p, t)\right)_{p}^{\prime}+\left(b_{k}(p, t)\right)_{t}^{\prime} \sin \varphi\right) \sin k \varphi+k b_{k}(p, t) \cos k \varphi(\cos \varphi-t)\right] .
\end{array}
$$

Using the trigonometric formulas and grouping the summands in (13), we obtain

$$
\begin{array}{r}
-t(\mathcal{M} f(p, t))_{p}^{\prime}-t(\mathcal{M} f(p, t))_{t}^{\prime} \sin \varphi= \tag{14}\\
\sum_{k=1}^{\infty}\left(\left[t\left(a_{k}(p, t)\right)_{p}^{\prime}-k t b_{k}(p, t)\right] \cos k \varphi-\left[\frac{t}{2}\left(b_{k}(p, t)\right)_{t}^{\prime}-\frac{k}{2} b_{k}(p, t)\right] \cos (k+1) \varphi+\right. \\
\left.\left[\frac{t}{2}\left(b_{k}(p, t)\right)_{t}^{\prime}+\frac{k}{2} b_{k}(p, t)\right] \cos (k-1) \varphi+\left[t\left(b_{k}(p, t)\right)_{p}^{\prime}+k t a_{k}(p, t)\right)\right] \sin k \varphi+ \\
\left.\left.\left.\left[\frac{t}{2}\left(a_{k}(p, t)\right)_{t}^{\prime}-\frac{k}{2} a_{k}(p, t)\right)\right] \sin (k+1) \varphi-\left[\frac{t}{2}\left(a_{k}(p, t)\right)_{t}^{\prime}+\frac{k}{2} a_{k}(p, t)\right)\right] \sin (k-1) \varphi\right) .
\end{array}
$$

By uniqueness of the Fourier coefficients, we obtain the following system of differential equations for the unknown coefficients $a_{k}, b_{k}(k \geq 1)$:

$$
\left\{\begin{array}{l}
t\left(b_{1}(p, t)\right)_{t}^{\prime}+b_{1}(p, t)=-2 t(\mathcal{M} f(p, t))_{p}^{\prime} \tag{15}\\
t\left(b_{2}(p, t)\right)_{t}^{\prime}+2 b_{2}(p, t)+2 t\left(a_{1}(p, t)\right)_{p}^{\prime}-2 t b_{1}(p, t)=0 \\
t\left(a_{2}(p, t)\right)_{t}^{\prime}+2 a_{2}(p, t)-2 t\left(b_{1}(p, t)\right)_{p}^{\prime}-2 t a_{1}(p, t)=2 t(\mathcal{M} f(p, t))_{t}^{\prime}
\end{array}\right.
$$

for $k=1, k=2$, and

$$
\left\{\begin{array}{l}
t\left(b_{k}(p, t)\right)_{t}^{\prime}+k b_{k}(p, t)-t\left(b_{k-2}(p, t)\right)_{t}^{\prime}+(k-2) b_{k-2}(p, t)+ \tag{16}\\
2 t\left(a_{k-1}(p, t)\right)_{p}^{\prime}-2(k-1) t b_{k-1}(p, t)=0 \\
t\left(a_{k}(p, t)\right)_{t}^{\prime}+k a_{k}(p, t)-t\left(a_{k-2}(p, t)\right)_{t}^{\prime}+(k-2) a_{k-2}(p, t)- \\
2 t\left(b_{k-1}(p, t)\right)_{p}^{\prime}-2(k-1) t a_{k-1}(p, t)=0
\end{array}\right.
$$

for $k>2$.
We now find the boundary conditions for the differential equations. From (5) for $k \geq 1$, taking into account that $f_{p, 0}$ does not depend on φ, we get the following boundary conditions:

$$
\begin{equation*}
a_{k}(p, 0)=b_{k}(p, 0)=0 \quad \text { for } \quad k=1,2, \ldots \tag{17}
\end{equation*}
$$

Thus, we obtain the following lemma:
Lemma 1. Let $f \in \mathcal{C}^{\infty}$ be a real valued function defined on \mathbf{R}^{2} and let $\mathcal{M} f$ be the circular mean Radon transform of f over circles with the centers on \mathbf{S}^{1}. Then the Fourier coefficients $a_{k}(p, t)$ and $b_{k}(p, t), \quad k=$ $1,2, \ldots$, of the restrictions $f_{p, t}(\varphi)$ satisfy the system of differential equations (15) and (16) with boundary conditions (17).

