Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

To recovering the moments from the spherical mean Radon transform $\stackrel{\bigstar}{\Rightarrow}$

Rafik H. Aramyan^{a,*}, Robert M. Mnatsakanov^b

^a Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia
 ^b West Virginia University, 94 Beechurst Ave., Morgantown, WV 26506, USA

ARTICLE INFO

Article history: Received 10 December 2019 Available online 30 June 2020 Submitted by R.M. Aron

Keywords: Spherical Radon transform Bivariate moment problem Inverse problem

ABSTRACT

This article deals with characterizations of a function in terms of its circular mean Radon transform. We present a new approach (the consistency method) showing how to describe the class of real-valued, planar functions f which have the given circular mean Radon transform $\mathcal{M}f$ over circles centered on the unit circle. Also, expressions are derived for the geometric moments of an unknown function in terms of its circular mean Radon transform.

@ 2020 Elsevier Inc. All rights reserved.

1. Introduction and formulation of the problem

The problems studied in this article are related to Computed Tomography. X-ray Tomography is based on the classical Radon transform that maps a function to its integrals over straight lines. Recently, new methods for computed tomography have been developed. Of these, thermoacoustic tomography (TAT) is the most successful method, as described in [7–9,16–18,22–24,26,27]. In TAT, one effectively measures the integrals of the energy-absorption distribution function f over all spheres centered at the detector locations. Thus, to recover f, one needs to invert the spherical mean Radon transform of f.

Consider the Euclidean *n*-dimensional space \mathbf{R}^n $(n \geq 2)$. By \mathcal{C}^{∞} we denote the class of real-valued functions for which the derivatives of all orders exist, and by S(P,t), we denote the sphere of radius t > 0centered at $P \in \mathbf{R}^n$. The main mathematical problem is to recover a real-valued function f, supported on a compact region $G \subset \mathbf{R}^n$, from the mean value $\mathcal{M}f$ of f over spheres, centered on some set L, i.e., to invert the spherical mean Radon transform.

* Corresponding author.

 $^{^{*}}$ This work was supported by Department of Mathematics (WVU) grant MERF-19. Also this work was supported by the RA MES State Committee of Science, in the frames of the research project 18T-1A252.

E-mail addresses: rafikaramyan@yahoo.com (R.H. Aramyan), Robert.Mnatsakanov@mail.wvu.edu (R.M. Mnatsakanov).

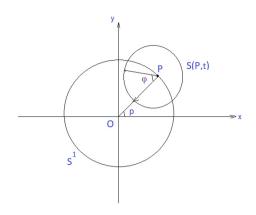


Fig. 1. The scheme of modeling the spherical mean Radon transform.

Agranovsky and Quinto in [2] gave a complete characterization of sets of uniqueness (sets of centers) for the circular mean Radon transform on compactly supported functions in the plane. Articles [4] and [1] describe the complete range of the spherical mean Radon transform for different geometries of detectors.

In \mathbb{R}^n , several inversion formulas are derived for the spherical mean Radon transform for different geometries of detectors (including the cases with incomplete data) (see [3,6,8,9,14,18,23,24,26]). Recently, in [11], the 2D 'local reconstruction formula' was obtained for detectors on a line.

It should be noted that the problem of recovering functions from the values of the Radon transform is related to the bivariate moment problem, which has a rich history (see [5,15,25]).

Goncharov [13] and Milanfar [19] showed that the Radon transform of a function can be converted into its moments. Mnatsakanov [20] suggested a new explicit moment-recovered formula, which gives an algorithm to recover a positive function via its exponential moments. Using the moment-recovered formula in [21], the rate of approximation of a positive function, via the values of a modified Radon transform, was also derived (see [12]).

The purpose of this article is to describe the class of real-valued functions defined in \mathbf{R}^2 (not necessarily with compact support), which have the given circular mean Radon transform $\mathcal{M}f$ defined over the circles with the centers on \mathbf{S}^1 , using the consistency method suggested by Aramyan in [10].

Also, in this paper we study the relationship between the moments (also known as the multi-indexed moments) of a real-valued function f and the values of its circular mean Radon transforms in \mathbb{R}^2 . The results obtained in this article are formulated for the two-dimensional case, but they can be extended to higher dimensions.

