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Abstract
Given sparse collections of measurable sets Sk , k = 1, 2, . . . , N , in a general measure space
(X ,M, μ), let �Sk be the sparse operator, corresponding to Sk . We show that the maximal
sparse function � f = max1≤k≤N �Sk f satisfies

‖�‖L p(X)�→L p,∞(X) � log N · ‖MS‖L p(X)�→L p,∞(X), 1 ≤ p < ∞,

‖�‖L p(X)�→L p(X) � (log N )max{1,1/(p−1)} · ‖MS‖L p(X)�→L p(X), 1 < p < ∞,

where MS is the maximal function corresponding to the collection of sets S = ∪kSk . As
a consequence, one can derive norm bounds for maximal functions formed from taking
measurable selections of one-dimensional Calderón–Zygmund operators in the plane. Prior
results of this type had a fixed choice of Calderón–Zygmund operator for each direction.
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1 Introduction

Let Hv f (x) = ∫
R
f (x − tv) dtt be the Hilbert transform performed in direction v in R

2. Here
and throughout we take v to be a unit vector. Given finite set of unit vectors V define the
operator

HV f (x) = max
v∈V |Hv f (x)|

It is a well known consequence of the Rademacher–Menshov theorem that we have

Theorem A For any finite set of unit vectors V we have
∥
∥HV

∥
∥
L2→L2 � log+ #V .

Here and below#V denotes the cardinality of V and log+ n = max{1, log2 n}.Many different
extensions of this result have been studied. One of us [11] showed that the norm bound is
necessarily logarithmic in #V , in strong contrast to the classical result on themaximal function
in a lacunary set of directions of Nagel, Stein and Wainger [16]. Namely, we have

Theorem B [11] For any finite set V of unit vectors it holds

∥
∥HV

∥
∥
L2→L2 �

√
log+ #V . (1.1)

The maximal function variant in the strong and weak-type estimates was first established
by Nets Katz [12,13]. Namely, set

Mv f (x) = sup
t>0

(2t)−1
∫ t

−t
| f (x − tv)| dt,

for unit vectors v, and for a finite set of unit directions V , let MV f = maxv∈V Mv f .

Theorem C [12,13] For any set of unit vectors V , we have

‖MV ‖L2→L2,∞ �
√
log+ #V , ‖MV ‖L2→L2 � log+ #V .

Many extensions of these results have been considered, and we will cite several of these
extensions. Herein, we prove results, which allow for much rougher examples than singular
integrals in a choice of directions. Let Ka(x), a ∈ R, be a family of Calderón–Zygmund
kernels with uniformly bounded Fourier transforms, ‖K̂a‖∞ < M , such that Ka(x) as a
function in two variables a and x is measurable on R

2. For a unit vector v in R
2 with a

perpendicular vector v⊥ we consider an operator Tv written by

Tv f (x) =
∫

R

Kx ·v⊥(t) f (x − tv)dt, x ∈ R
2,

for compactly supported smooth functions f on R
2. Notice that on the v-directer lines

x · v⊥ = l the operator Tv defines one dimensional Calderón–Zygmund operators, and those
can be different as the line varies. For a finite collection of unit vectors V denote

TV f (x) = max
v∈V |Tv f (x)|.

Among the others below, as a corollary to our main result we derive the following.
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On logarithmic bounds of maximal sparse operators

Corollary 1.2 If the family of Calderón–Zygmund kernels Ka(x) satisfies the above condi-
tions, then for any finite collection of unit vectors V , we have

‖TV ‖L2→L2,∞ � (log+|V |)3/2,
‖TV ‖L2→L2 � (log+|V |)2.

No prior result we are aware of has permitted a variable choice of operator, as the line
varies. Themethodof proof is bywayof sparse operators.Namelyweuse the recent pointwise
domination of singular integrals by a positive operator [2,14,15] to reduce the corollary above
to a setting, where the operators are positive. These positive operators, called sparse operators
are ‘bigger than the maximal function by logarithmic terms’, and so the proofs of the sparse
operator bounds imply the corollary above.

2 Sparse operators

Let (X ,M, μ) be a measure space. Given collection of measurable setsB ⊂ M defines the
maximal function

MB f (x) = sup
B∈B

〈 f 〉B · 1B(x),

where 〈 f 〉B = μ(B)−1
∫
B | f |. By a sparse operator we mean an operator

�S f (x) =
∑

S∈S
〈 f 〉S1S(x),

where S ⊂ M is a sparse collection of measurable sets, that means there is a constant
0 < γ < 1 so that any set S ∈ S has a portion ES ⊂ S with μ(ES) ≥ γμ(S) and those are
pairwise disjoint.