It follows from (15), (16) and (17) that knowing $\mathcal{M} f$, the circular mean Radon transform of f, and the first Fourier coefficient $a_{1}(p, t)$ of $f_{p, t}(\varphi)$, one can calculate step-by-step the unknown coefficients $a_{k}(p, t), k=$ $2,3, \ldots$, and $b_{k}(p, t), k=1,2, \ldots$, (at first we find b_{1}, next we find a_{2}, next b_{2}, next a_{3}, etc.), and hence we reconstruct f. In general, equation (1), where $\mathcal{M} f$ is the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^{1}, can have many solutions.

Now let $a_{1}(p, t)$ be a function defined on the unit cylinder C^{1}. We assume that $a_{1}(p, t)$ has continuous partial derivatives and $a_{1}(p, 0)=0$. We substitute $a_{1}(p, t)$ into (15) and find the unique solutions $a_{k}(p, t)$, $k=2,3 \ldots$, and $b_{k}(p, t), k=1,2, \ldots$, of the system of differential equations (15) and (16) with boundary conditions (17). Now for $(p, t) \in C^{1}$ using $a_{k}(p, t)$ and $b_{k}(p, t), k=1,2, \ldots$, we compose series (8) and assume that the series converges to $f_{p, t}(\varphi)$. The family of functions $f_{p, t}$ will be consistent since the coefficients $a_{k}(p, t), k=1,2,3, \ldots$, and $b_{k}(p, t), k=1,2, \ldots$, satisfy the system of differential equations (15) and (16). Hence, this family produces a solution of (1) via definition (7). Thus, Theorem 1 is proved.

3. A formula for the moments of an unknown function f

In this section, assuming that $f \in \mathcal{S}\left(\mathbf{R}^{2}\right)$ (the Schwartz space), and given the values of spherical mean Radon transform $\mathcal{M} f$, we will show how to evaluate the moments of f. Namely, consider the ordinary (geometric) moments of f. By definition, the multi-indexed moment of order (m, j) is defined as follows:

$$
\begin{equation*}
\mu_{m, j}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{m} y^{j} f(x, y) d x d y, \quad m, j \in N=\{0,1, \ldots\} \tag{18}
\end{equation*}
$$

It is known that under the certain conditions (see, e.g., $[5,15,25]$) the sequence of multi-indexed moments $\left\{\mu_{m, j}(f), m, j \in N\right\}$ determines f uniquely.

For a fixed $P \in \mathbf{S}^{1}$, we return to the formula (4) and write

$$
\begin{equation*}
f(x, y)=\mathcal{M} f(p, t)+\sum_{k=1}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right) \tag{19}
\end{equation*}
$$

for every (x, y) with $(P, t, \varphi)=(x, y)$. A substitution of (19) into (18) yields

$$
\begin{array}{r}
\mu_{m, j}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{m} y^{j} f(x, y) d x d y= \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{m} y^{j}\left[\mathcal{M} f(p, t)+\sum_{k=1}^{\infty}\left(a_{k}(p, t) \cos k \varphi+b_{k}(p, t) \sin k \varphi\right)\right] d x d y . \tag{21}
\end{array}
$$

Taking into account (9) and the fact $d x d y=t d t d \varphi$, we obtain

$$
\begin{align*}
& \mu_{m, j}(f)=\int_{-\pi}^{\pi} \int_{0}^{\infty}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \mathcal{M} f(p, t) t d t d \varphi+ \\
& \sum_{k=1}^{\infty}\left(\int_{-\pi}^{\pi} \int_{0}^{\infty} a_{k}(p, t)(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \cos k \varphi t d t d \varphi+\right. \\
& \left.\quad \int_{-\pi}^{\pi} \int_{0}^{\infty} b_{k}(p, t)(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \sin k \varphi t d t d \varphi\right) . \tag{22}
\end{align*}
$$

Using Fubini's theorem, we get

$$
\begin{align*}
& \mu_{m, j}(f)=\int_{0}^{\infty} \mathcal{M} f(p, t) t\left[\int_{-\pi}^{\pi}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} d \varphi\right] d t+ \tag{23}\\
& \sum_{k=1}^{\infty}\left(\int_{0}^{\infty} a_{k}(p, t) t\left[\int_{-\pi}^{\pi}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \cos k \varphi d \varphi\right] d t+\right. \\
& \left.\quad \int_{0}^{\infty} b_{k}(p, t) t\left[\int_{-\pi}^{\pi}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \sin k \varphi d \varphi\right] d t\right) .
\end{align*}
$$