We now introduce the circular mean Radon transform $\mathcal{M}f$ that integrates a function f defined on \mathbb{R}^2 over circles. Let S(P,t) be the circle with center $P = (\cos p, \sin p) \in \mathbb{S}^1$ and radius t > 0. Note that the point $P \in \mathbb{S}^1$ is uniquely determined by the corresponding angle $p \in [0, 2\pi)$ (see Fig. 1). In the sequel, the point $P \in \mathbb{S}^1$ is identified with p. We define $\mathcal{M}f(p,t)$ as the integral of f over S(P,t), i.e.,

$$\mathcal{M}f(p,t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(P+t\omega) \, d\varphi, \quad for \ (p,t) \in [0,2\pi) \times [0,\infty).$$
(1)

Here $\varphi \in [-\pi, \pi]$ is the angular coordinate of a point on S(P, t) (we measure φ from the direction \overrightarrow{PO} (see Fig. 1)); $\omega \in \mathbf{S}^1$ is the unit direction corresponds to φ . Consider $\mathcal{M}f$ as a function on the unit cylinder

$$C^{1} = \{ (p,t) : p \in [0,2\pi), t \in [0,\infty) \}.$$

For a fixed $P = (\cos p, \sin p) \in \mathbf{S}^1$, one can use the usual polar system of coordinates (t, φ) on the plane with respect to P. Thus, we have $(x, y) = (P, t, \varphi)$.

Here, and in the sequel, for a fixed $(P,t) \in \mathbf{S}^1 \times [0,\infty)$, the restriction of f to the circle S(P,t) is written in the form

$$f_{p,t}(\varphi), \quad \varphi \in [-\pi,\pi].$$
 (2)

It is known that a 2π -periodic, differentiable function f with continuous derivative can be written as its Fourier series expansion. For any $(p, t) \in C^1$, the Fourier series expansion of the restricted f is

$$f_{p,t}(\varphi) = \sum_{k=0}^{\infty} \left(a_k(p,t) \cos k \,\varphi + b_k(p,t) \sin k \,\varphi \right). \tag{3}$$

Taking into account (1) we have

$$f_{p,t}(\varphi) = \mathcal{M}f(p,t) + \sum_{k=1}^{\infty} \left(a_k(p,t)\cos k\,\varphi + b_k(p,t)\sin k\,\varphi \right),\tag{4}$$

where for $k \geq 1$,

$$a_k(p,t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{p,t}(\varphi) \cos k\varphi \, d\varphi \quad and \quad b_k(p,t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{p,t}(\varphi) \sin k\varphi \, d\varphi. \tag{5}$$

It is obvious that the restrictions $f_{p,t}(\varphi)$, of the function f defined on \mathbf{R}^2 , are consistent in the following sense: for a point $(x, y) \in \mathbf{R}^2$ and for the bundle of circles S(P, t) $(P \in \mathbf{S}^1)$ containing (x, y), we have

$$f_{p,t}(\varphi) = f(x,y) \quad \text{for all} \quad (P,t,\varphi) = (x,y), \tag{6}$$

i.e., there is no dependence on a circle from the bundle containing (x, y).

The opposite statement is also true. Let $G_{p,t}(\varphi)$ be a family of functions defined on S(P,t) $((P,t) \in \mathbf{S}^1 \times [0,\infty))$ that are consistent. Then $G_{p,t}(\varphi)$ represents the restrictions of a function f defined on \mathbf{R}^2 . Indeed, one can produce f via the definition: for $(x, y) \in \mathbf{R}^2$,

$$f(x,y) = G_{p,t}(\varphi) \quad \text{for} \quad (P,t,\varphi) = (x,y). \tag{7}$$

The principle of consistency defined above was introduced and applied in other models as well (cf. with [10] and [11]).

In this article we apply the consistency method: we consider equation (1) as an integral equation on the circle S(P,t) for every $(P,t) \in \mathbf{S}^1 \times [0,\infty)$; we write the general solution of the integral equation in terms of a Fourier series expansion with unknown coefficients; then, we seek the unknown coefficients to find a family of consistent solutions. Thus, we reduce the problem of recovering a real valued function f from the mean value $\mathcal{M}f$ over circles, centered on \mathbf{S}^1 , to finding consistent solutions of integral equations (1).

