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This article deals with characterizations of a function in terms of its circular mean 
Radon transform. We present a new approach (the consistency method) showing 
how to describe the class of real-valued, planar functions f which have the given 
circular mean Radon transform Mf over circles centered on the unit circle. Also, 
expressions are derived for the geometric moments of an unknown function in terms 
of its circular mean Radon transform.
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1. Introduction and formulation of the problem

The problems studied in this article are related to Computed Tomography. X-ray Tomography is based 
on the classical Radon transform that maps a function to its integrals over straight lines. Recently, new 
methods for computed tomography have been developed. Of these, thermoacoustic tomography (TAT) is 
the most successful method, as described in [7–9,16–18,22–24,26,27]. In TAT, one effectively measures the 
integrals of the energy-absorption distribution function f over all spheres centered at the detector locations. 
Thus, to recover f , one needs to invert the spherical mean Radon transform of f .

Consider the Euclidean n-dimensional space Rn (n ≥ 2). By C∞ we denote the class of real-valued 
functions for which the derivatives of all orders exist, and by S(P, t), we denote the sphere of radius t > 0
centered at P ∈ Rn. The main mathematical problem is to recover a real-valued function f , supported on a 
compact region G ⊂ Rn, from the mean value Mf of f over spheres, centered on some set L, i.e., to invert 
the spherical mean Radon transform.
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Fig. 1. The scheme of modeling the spherical mean Radon transform.

Agranovsky and Quinto in [2] gave a complete characterization of sets of uniqueness (sets of centers) 
for the circular mean Radon transform on compactly supported functions in the plane. Articles [4] and [1]
describe the complete range of the spherical mean Radon transform for different geometries of detectors.

In Rn, several inversion formulas are derived for the spherical mean Radon transform for different ge-
ometries of detectors (including the cases with incomplete data) (see [3,6,8,9,14,18,23,24,26]). Recently, in 
[11], the 2D ‘local reconstruction formula’ was obtained for detectors on a line.

It should be noted that the problem of recovering functions from the values of the Radon transform is 
related to the bivariate moment problem, which has a rich history (see [5,15,25]).

Goncharov [13] and Milanfar [19] showed that the Radon transform of a function can be converted into its 
moments. Mnatsakanov [20] suggested a new explicit moment-recovered formula, which gives an algorithm 
to recover a positive function via its exponential moments. Using the moment-recovered formula in [21], the 
rate of approximation of a positive function, via the values of a modified Radon transform, was also derived 
(see [12]).

The purpose of this article is to describe the class of real-valued functions defined in R2 (not necessarily 
with compact support), which have the given circular mean Radon transform Mf defined over the circles 
with the centers on S1, using the consistency method suggested by Aramyan in [10].

Also, in this paper we study the relationship between the moments (also known as the multi-indexed 
moments) of a real-valued function f and the values of its circular mean Radon transforms in R2. The 
results obtained in this article are formulated for the two-dimensional case, but they can be extended to 
higher dimensions.

We now introduce the circular mean Radon transform Mf that integrates a function f defined on R2

over circles. Let S(P, t) be the circle with center P = (cos p, sin p) ∈ S1 and radius t > 0. Note that the 
point P ∈ S1 is uniquely determined by the corresponding angle p ∈ [0, 2π) (see Fig. 1). In the sequel, the 
point P ∈ S1 is identified with p. We define Mf(p, t) as the integral of f over S(P, t), i.e.,

Mf(p, t) = 1
2π

π∫
−π

f(P + tω) dϕ, for (p, t) ∈ [0, 2π) × [0,∞). (1)

Here ϕ ∈ [−π, π] is the angular coordinate of a point on S(P, t) (we measure ϕ from the direction 
−−→
PO (see 

Fig. 1)); ω ∈ S1 is the unit direction corresponds to ϕ. Consider Mf as a function on the unit cylinder

C 1 = {(p, t) : p ∈ [0, 2π), t ∈ [0,∞)}.