Without recalling the exact definition of a bounded Calderón–Zygmund operator, themain
result we need from [2,14,15] is this.

Theorem D For any bounded Calderón–Zygmund operator T , and compactly supported
function f on R

n, there is a sparse collection S = ST , f of n-dimensional balls so that

|T f (x)| � �S f (x).

This inequality containsmany deep results about Calderón–Zygmund operators, for which
we refer the reader to the referenced papers. Sparse bounds hold for other functionals of
Calderón–Zygmund operators, like variational estimates [5]. The result above has been
extended in a number of interesting ways. Among many we could point to, the reader can
consult [1,3,4,10].

Definition 2.1 Let (X ,M, μ) be a measure space. A family of measurable sets B ⊂ M is
said to be martingale collection if for any two elements A, B ∈ B we have either

A ⊂ B, B ⊂ A or A ∩ B = ∅.

We say that B is a finite-martingale collection if there are finite number of martingale col-
lections

B1, . . . ,Bd (2.2)
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such that for any B ∈ B there is a set B ′ ∈ ∪kBk with

B ⊂ B ′, μ(B ′) ≤ Cμ(B).

It is well known that any family of balls in R
n forms a finite-martingale collection. More-

over, the corresponding martingale collections (2.2) can be taken to be dyadic grids. Such
dyadization is a key point in many applications of sparse operators.

We turn to the statement of the main theorem. Let Sk , k = 1, 2, . . . , N be a finite-
martingale sparse collections in a measure space (X ,M, μ), and suppose S = ∪N

k=1Sk . The
family G = {S1, . . . ,SN } defines the operator

�G f (x) = max
1≤k≤N

�Sk f (x). (2.3)

Theorem 2.4 With the notations above we have the inequalities

‖�G ‖L p→L p,∞ � log+ N · ‖MS‖L p→L p,∞ , 1 ≤ p < ∞, (2.5)

‖�G ‖L p→L p � (log+ N )max{1,1/(p−1)} · ‖MS‖L p→L p , 1 < p < ∞. (2.6)

Here and below the notation a � bwill stand for the inequality a ≤ c·b, where the constant
c > 0 may depend only on p and on the constants from the above definitions of different
type of set collections. As we said, a sparse operator is logarithmically larger than a maximal
function, as indicated after Corollary 1.2. Our inequalities above match this heuristic. In fact,
Corollary 1.2 as well as Corollary 2.7 below may be analogously formulated in R

n for any
n ≥ 2, taking instead of parallel lines parallel hyperplanes of dimensionm < n and consider
different m-dimensional Calderón–Zygmund operator on each hyperplane.

For a direction v, and a smooth compactly supported function f , we let

Sv f (x) = �S(v⊥·x) f (x),

where v⊥ is orthogonal to v, and y �→ �S(y) is a measurable choice of sparse operators.
Given a finite set of unit vectors V , we set SV f = maxv∈V Sv f .

Corollary 2.7 With the notation above, for any finite set of unit vectors V we have the inequal-
ities

‖SV ‖L2→L2,∞ � (log+ V )3/2, (2.8)

‖SV ‖L2→L2 � (log+ V )2, (2.9)

‖SV ‖L p→L p � (log+ V )1+1/p, p > 2. (2.10)

Corollary 2.7 immediately follows fromTheorem 2.4. Indeed, there is no need to consider the
measurable choice of sparse operators directly. By standard arguments, it suffices to consider
a simplified discrete situation described here. For any pair of orthogonal vectors (v, v⊥), let
Rv be the collection of dyadic rectangles in the plane, in the coordinates (v, v⊥), whose
lengths in the direction v⊥ is one (see Fig. 1).

LetV = {v1, . . . , vN }be afinite collection of unit vectors andSk ⊂ Rvk , k = 1, 2, . . . , N ,
be a sparse collections of rectangles. One can easily see that the operator (2.3) generated by
those collections is a discrete version of SV from (2.8), (2.9) and (2.10). On the other hand
for the maximal function MS f corresponding to the family of sets S = ∪kSk we have the
bound

MS f ≤ MV f = max
v∈V MRv f ,
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Fig. 1 The rectangles in Rv

so it satisfies to apply inequalities (2.5) and (2.6) combined with estimates (1.1). For (2.10)
we will additionally need the bound

‖MS‖L p→L p � (log+ V )1/p, p > 2,

which is obtained from (1.1) by the Marcinkiewicz interpolation theorem.
In light of the pointwise sparse bound in Theorem D, one can easily see that Corollary 1.2

in turn follows from (2.8) and (2.9).
Since themaximal function corresponding to the n-dimensional canonical rectangles (with

sides parallel to axes) inR
n is bounded on L p(Rn), 1 < p ≤ ∞, applying theMarcinkiewicz

interpolation theorem, from (2.5) we can immediately deduce the following result.