Now we present the main results. Let $f \in C^{\infty}$ be a real valued function defined on \mathbb{R}^2 and $\mathcal{M}f$ be the circular mean Radon transform of f over circles with the centers on \mathbb{S}^1 . Lemma 1 (see below) shows that the Fourier coefficients, $a_k(p,t)$ and $b_k(p,t)$, $k = 1, 2, \ldots$, of the restrictions $f_{p,t}(\varphi)$, of f onto S(P,t), satisfy the system of differential equations (15) and (16) with boundary conditions (17). Using Lemma 1 we get the following theorem:

Theorem 1. Let $\mathcal{M}f$ be the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^1 and let $a_1(p,t)$, which has continuous partial derivatives and $a_1(p,0) = 0$, be a function defined on the

unit cylinder C^1 . Let $a_k(p,t)$, $k = 2, 3, ..., and b_k(p,t)$, $k = 1, 2, ..., be the unique solutions of the system of differential equations (15) and (16) with boundary conditions (17). If for any <math>(p,t) \in C^1$ the series

$$\mathcal{M}f(p,t) + \sum_{k=1}^{\infty} \left(a_k(p,t) \cos k \,\varphi + b_k(p,t) \sin k \,\varphi \right),\tag{8}$$

converges to $f_{p,t}(\varphi)$, then the family of functions $f_{p,t}$ is consistent and produces a solution of (1) via definition (7).

As a consequence of Theorem 1, we have

Theorem 2. Let $\mathcal{M}f$ be the circular mean Radon transform of a function f over circles with the centers on \mathbf{S}^1 . The function f is uniquely determined by its circular mean Radon transform $\mathcal{M}f$, i.e., equation (1) has a unique solution, if and only if the first Fourier coefficient of the restriction of f onto S(P,t),

$$a_1(p,t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{p,t}(\varphi) \cos \varphi \, d\varphi,$$

is uniquely determined by $\mathcal{M}f$.

In section 3, we establish a new linear relationship between the moments of an unknown function f and the values of its circular mean Radon transform $\mathcal{M}f$ (see Theorem 3). Using this relationship one can recover the moments of f from the values of $\mathcal{M}f$, and then approximate f from its moments.

2. The consistency condition and proof of Theorem 1

For a fixed point $(x, y) \in \mathbf{R}^2$, we consider the bundle of circles S(P, t) $(P \in \mathbf{S}^1)$ containing (x, y). Any circle from the bundle is uniquely determined by its center $P = (\cos p, \sin p) \in \mathbf{S}^1$. For the polar coordinates (t, φ) of the point (x, y) on the plane with respect to P, we have (see Fig. 1)

$$\begin{cases} x = \cos p - t \cos(p + \varphi) \\ y = \sin p - t \sin(p + \varphi). \end{cases}$$
(9)

We need to calculate the derivatives of the polar coordinates (t, φ) of the point (x, y) with respect to p. We denote the (partial) derivative of a function f with respect to a variable, say v, by f'_v . Taking the derivative of both sides of the equations of (9) with respect to p, we obtain

$$\begin{cases} -\sin p - t'_p \cos(p+\varphi) + t \sin(p+\varphi)(1+\varphi'_p) = 0\\ \cos p - t'_p \sin(p+\varphi) - t \cos(p+\varphi)(1+\varphi'_p) = 0. \end{cases}$$
(10)

From (10) we get:

$$\varphi_p' = \frac{\cos\varphi}{t} - 1, \quad t_p' = \sin\varphi. \tag{11}$$

We now find the coefficients $a_k(p,t)$, $b_k(p,t)$ (k = 1, 2, ...) in (4) as functions of $(p,t) \in C^1$ from the consistency condition. For a fixed point $(x, y) \in \mathbf{R}^2$ we write f in polar coordinates and require that the right-hand side of (4) should not depend on p:

$$(f(x,y))'_p = (f_{p,t}(\varphi))'_p =$$

$$(\mathcal{M}f(p,t) + \sum_{k=1}^{\infty} (a_k(p,t)\cos k\,\varphi + b_k(p,t)\sin k\,\varphi))'_p = 0.$$
(12)