Consider two sequences of standard functions $C_{k, m, j}$ and $S_{k, m, j}$ defined on the unique cylinder, where k, m and j are nonnegative integers. We call them standard functions because their constructions do not depend on f :

$$
\begin{equation*}
C_{k, m, j}(p, t)=\int_{-\pi}^{\pi}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \cos k \varphi d \varphi \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k, m, j}(p, t)=\int_{-\pi}^{\pi}(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j} \sin k \varphi d \varphi . \tag{25}
\end{equation*}
$$

The first few functions are:

$$
\left\{\begin{array}{l}
C_{0,1,0}(p, t)=2 \pi \cos p, \quad C_{0,0,1}(p, t)=2 \pi \sin p, \quad C_{0,1,1}(p, t)=2 \pi \sin p \cos p, \\
C_{1,1,0}(p, t)=-t \pi \cos p, \quad C_{1,0,1}(p, t)=-t \pi \sin p, \quad C_{1,1,1}(p, t)=-t \pi \sin 2 p, \\
S_{1,1,0}(p, t)=t \pi \sin p, \quad S_{1,0,1}(p, t)=-t \pi \cos p, \quad S_{1,1,1}(p, t)=-t \pi \cos 2 p, \\
\ldots
\end{array}\right.
$$

By substituting (24) and (25) into (23), we obtain

$$
\begin{array}{r}
\mu_{m, j}(f)=\int_{0}^{\infty} C_{0, m, j}(p, t) \mathcal{M} f(p, t) t d t+ \tag{26}\\
\sum_{k=1}^{\infty}\left(\int_{0}^{\infty} C_{k, m, j}(p, t) a_{k}(p, t) t d t+\int_{0}^{\infty} S_{k, m, j}(p, t) b_{k}(p, t) t d t\right) .
\end{array}
$$

The following lemma is valid.
Lemma 2. For $m+i<k$, we have

$$
\begin{equation*}
C_{k, m, j}(p, t)=S_{k, m, j}(p, t) \equiv 0 . \tag{27}
\end{equation*}
$$

Proof. It is obvious that for any (p, t), the function

$$
\pi(\cos p-t \cos (p+\varphi))^{m}(\sin p-t \sin (p+\varphi))^{j}
$$

is a polynomial of $\sin \varphi$ and $\cos \varphi$, functions of degree $r \leq m+j$. Hence, it is orthogonal to $\sin k \varphi$ and $\cos k \varphi$ for $m+j<k$. Lemma 2 is proved.

Finally, we have the following theorem:
Theorem 3. Let $\mathcal{M} f$ be the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^{1}, and $a_{1}(p, t)$ be a function defined on the unit cylinder C^{1}. Let $a_{k}(p, t), k=2,3, \ldots$, and $b_{k}(p, t), k=1,2, \ldots$, be the unique solutions of the system of differential equations (15) and (16) with boundary conditions (17). If for any (p, t) the series (8) converges to $f_{p, t}(\varphi)$, then the family of functions $f_{p, t}$ is consistent and produces a solution f of (1) via definition (7), and

$$
\begin{array}{r}
\mu_{m, j}(f)=\int_{0}^{\infty} C_{0, m, j}(p, t) \mathcal{M} f(p, t) t d t+ \tag{28}\\
\sum_{k=1}^{m+j}\left(\int_{0}^{\infty} C_{k, m, j}(p, t) a_{k}(p, t) t d t+\int_{0}^{\infty} S_{k, m, j}(p, t) b_{k}(p, t) t d t\right) .
\end{array}
$$

In other words, if $a_{1}(p, t)$ is uniquely determined by $\mathcal{M} f$, then one can recover the moments of the function f from the values of $\mathcal{M} f$, and afterwards reconstruct f itself via the sequence of its multi-indexed moments $\left\{\mu_{m, j}(f), m, j \in N\right\}$ (cf. with [12]).

Remark 1. Suppose the support of f is a unit cube $[0,1]^{2}$. Given the moments $\mu_{m, j}(f)(m, j=0,1, \ldots, n)$ of f up to order (n, n), one can derive the upper bound of order $1 / n$ for the rate of approximation f_{n} in a sup-norm, as $n \rightarrow \infty$ (see Theorem 5.2 in [12]). The suggested approximation of f has the following form:

$$
\begin{equation*}
f_{n}(x)=C_{m, n}(x) \sum_{l=0}^{m-\left[m x_{1}\right]} \sum_{k=0}^{n-\left[n x_{2}\right]} \frac{(-1)^{l+k} \mu_{l+\left[m x_{1}\right], k+\left[n x_{2}\right]}(f)}{l!k!\left(m-\left[m x_{1}\right]-l\right)!\left(n-\left[n x_{2}\right]-k\right)!}, \tag{29}
\end{equation*}
$$

defined for $x=\left(x_{1}, x_{2}\right) \in[0,1]^{2}$, and

$$
C_{m, n}(x)=\frac{\Gamma(m+2) \Gamma(n+2)}{\Gamma\left(\left[m x_{1}\right]+1\right) \Gamma\left(\left[n x_{2}\right]+1\right)} .
$$

In general, one can assume that m and n in (29) are different and both are tending to infinity.