Corollary 2.11 If Sk , k = 1, 2, . . . , N, are sparse collections of canonical rectangles in R
n,

then for the maximal sparse operator (2.3) it holds the inequality

‖�G ‖L p→L p � log+ N , 1 < p < ∞, (2.12)

Applying the weak-L1 estimate of the maximal function corresponding to n-dimensional
balls in R

n , from (2.5) we also obtain

Corollary 2.13 If Sk , k = 1, 2, . . . , N, are sparse collections of balls inR
n, then for operator

(2.3) we have

‖�G ‖L1→L1,∞ � log+ N (2.14)

Combining sparse domination Theorem D with Corollary 2.11, one can easily get

Corollary 2.15 Let T be a Calderón–Zygmund operator on R
n. Then for any sequence of

measurable functions fk , k = 1, 2, . . . , N, satisfying | fk(x)| ≤ f (x), x ∈ R
n, it hold the

inequalities
∥
∥
∥
∥
∥

sup
1≤k≤N

T fk

∥
∥
∥
∥
∥
L p

� log+ N · ‖ f ‖L p , 1 < p < ∞, (2.16)

∥
∥
∥
∥
∥

sup
1≤k≤N

T fk

∥
∥
∥
∥
∥
L1,∞

� log+ N · ‖ f ‖L1 . (2.17)
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Indeed, applying Theorem D, we get

|T fk | � �Sk fk ≤ �Sk f ,

for some sparse collections of balls Sk , and then the estimates in Corollary 2.15 can be
deduced from (2.12) and (2.14) respectively.

3 Proof of Theorem 2.4

From Definition 2.1 it easily follows that any sparse operator, corresponding to a finite-
martingale sparse collection of sets, can be dominated by a sum of bounded number of
martingale sparse operators. So we can consider only martingale collections Sk in Theo-
rem 2.4.

The basic key to the proofs are the following properties of a sparse collection. Let S be
a martingale sparse collection. For R ∈ S denote by S j (R) the j generation of R. That is
S0(R) = {R} and inductively set S j+1(R) to be the maximal elements in

{R′ ∈ S : R′ ⊂ R} \
j⋃

i=0

Si (R). (3.1)

Observe that for a fixed j ≥ 0 the collection of sets

G j (R) =
⋃

R′∈S j (R)

R′, R ∈ S,

is itself martingale sparse collection. Besides, from the definition of martingale sparse col-
lection it follows that

μ(G j (R)) ≤ γ jμ(B). (3.2)

This implies the exponential estimate

μ

⎧
⎪⎪⎨

⎪⎪⎩

∑

S∈S
S⊂R0

1S > λ

⎫
⎪⎪⎬

⎪⎪⎭
� |R0| · γ λ. (3.3)

Proof of (2.5) Take f ∈ L p(X), p ≥ 1, of norm one. For a λ > 0 and a small constant δ > 0
we denote

Sk,0 =
{

R ∈ Sk : 〈 f 〉R >
δλ

log N

}

,

Sk,s =
{

R ∈ Sk : δλ

log N
· 2−s+1 ≥ 〈 f 〉R >

δλ

log N
· 2−s

}

, s = 1, 2, . . . .

Observe that for a fixed k the families Sk,s , s = 0, 1, 2, . . ., form a partition for the sparse
collection Sk . Besides, we have

μ

⎛

⎝
N⋃

k=1

⋃

R∈Sk,s

R

⎞

⎠ ≤ μ

{

MS f >
δλ

log N
· 2−s

}

≤
(
log N

δλ

)p

· 2sp · ‖MS‖p
L p→L p,∞ . (3.4)
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Hence, using the definition of Sk,s , we get