Termwise differentiation using the expressions in (11) yields

$$-t \left(\mathcal{M}f(p,t)\right)_{p}^{\prime} - t \left(\mathcal{M}f(p,t)\right)_{t}^{\prime} \sin\varphi =$$

$$\sum_{k=1}^{\infty} \left[t\left((a_{k}(p,t))_{p}^{\prime} + (a_{k}(p,t))_{t}^{\prime} \sin\varphi\right) \cos k\varphi - k a_{k}(p,t) \sin k\varphi(\cos\varphi - t) + t\left((b_{k}(p,t))_{p}^{\prime} + (b_{k}(p,t))_{t}^{\prime} \sin\varphi\right) \sin k\varphi + k b_{k}(p,t) \cos k\varphi(\cos\varphi - t) \right].$$

$$(13)$$

Using the trigonometric formulas and grouping the summands in (13), we obtain

$$-t \left(\mathcal{M}f(p,t)\right)_{p}^{\prime} - t \left(\mathcal{M}f(p,t)\right)_{t}^{\prime} \sin\varphi =$$
(14)
$$\sum_{k=1}^{\infty} \left(\left[t(a_{k}(p,t))_{p}^{\prime} - kt \, b_{k}(p,t) \right] \cos k\varphi - \left[\frac{t}{2} (b_{k}(p,t))_{t}^{\prime} - \frac{k}{2} \, b_{k}(p,t) \right] \cos (k+1)\varphi + \right. \\ \left[\frac{t}{2} (b_{k}(p,t))_{t}^{\prime} + \frac{k}{2} \, b_{k}(p,t) \right] \cos (k-1)\varphi + \left[t(b_{k}(p,t))_{p}^{\prime} + kt \, a_{k}(p,t) \right] \sin k\varphi + \left. \left[\frac{t}{2} (a_{k}(p,t))_{t}^{\prime} - \frac{k}{2} \, a_{k}(p,t) \right] \sin (k+1)\varphi - \left[\frac{t}{2} (a_{k}(p,t))_{t}^{\prime} + \frac{k}{2} \, a_{k}(p,t) \right] \sin (k-1)\varphi \right).$$

By uniqueness of the Fourier coefficients, we obtain the following system of differential equations for the unknown coefficients a_k , b_k ($k \ge 1$):

$$\begin{cases} t(b_1(p,t))'_t + b_1(p,t) = -2t \left(\mathcal{M}f(p,t)\right)'_p \\ t(b_2(p,t))'_t + 2b_2(p,t) + 2t(a_1(p,t))'_p - 2t b_1(p,t) = 0 \\ t(a_2(p,t))'_t + 2a_2(p,t) - 2t(b_1(p,t))'_p - 2t a_1(p,t) = 2t \left(\mathcal{M}f(p,t)\right)'_t, \end{cases}$$
(15)

for k = 1, k = 2, and

$$\begin{cases} t(b_{k}(p,t))'_{t} + k \, b_{k}(p,t) - t(b_{k-2}(p,t))'_{t} + (k-2)b_{k-2}(p,t) + \\ 2 \, t(a_{k-1}(p,t))'_{p} - 2(k-1)t \, b_{k-1}(p,t) = 0 \\ t(a_{k}(p,t))'_{t} + k \, a_{k}(p,t) - t(a_{k-2}(p,t))'_{t} + (k-2)a_{k-2}(p,t) - \\ 2 \, t(b_{k-1}(p,t))'_{p} - 2(k-1)t \, a_{k-1}(p,t) = 0 \end{cases}$$
(16)

for k > 2.

We now find the boundary conditions for the differential equations. From (5) for $k \ge 1$, taking into account that $f_{p,0}$ does not depend on φ , we get the following boundary conditions:

$$a_k(p,0) = b_k(p,0) = 0 \quad for \quad k = 1, 2, \dots$$
 (17)

Thus, we obtain the following lemma:

Lemma 1. Let $f \in C^{\infty}$ be a real valued function defined on \mathbb{R}^2 and let $\mathcal{M}f$ be the circular mean Radon transform of f over circles with the centers on \mathbb{S}^1 . Then the Fourier coefficients $a_k(p,t)$ and $b_k(p,t)$, $k = 1, 2, \ldots$, of the restrictions $f_{p,t}(\varphi)$ satisfy the system of differential equations (15) and (16) with boundary conditions (17).