For a fixed P = (cos p, sin p) ∈ S1, one can use the usual polar system of coordinates (t, ϕ) on the plane 
with respect to P . Thus, we have (x, y) = (P, t, ϕ).
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Here, and in the sequel, for a fixed (P, t) ∈ S1 × [0, ∞), the restriction of f to the circle S(P, t) is written 
in the form

fp,t(ϕ), ϕ ∈ [−π, π]. (2)

It is known that a 2π-periodic, differentiable function f with continuous derivative can be written as its 
Fourier series expansion. For any (p, t) ∈ C 1, the Fourier series expansion of the restricted f is

fp,t(ϕ) =
∞∑
k=0

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ) . (3)

Taking into account (1) we have

fp,t(ϕ) = Mf(p, t) +
∞∑
k=1

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ) , (4)

where for k ≥ 1,

ak(p, t) = 1
π

π∫
−π

fp,t(ϕ) cos kϕ dϕ and bk(p, t) = 1
π

π∫
−π

fp,t(ϕ) sin kϕ dϕ. (5)

It is obvious that the restrictions fp,t(ϕ), of the function f defined on R2, are consistent in the following 
sense: for a point (x, y) ∈ R2 and for the bundle of circles S(P, t) (P ∈ S1) containing (x, y), we have

fp,t(ϕ) = f(x, y) for all (P, t, ϕ) = (x, y), (6)

i.e., there is no dependence on a circle from the bundle containing (x, y).
The opposite statement is also true. Let Gp,t(ϕ) be a family of functions defined on S(P, t) ((P, t) ∈

S1 × [0, ∞)) that are consistent. Then Gp,t(ϕ) represents the restrictions of a function f defined on R2. 
Indeed, one can produce f via the definition: for (x, y) ∈ R2,

f(x, y) = Gp,t(ϕ) for (P, t, ϕ) = (x, y). (7)

The principle of consistency defined above was introduced and applied in other models as well (cf. with [10]
and [11]).

In this article we apply the consistency method: we consider equation (1) as an integral equation on the 
circle S(P, t) for every (P, t) ∈ S1 × [0, ∞); we write the general solution of the integral equation in terms 
of a Fourier series expansion with unknown coefficients; then, we seek the unknown coefficients to find a 
family of consistent solutions. Thus, we reduce the problem of recovering a real valued function f from the 
mean value Mf over circles, centered on S1, to finding consistent solutions of integral equations (1).

Now we present the main results. Let f ∈ C∞ be a real valued function defined on R2 and Mf be the 
circular mean Radon transform of f over circles with the centers on S1. Lemma 1 (see below) shows that 
the Fourier coefficients, ak(p, t) and bk(p, t), k = 1, 2, . . . , of the restrictions fp,t(ϕ), of f onto S(P, t), satisfy 
the system of differential equations (15) and (16) with boundary conditions (17). Using Lemma 1 we get 
the following theorem:

Theorem 1. Let Mf be the circular mean Radon transform of a function over circles with the centers on 
S1 and let a1(p, t), which has continuous partial derivatives and a1(p, 0) = 0, be a function defined on the 
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unit cylinder C1. Let ak(p, t), k = 2, 3, . . . , and bk(p, t), k = 1, 2, . . . , be the unique solutions of the system 
of differential equations (15) and (16) with boundary conditions (17). If for any (p, t) ∈ C1 the series

Mf(p, t) +
∞∑
k=1

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ) , (8)

converges to fp,t(ϕ), then the family of functions fp,t is consistent and produces a solution of (1) via 
definition (7).

As a consequence of Theorem 1, we have

Theorem 2. Let Mf be the circular mean Radon transform of a function f over circles with the centers on 
S1. The function f is uniquely determined by its circular mean Radon transform Mf , i.e., equation (1) has 
a unique solution, if and only if the first Fourier coefficient of the restriction of f onto S(P, t),

a1(p, t) = 1
π

π∫
−π

fp,t(ϕ) cosϕdϕ,

is uniquely determined by Mf .