Eλ = {�G f > λ} =
N⋃

k=1

{�Sk f > λ}

⊂
N⋃

k=1

⋃

s≥0

{ ∑

R∈Sk,s

〈 f 〉R1R > c2−s/2λ
}

⊂
⎛

⎝
N⋃

k=1

⋃

R∈Sk,0

R

⎞

⎠
⋃

⎛

⎝
N⋃

k=1

⋃

s≥1

{ ∑

R∈Sk,s

〈 f 〉R1R > c2−s/2λ
}
⎞

⎠

⊂
⎛

⎝
N⋃

k=1

⋃

R∈Sk,0

R

⎞

⎠
⋃

⎛

⎝
N⋃

k=1

⋃

s≥1

{ ∑

R∈Sk,s

1R > c2s/2−1 · log N
δ

}
⎞

⎠ , (3.5)

where c > 0 is an absolute constant. From (3.4) we deduce

μ

⎛

⎝
N⋃

k=1

⋃

R∈Sk,0

R

⎞

⎠ �
(
log N

δλ

)p

‖MS‖p
L p→L p,∞ . (3.6)

Applying exponential estimate (3.3) and (3.4) again, we see that

μ|
{ ∑

R∈Sk,s

1R > c2s/2−1 · log N
δ

}
� (γ c/(2δ))2

s/2 log Nμ
( ⋃

R∈Sk,s

R
)

� (γ c/(2δ))2
s/2 log N · 2sp ·

(
log N

δλ

)p

‖MS‖p
L p→L p,∞

≤ 1

N
· 2−s ·

(
log N

δλ

)p

‖MS‖p
L p→L p,∞ , (3.7)

where the last inequality is obtained by a small enough choice of δ. From (3.5), (3.6) and
(3.7) we immediately get

μ(Eλ) �

⎛

⎝1 +
N∑

k=1

∑

s≥1

2−s

N

⎞

⎠
(
log N

δλ

)p

‖MS‖p
L p→L p,∞ �

(
log N

λ

)p

‖MS‖p
L p→L p,∞ ,

that implies (2.5). ��
To prove (2.6) we will need a simple lemma below. Let S be a martingale sparse collection

with a constant γ . Attach to each R ∈ S a measurable set G(R) ⊂ R such that μ(G(R)) <

δμ(R), 0 < δ < 1 and suppose that S ′ = {G(R) : R ∈ S} is itself a martingale sparse
collection with the same constant γ . For α > 0 consider the sparse like operator

�α
S,S ′ f (x) =

(
∑

R⊂S
〈 f 〉αR1G(B)(x)

)1/α

. (3.8)

Notice that in the case α = 1 and G(R) = R it gives the ordinary sparse operator. The proof
of the following lemma is based on a well-known argument.

Lemma 3.9 The operator (3.8) is bounded on L p(X) for 1 < p < ∞. Moreover, we have

‖�α
S,S′ ‖L p(X)→L p(X) ≤ cδ1/p.
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where c > 0 is a constant depended on α and on the constants from the above definitions.

Proof For R ∈ S we have

μ(G(R)) ≤ δμ(R) ≤ δ · γ −1μ(ER), μ(G(R)) ≤ γ −1μ(EG(R)),

where ER and EG(R) denote the disjoint portions of the members of S and S ′ respectively.
Suppose ‖ f ‖p = 1. For some positive function g ∈ L p/(p−α)(X) of norm one, we have

‖�α
S,S ′( f )‖α

p =
∥
∥
∥
∥

∑

R∈Sk

〈 f 〉αR1G(R)

∥
∥
∥
∥
p/α

=
〈

∑

R∈Sk

〈 f 〉αR1G(R), g

〉

=
∑

R∈Sk

〈 f 〉αR〈g〉G(R)μ(G(R))

=
∑

R∈Sk

〈 f 〉αR
(

μ(G(R))

)α/p

· 〈g〉G(R)

(

μ(G(R))

)(p−α)/p

≤
⎛

⎝
∑

R∈Sk

〈 f 〉pR · μ(G(R))

⎞

⎠

α/p ⎛

⎝
∑

R∈Sk

〈g〉p/(p−α)

G(R) · μ(G(R))

⎞

⎠

(p−α)/p

≤ γ −1δα/p

⎛

⎝
∑

R∈Sk

〈 f 〉pRμ(ER))

⎞

⎠

α/p ⎛

⎝
∑

R∈Sk

〈g〉p/(p−α)

G(R) μ(EG(R))

⎞

⎠

(p−α)/p

≤ γ −1δα/p‖MS( f )‖α
p‖MS ′(g)‖p/(p−α)

� γ −1δα/p‖ f ‖α
p‖g‖p/(p−α) = γ −1δα/p.