It follows from (15), (16) and (17) that knowing $\mathcal{M}f$, the circular mean Radon transform of f, and the first Fourier coefficient $a_1(p,t)$ of $f_{p,t}(\varphi)$, one can calculate step-by-step the unknown coefficients $a_k(p,t)$, $k = 2, 3, \ldots$, and $b_k(p,t)$, $k = 1, 2, \ldots$, (at first we find b_1 , next we find a_2 , next b_2 , next a_3 , etc.), and hence we reconstruct f. In general, equation (1), where $\mathcal{M}f$ is the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^1 , can have many solutions.

Now let $a_1(p,t)$ be a function defined on the unit cylinder C^1 . We assume that $a_1(p,t)$ has continuous partial derivatives and $a_1(p,0) = 0$. We substitute $a_1(p,t)$ into (15) and find the unique solutions $a_k(p,t)$, k = 2, 3..., and $b_k(p,t)$, k = 1, 2, ..., of the system of differential equations (15) and (16) with boundary conditions (17). Now for $(p,t) \in C^1$ using $a_k(p,t)$ and $b_k(p,t)$, k = 1, 2, ..., we compose series (8) and assume that the series converges to $f_{p,t}(\varphi)$. The family of functions $f_{p,t}$ will be consistent since the coefficients $a_k(p,t)$, k = 1, 2, 3, ..., and $b_k(p,t)$, k = 1, 2, ..., satisfy the system of differential equations (15) and (16). Hence, this family produces a solution of (1) via definition (7). Thus, Theorem 1 is proved.

3. A formula for the moments of an unknown function f

In this section, assuming that $f \in \mathcal{S}(\mathbb{R}^2)$ (the Schwartz space), and given the values of spherical mean Radon transform $\mathcal{M}f$, we will show how to evaluate the moments of f. Namely, consider the ordinary (geometric) moments of f. By definition, the multi-indexed moment of order (m, j) is defined as follows:

$$\mu_{m,j}(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^m y^j f(x,y) \, dx \, dy, \quad m,j \in N = \{0,1,\dots\}.$$
(18)

It is known that under the certain conditions (see, e.g., [5,15,25]) the sequence of multi-indexed moments $\{\mu_{m,j}(f), m, j \in N\}$ determines f uniquely.

For a fixed $P \in \mathbf{S}^1$, we return to the formula (4) and write

$$f(x,y) = \mathcal{M}f(p,t) + \sum_{k=1}^{\infty} \left(a_k(p,t)\cos k\,\varphi + b_k(p,t)\sin k\,\varphi\right) \tag{19}$$

for every (x, y) with $(P, t, \varphi) = (x, y)$. A substitution of (19) into (18) yields

$$\mu_{m,j}(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^m y^j f(x,y) \, dx \, dy =$$
(20)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^m y^j \left[\mathcal{M}f(p,t) + \sum_{k=1}^{\infty} \left(a_k(p,t) \cos k \,\varphi + b_k(p,t) \sin k \,\varphi \right) \right] dx \, dy.$$
(21)

Taking into account (9) and the fact $dx dy = t dt d\varphi$, we obtain

$$\mu_{m,j}(f) = \int_{-\pi}^{\pi} \int_{0}^{\infty} (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} \mathcal{M}f(p,t) t dt \, d\varphi + \\\sum_{k=1}^{\infty} \left(\int_{-\pi}^{\pi} \int_{0}^{\infty} a_{k}(p,t) (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} \cos k\varphi \, t dt \, d\varphi + \\\int_{-\pi}^{\pi} \int_{0}^{\infty} b_{k}(p,t) (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} \sin k\varphi \, t dt \, d\varphi \right).$$
(22)

Using Fubini's theorem, we get

$$\mu_{m,j}(f) = \int_{0}^{\infty} \mathcal{M}f(p,t) t [\int_{-\pi}^{\pi} (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} d\varphi] dt +$$

$$\sum_{k=1}^{\infty} \left(\int_{0}^{\infty} a_{k}(p,t) t [\int_{-\pi}^{\pi} (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} \cos k\varphi \, d\varphi] dt +$$

$$\int_{0}^{\infty} b_{k}(p,t) t [\int_{-\pi}^{\pi} (\cos p - t\cos(p+\varphi))^{m} (\sin p - t\sin(p+\varphi))^{j} \sin k\varphi \, d\varphi] dt \right).$$
(23)