In section 3, we establish a new linear relationship between the moments of an unknown function f
and the values of its circular mean Radon transform Mf (see Theorem 3). Using this relationship one can 
recover the moments of f from the values of Mf , and then approximate f from its moments.

2. The consistency condition and proof of Theorem 1

For a fixed point (x, y) ∈ R2, we consider the bundle of circles S(P, t) (P ∈ S1) containing (x, y). Any 
circle from the bundle is uniquely determined by its center P = (cos p, sin p) ∈ S1. For the polar coordinates 
(t, ϕ) of the point (x, y) on the plane with respect to P , we have (see Fig. 1)

{
x = cos p− t cos(p + ϕ)
y = sin p− t sin(p + ϕ).

(9)

We need to calculate the derivatives of the polar coordinates (t, ϕ) of the point (x, y) with respect to p. We 
denote the (partial) derivative of a function f with respect to a variable, say v, by f ′

v. Taking the derivative 
of both sides of the equations of (9) with respect to p, we obtain

{
− sin p− t′p cos(p + ϕ) + t sin(p + ϕ)(1 + ϕ′

p) = 0
cos p− t′p sin(p + ϕ) − t cos(p + ϕ)(1 + ϕ′

p) = 0.
(10)

From (10) we get:

ϕ′
p = cosϕ

t
− 1, t′p = sinϕ. (11)

We now find the coefficients ak(p, t), bk(p, t) (k = 1, 2, ...) in (4) as functions of (p, t) ∈ C 1 from the 
consistency condition. For a fixed point (x, y) ∈ R2 we write f in polar coordinates and require that the 
right-hand side of (4) should not depend on p:
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(f(x, y))′p = (fp,t(ϕ))′p = (12)

(Mf(p, t) +
∞∑
k=1

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ))′p = 0.

Termwise differentiation using the expressions in (11) yields

−t (Mf(p, t))′p − t (Mf(p, t))′t sinϕ = (13)
∞∑
k=1

[
t((ak(p, t))′p + (ak(p, t))′t sinϕ) cos kϕ− k ak(p, t) sin kϕ(cosϕ− t)+

t( (bk(p, t))′p + (bk(p, t))′t sinϕ) sin kϕ + k bk(p, t) cos kϕ(cosϕ− t)
]
.

Using the trigonometric formulas and grouping the summands in (13), we obtain

−t (Mf(p, t))′p − t (Mf(p, t))′t sinϕ = (14)
∞∑
k=1

(
[t(ak(p, t))′p − kt bk(p, t)] cos kϕ− [ t2(bk(p, t))′t −

k

2 bk(p, t)] cos (k + 1)ϕ+

[ t2(bk(p, t))′t + k

2 bk(p, t)] cos (k − 1)ϕ + [t(bk(p, t))′p + kt ak(p, t))] sin kϕ+

[ t2(ak(p, t))′t −
k

2 ak(p, t))] sin (k + 1)ϕ− [ t2(ak(p, t))′t + k

2 ak(p, t))] sin (k − 1)ϕ
)
.

By uniqueness of the Fourier coefficients, we obtain the following system of differential equations for the 
unknown coefficients ak, bk (k ≥ 1):

⎧⎪⎪⎨
⎪⎪⎩
t(b1(p, t))′t + b1(p, t) = −2t (Mf(p, t))′p
t(b2(p, t))′t + 2 b2(p, t) + 2 t(a1(p, t))′p − 2t b1(p, t) = 0
t(a2(p, t))′t + 2 a2(p, t) − 2 t(b1(p, t))′p − 2t a1(p, t) = 2t (Mf(p, t))′t,

(15)

for k = 1, k = 2, and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t(bk(p, t))′t + k bk(p, t) − t(bk−2(p, t))′t + (k − 2)bk−2(p, t)+
2 t(ak−1(p, t))′p − 2(k − 1)t bk−1(p, t) = 0
t(ak(p, t))′t + k ak(p, t) − t(ak−2(p, t))′t + (k − 2)ak−2(p, t)−
2 t(bk−1(p, t))′p − 2(k − 1)t ak−1(p, t) = 0