References

[1] M.L. Agranovsky, L. Nguyen, Range conditions for a spherical mean transform and global extendibility of solutions of the Darboux equation, J. Anal. Math. 112 (2010) 351-367.
[2] M.L. Agranovsky, E.T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996) 383-414.
[3] M.L. Agranovsky, P. Kuchment, L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography, in: L.-H. Wang (Ed.), Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.
[4] M.L. Agranovsky, P. Kuchment, E.T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal. 248 (2007) 344-386.
[5] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh, 1965.
[6] G. Ambartsoumian, P. Kuchment, On the injectivity of the circular Radon transform, Inverse Probl. 21 (2005) 473-485.
[7] G. Ambartsoumian, S.K. Patch, Thermoacoustic tomography: numerical results, Proc. SPIE 6437 (2007), 6437-47.
[8] H. Ammari, E. Bossy, V. Jugnon, H. Kang, Mathematical modeling in photo-acoustic imaging, SIAM Rev. 52 (2010) 677-695.
[9] L.-E. Andersson, On the determination of a function from spherical averages, SIAM J. Math. Anal. 19 (1988) 214-232.
[10] R.H. Aramyan, Generalized Radon transform on the sphere, Analysis Oldenbourg 30 (2010) 271-284.
[11] R. Aramyan, To local reconstruction from the spherical mean Radon transform, J. Math. Anal. Appl. 470 (2019) 102-117.
[12] H. Choi, F. Jafari, R. Mnatsakanov, Modified Radon transform inversion using moments, J. Inverse Ill-Posed Probl. 28 (2020) 1-15.
[13] A.B. Goncharov, Methods of integral geometry and recovering a function with compact support from its projections in unknown directions, Acta Appl. Math. 11 (1988) 213-222.
[14] M. Haltmeier, Universal inversion formulas for recovering a function from spherical means, SIAM J. Math. Anal. 46 (2014) 214-232.
[15] C. Kleiber, J. Stoyanov, Multivariate distributions and the moment problem, J. Multivar. Anal. 113 (2013) 7-18.
[16] R.A. Kruger, W.L. Kiser, D.R. Reinecke, G.A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array, Med. Phys. 30 (2003) 856-860.
[17] P. Kuchment, L.A. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography, Chapter 19, in: Handbook of Mathematical Methods in Imaging, vol. 2, Springer Verlag, ISBN 978-0-387-92920-0, 2010, pp. 817-866, 1688 pp.
[18] L. Kunyansky, Explicit inversion formulas for the spherical mean Radon transform, Inverse Probl. 23 (2007) 373-383.
[19] P. Milanfar, Geometric Estimation and Reconstruction from Tomographic Data, PhD dissertation, Massachusetts Institute of Technology, 1993.
[20] R.M. Mnatsakanov, Moment-recovered approximations of multivariate distributions: the Laplace transform inversion, Stat. Probab. Lett. 81 (2011) 1-7.
[21] R.M. Mnatsakanov, S. Li, The Radon transform inversion using moments, Stat. Probab. Lett. 83 (2013) 936-942.
[22] F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics, vol. 32, SIAM, Philadelphia, 2001.
[23] L. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Probl. Imaging 3 (2009) 649-675.
[24] V.P. Palamodov, Reconstructive Integral Geometry, Birkhauser, Basel, 2004.
[25] J.A. Shohat, J.D. Tamarkin, The Problem of Moments, American Mathematical Society, New York, 1943.
[26] Y. Xu, D. Feng, L.-H.V. Wang, Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry, IEEE Trans. Med. Imaging 21 (2002) 823-828.
[27] Y. Xu, L. Wang, G. Ambartsoumian, P. Kuchment, Reconstructions in limited view thermoacoustic tomography, Med. Phys. 31 (2004) 724-733.

[^0]: रे This work was supported by Department of Mathematics (WVU) grant MERF-19. Also this work was supported by the RA MES State Committee of Science, in the frames of the research project 18T-1A252.

 * Corresponding author.

 E-mail addresses: rafikaramyan@yahoo.com (R.H. Aramyan), Robert.Mnatsakanov@mail.wvu.edu (R.M. Mnatsakanov).