Consider two sequences of *standard* functions $C_{k,m,j}$ and $S_{k,m,j}$ defined on the unique cylinder, where k, m and j are nonnegative integers. We call them standard functions because their constructions do not depend on f:

$$C_{k,m,j}(p,t) = \int_{-\pi}^{\pi} (\cos p - t\cos(p+\varphi))^m (\sin p - t\sin(p+\varphi))^j \cos k\varphi \,d\varphi \tag{24}$$

and

$$S_{k,m,j}(p,t) = \int_{-\pi}^{\pi} (\cos p - t\cos(p+\varphi))^m (\sin p - t\sin(p+\varphi))^j \sin k\varphi \, d\varphi.$$
(25)

The first few functions are:

$$\begin{cases} C_{0,1,0}(p,t) = 2\pi \cos p, \ C_{0,0,1}(p,t) = 2\pi \sin p, \ C_{0,1,1}(p,t) = 2\pi \sin p \cos p, \\ C_{1,1,0}(p,t) = -t\pi \cos p, \ C_{1,0,1}(p,t) = -t\pi \sin p, \ C_{1,1,1}(p,t) = -t\pi \sin 2p, \\ S_{1,1,0}(p,t) = t\pi \sin p, \ S_{1,0,1}(p,t) = -t\pi \cos p, \ S_{1,1,1}(p,t) = -t\pi \cos 2p, \\ \dots \end{cases}$$

By substituting (24) and (25) into (23), we obtain

$$\mu_{m,j}(f) = \int_{0}^{\infty} C_{0,m,j}(p,t) \,\mathcal{M}f(p,t) \,t \,dt +$$

$$\sum_{k=1}^{\infty} \left(\int_{0}^{\infty} C_{k,m,j}(p,t) \,a_k(p,t) \,t \,dt + \int_{0}^{\infty} S_{k,m,j}(p,t) \,b_k(p,t) \,t \,dt \right).$$
(26)

The following lemma is valid.

Lemma 2. For m + i < k, we have

$$C_{k,m,j}(p,t) = S_{k,m,j}(p,t) \equiv 0.$$
 (27)

Proof. It is obvious that for any (p, t), the function

$$\pi(\cos p - t\cos(p+\varphi))^m(\sin p - t\sin(p+\varphi))^j$$

is a polynomial of $\sin \varphi$ and $\cos \varphi$, functions of degree $r \leq m + j$. Hence, it is orthogonal to $\sin k\varphi$ and $\cos k\varphi$ for m + j < k. Lemma 2 is proved.

Finally, we have the following theorem:

Theorem 3. Let $\mathcal{M}f$ be the circular mean Radon transform of a function over circles with the centers on \mathbf{S}^1 , and $a_1(p,t)$ be a function defined on the unit cylinder \mathbf{C}^1 . Let $a_k(p,t)$, $k = 2, 3, \ldots$, and $b_k(p,t)$, $k = 1, 2, \ldots$, be the unique solutions of the system of differential equations (15) and (16) with boundary conditions (17). If for any (p,t) the series (8) converges to $f_{p,t}(\varphi)$, then the family of functions $f_{p,t}$ is consistent and produces a solution f of (1) via definition (7), and

$$\mu_{m,j}(f) = \int_{0}^{\infty} C_{0,m,j}(p,t) \,\mathcal{M}f(p,t)t \,dt +$$

$$\sum_{k=1}^{m+j} \left(\int_{0}^{\infty} C_{k,m,j}(p,t) \,a_k(p,t)t \,dt + \int_{0}^{\infty} S_{k,m,j}(p,t) \,b_k(p,t)t \,dt \right).$$
(28)

In other words, if $a_1(p,t)$ is uniquely determined by $\mathcal{M}f$, then one can recover the moments of the function f from the values of $\mathcal{M}f$, and afterwards reconstruct f itself via the sequence of its multi-indexed moments $\{\mu_{m,j}(f), m, j \in N\}$ (cf. with [12]).

Remark 1. Suppose the support of f is a unit cube $[0,1]^2$. Given the moments $\mu_{m,j}(f)$ (m, j = 0, 1, ..., n) of f up to order (n,n), one can derive the upper bound of order 1/n for the rate of approximation f_n in a sup-norm, as $n \to \infty$ (see Theorem 5.2 in [12]). The suggested approximation of f has the following form:

$$f_n(x) = C_{m,n}(x) \sum_{l=0}^{m-[mx_1]} \sum_{k=0}^{n-[nx_2]} \frac{(-1)^{l+k} \mu_{l+[mx_1],k+[nx_2]}(f)}{l!k!(m-[mx_1]-l)!(n-[nx_2]-k)!},$$
(29)

defined for $x = (x_1, x_2) \in [0, 1]^2$, and

$$C_{m,n}(x) = \frac{\Gamma(m+2)\Gamma(n+2)}{\Gamma([mx_1]+1)\Gamma([nx_2]+1)}$$

In general, one can assume that m and n in (29) are different and both are tending to infinity.