(16)

for k > 2.
We now find the boundary conditions for the differential equations. From (5) for k ≥ 1, taking into 

account that fp,0 does not depend on ϕ, we get the following boundary conditions:

ak(p, 0) = bk(p, 0) = 0 for k = 1, 2, . . . . (17)

Thus, we obtain the following lemma:

Lemma 1. Let f ∈ C∞ be a real valued function defined on R2 and let Mf be the circular mean Radon 
transform of f over circles with the centers on S1. Then the Fourier coefficients ak(p, t) and bk(p, t), k =
1, 2, . . . , of the restrictions fp,t(ϕ) satisfy the system of differential equations (15) and (16) with boundary 
conditions (17).
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It follows from (15), (16) and (17) that knowing Mf , the circular mean Radon transform of f , and the first 
Fourier coefficient a1(p, t) of fp,t(ϕ), one can calculate step-by-step the unknown coefficients ak(p, t), k =
2, 3, . . . , and bk(p, t), k = 1, 2, . . . , (at first we find b1, next we find a2, next b2, next a3, etc.), and hence 
we reconstruct f . In general, equation (1), where Mf is the circular mean Radon transform of a function 
over circles with the centers on S1, can have many solutions.

Now let a1(p, t) be a function defined on the unit cylinder C 1. We assume that a1(p, t) has continuous 
partial derivatives and a1(p, 0) = 0. We substitute a1(p, t) into (15) and find the unique solutions ak(p, t), 
k = 2, 3 . . . , and bk(p, t), k = 1, 2, . . . , of the system of differential equations (15) and (16) with boundary 
conditions (17). Now for (p, t) ∈ C 1 using ak(p, t) and bk(p, t), k = 1, 2, . . . , we compose series (8) and 
assume that the series converges to fp,t(ϕ). The family of functions fp,t will be consistent since the coefficients 
ak(p, t), k = 1, 2, 3, . . . , and bk(p, t), k = 1, 2, . . . , satisfy the system of differential equations (15) and (16). 
Hence, this family produces a solution of (1) via definition (7). Thus, Theorem 1 is proved.

3. A formula for the moments of an unknown function f

In this section, assuming that f ∈ S(R2) (the Schwartz space), and given the values of spherical mean 
Radon transform Mf , we will show how to evaluate the moments of f . Namely, consider the ordinary 
(geometric) moments of f . By definition, the multi-indexed moment of order (m, j) is defined as follows:

μm,j(f) =
∞∫

−∞

∞∫
−∞

xm yjf(x, y) dx dy, m, j ∈ N = {0, 1, . . . }. (18)

It is known that under the certain conditions (see, e.g., [5,15,25]) the sequence of multi-indexed moments 
{μm,j(f), m, j ∈ N} determines f uniquely.

For a fixed P ∈ S1, we return to the formula (4) and write

f(x, y) = Mf(p, t) +
∞∑
k=1

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ) (19)

for every (x, y) with (P, t, ϕ) = (x, y). A substitution of (19) into (18) yields

μm,j(f) =
∞∫

−∞

∞∫
−∞

xm yjf(x, y) dx dy = (20)

∞∫
−∞

∞∫
−∞

xm yj [Mf(p, t) +
∞∑
k=1

(ak(p, t) cos k ϕ + bk(p, t) sin k ϕ)] dx dy. (21)

Taking into account (9) and the fact dx dy = tdt dϕ, we obtain

μm,j(f) =
π∫

−π

∞∫
0

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))jMf(p, t)tdt dϕ +

∞∑
k=1

⎛
⎝ π∫

−π

∞∫
0

ak(p, t)(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j cos k ϕ tdt dϕ+

π∫ ∞∫
bk(p, t)(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j sin k ϕ tdt dϕ

⎞
⎠ . (22)
−π 0
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Using Fubini’s theorem, we get

μm,j(f) =
∞∫
0

Mf(p, t) t[
π∫

−π

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j dϕ]dt + (23)

∞∑
k=1

⎛
⎝ ∞∫

0

ak(p, t) t[
π∫

−π

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j cos k ϕ dϕ]dt+

∞∫
0

bk(p, t) t[
π∫

−π

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j sin k ϕ dϕ]dt

⎞
⎠ .

Consider two sequences of standard functions Ck,m,j and Sk,m,j defined on the unique cylinder, where k, m
and j are nonnegative integers. We call them standard functions because their constructions do not depend 
on f :

Ck,m,j(p, t) =
π∫

−π

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j cos k ϕ dϕ (24)

and

Sk,m,j(p, t) =
π∫

−π

(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j sin k ϕ dϕ. (25)

The first few functions are:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C0,1,0(p, t) = 2π cos p, C0,0,1(p, t) = 2π sin p, C0,1,1(p, t) = 2π sin p cos p,
C1,1,0(p, t) = −tπ cos p, C1,0,1(p, t) = −tπ sin p, C1,1,1(p, t) = −tπ sin 2p,
S1,1,0(p, t) = tπ sin p, S1,0,1(p, t) = −tπ cos p, S1,1,1(p, t) = −tπ cos 2p,
· · ·

By substituting (24) and (25) into (23), we obtain

μm,j(f) =
∞∫
0

C0,m,j(p, t)Mf(p, t) t dt + (26)

∞∑
k=1

⎛
⎝ ∞∫

0

Ck,m,j(p, t) ak(p, t) t dt +
∞∫
0

Sk,m,j(p, t) bk(p, t) t dt

⎞
⎠ .

The following lemma is valid.

Lemma 2. For m + i < k, we have

Ck,m,j(p, t) = Sk,m,j(p, t) ≡ 0. (27)

Proof. It is obvious that for any (p, t), the function

π(cos p− t cos(p + ϕ))m(sin p− t sin(p + ϕ))j
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is a polynomial of sinϕ and cosϕ, functions of degree r ≤ m + j. Hence, it is orthogonal to sin kϕ and 
cos kϕ for m + j < k. Lemma 2 is proved.

Finally, we have the following theorem:

Theorem 3. Let Mf be the circular mean Radon transform of a function over circles with the centers on S1, 
and a1(p, t) be a function defined on the unit cylinder C1. Let ak(p, t), k = 2, 3, . . . , and bk(p, t), k = 1, 2, . . . , 
be the unique solutions of the system of differential equations (15) and (16) with boundary conditions (17). If 
for any (p, t) the series (8) converges to fp,t(ϕ), then the family of functions fp,t is consistent and produces 
a solution f of (1) via definition (7), and

μm,j(f) =
∞∫
0

C0,m,j(p, t)Mf(p, t)t dt + (28)

m+j∑
k=1

⎛
⎝ ∞∫

0

Ck,m,j(p, t) ak(p, t) t dt +
∞∫
0

Sk,m,j(p, t) bk(p, t) t dt

⎞
⎠ .

In other words, if a1(p, t) is uniquely determined by Mf , then one can recover the moments of the 
function f from the values of Mf , and afterwards reconstruct f itself via the sequence of its multi-indexed 
moments {μm,j(f), m, j ∈ N} (cf. with [12]).

Remark 1. Suppose the support of f is a unit cube [0, 1]2. Given the moments μm,j(f) (m, j = 0, 1, . . . , n) 
of f up to order (n, n), one can derive the upper bound of order 1/n for the rate of approximation fn in a 
sup-norm, as n → ∞ (see Theorem 5.2 in [12]). The suggested approximation of f has the following form:

fn(x) = Cm,n(x)
m−[mx1]∑

l=0

n−[nx2]∑
k=0

(−1)l+kμl+[mx1],k+[nx2](f)
l!k!(m− [mx1] − l)!(n− [nx2] − k)! , (29)

defined for x = (x1, x2) ∈ [0, 1]2, and

Cm,n(x) = Γ(m + 2)Γ(n + 2)
Γ([mx1] + 1)Γ([nx2] + 1) .

In general, one can assume that m and n in (29) are different and both are tending to infinity.
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