References

- M.L. Agranovsky, L. Nguyen, Range conditions for a spherical mean transform and global extendibility of solutions of the Darboux equation, J. Anal. Math. 112 (2010) 351–367.
- [2] M.L. Agranovsky, E.T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996) 383–414.
- [3] M.L. Agranovsky, P. Kuchment, L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography, in: L.-H. Wang (Ed.), Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.
- [4] M.L. Agranovsky, P. Kuchment, E.T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal. 248 (2007) 344–386.
- [5] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh, 1965.
- [6] G. Ambartsoumian, P. Kuchment, On the injectivity of the circular Radon transform, Inverse Probl. 21 (2005) 473-485.
- [7] G. Ambartsoumian, S.K. Patch, Thermoacoustic tomography: numerical results, Proc. SPIE 6437 (2007), 6437-47.
- [8] H. Ammari, E. Bossy, V. Jugnon, H. Kang, Mathematical modeling in photo-acoustic imaging, SIAM Rev. 52 (2010) 677–695.
- [9] L.-E. Andersson, On the determination of a function from spherical averages, SIAM J. Math. Anal. 19 (1988) 214–232.
- [10] R.H. Aramyan, Generalized Radon transform on the sphere, Analysis Oldenbourg 30 (2010) 271–284.

- [11] R. Aramyan, To local reconstruction from the spherical mean Radon transform, J. Math. Anal. Appl. 470 (2019) 102–117.
- [12] H. Choi, F. Jafari, R. Mnatsakanov, Modified Radon transform inversion using moments, J. Inverse Ill-Posed Probl. 28 (2020) 1–15.
- [13] A.B. Goncharov, Methods of integral geometry and recovering a function with compact support from its projections in unknown directions, Acta Appl. Math. 11 (1988) 213–222.
- [14] M. Haltmeier, Universal inversion formulas for recovering a function from spherical means, SIAM J. Math. Anal. 46 (2014) 214–232.
- [15] C. Kleiber, J. Stoyanov, Multivariate distributions and the moment problem, J. Multivar. Anal. 113 (2013) 7–18.
- [16] R.A. Kruger, W.L. Kiser, D.R. Reinecke, G.A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array, Med. Phys. 30 (2003) 856–860.
- [17] P. Kuchment, L.A. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography, Chapter 19, in: Handbook of Mathematical Methods in Imaging, vol. 2, Springer Verlag, ISBN 978-0-387-92920-0, 2010, pp. 817–866, 1688 pp.
- [18] L. Kunyansky, Explicit inversion formulas for the spherical mean Radon transform, Inverse Probl. 23 (2007) 373–383.
- [19] P. Milanfar, Geometric Estimation and Reconstruction from Tomographic Data, PhD dissertation, Massachusetts Institute of Technology, 1993.
- [20] R.M. Mnatsakanov, Moment-recovered approximations of multivariate distributions: the Laplace transform inversion, Stat. Probab. Lett. 81 (2011) 1–7.
- [21] R.M. Mnatsakanov, S. Li, The Radon transform inversion using moments, Stat. Probab. Lett. 83 (2013) 936–942.
- [22] F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics, vol. 32, SIAM, Philadelphia, 2001.
- [23] L. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Probl. Imaging 3 (2009) 649–675.
- [24] V.P. Palamodov, Reconstructive Integral Geometry, Birkhauser, Basel, 2004.
- [25] J.A. Shohat, J.D. Tamarkin, The Problem of Moments, American Mathematical Society, New York, 1943.
- [26] Y. Xu, D. Feng, L.-H.V. Wang, Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry, IEEE Trans. Med. Imaging 21 (2002) 823–828.
- [27] Y. Xu, L. Wang, G. Ambartsoumian, P. Kuchment, Reconstructions in limited view thermoacoustic tomography, Med. Phys. 31 (2004) 724–733.