In the last inequality we use the boundedness of maximal functions MS and MS ′ corre-
sponding to the martingale sparse collections S and S ′. ��

Proof of (2.6) Let Ek , k = 1, 2, . . . , N be a measurable partition of X . Linearizing the
supremum in the definition of �, we can redefine

�G f (x) =
N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R (x), Ek,R = Ek ∩ R.

Denote α = min{1, p−1} ≤ 1. Let Sk, j (R) be the j generation of R ∈ Sk (see the definition
in (3.1)). For a function f ∈ L p(X) of norm one we denote

A(1)
j =

∫

X

N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎛

⎝
N∑

k=1

∑

R′∈Sk, j (R)

〈 f 〉R′1Ek,R′

⎞

⎠

α

(�G f )p−α−1 ,

A(2)
j =

∫

X

N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎛

⎝
N∑

k=1

∑

R′: R∈Sk, j (R′)
〈 f 〉R′1Ek,R′

⎞

⎠

α

(�G f )p−α−1 .
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Then, using the inequality (
∑

k xk)
α ≤ ∑

k x
α
k , we get

‖�G f ‖p
p =

∫

X

N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎛

⎝
N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎞

⎠

α

· (�G f )p−α−1

≤
∞∑

j=0

(A(1)
j + A(2)

j ). (3.10)

Since 〈 f 〉R′1Ek,R′ ≤ MS( f ), for any i = 1, 2 it holds the inequality

A(i)
j ≤

∫

X
(MS( f ))α

⎛

⎝
N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎞

⎠ · (�G f )p−α−1

=
∫

X
(MS( f ))α · (�G f )p−α

≤ ‖MS‖α
p‖�G ‖p−α

p . (3.11)

For a fixed j and R ∈ Sk denote G j (R) = ∪R′∈Sk, j (R)R′. Observe that the family Sk, j =
{G j (R) : R ∈ Sk} forms a martingale-system and (3.2) implies μ(G j (R)) ≤ γ jμ(R). So
the family Sk together with Sk, j satisfies the conditions of Lemma 3.9. Thus we have

A(1)
j ≤

N∑

k=1

∫

X

∑

R∈Sk

〈 f 〉R1G(R) · (�G f )α · (�G f )p−α−1

=
N∑

k=1

∫

X

∑

R∈Sk

〈 f 〉R1G(R) (�G f )p−1

≤ ‖�G ‖p−1
L p→L p

N∑

k=1

∥
∥
∥�1

Sk ,Sk, j
( f )

∥
∥
∥
p

≤ 2−cj N‖�G ‖p−1
L p→L p

≤ 2−cj N‖�G ‖p−α
L p→L p , (3.12)

where the last inequality follows from ‖�G ‖L p→L p ≥ 1. Likewise, again applying
(
∑

k xk)
α ≤ ∑

k x
α
k , we get

A(2)
j ≤

∫

X

N∑

k=1

∑

R∈Sk

〈 f 〉R1Ek,R

⎛

⎝
N∑

k=1

∑

R′: R∈Sk, j (R′)
〈 f 〉αR′1Ek,R′

⎞

⎠ (�G f )p−α−1

=
N∑

k=1

∫

X

∑

R′∈Sk

〈 f 〉αR′1Ek,R′

⎛

⎝
∑

R∈Sk, j (R′)
〈 f 〉R1Ek,R

⎞

⎠ (�G f )p−α−1

≤
N∑

k=1

∫

X

∑

R′∈Sk

〈 f 〉αR′1G(R′) · �G f · (�G f )p−α−1

=
N∑

k=1

∫

X
(�α

Sk ,S ′
k
( f ))α (�G f )p−α
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≤ ‖�G ‖p−α
L p→L p

N∑

k=1

∥
∥
∥�α

Sk ,Sk, j
( f )

∥
∥
∥

α

p

≤ 2−cj N‖�G ‖p−α
L p→L p . (3.13)

Combining (3.10), (3.11), (3.12) and (3.13), we will get

‖�G ‖α
L p→L p �

∞∑

j=0

min{‖MS‖α
L p→L p , N2−cj }.

Since ‖MS‖L p→L p ≥ 1, for an appropriate choice of a constant c′ > 0 we obtain

‖�G ‖α
L p→L p ≤ c′ log N‖MS‖α

L p→L p +
∞∑

j=c′ log N
N2−cj

≤ c′ log N‖MS‖α
L p→L p + 1

� log N‖MS‖α
L p→L p .

Taking into account the definition of α, this completes the proof of (2.6). ��

4 Extensions

The logarithmic gains in the main theorem are sharp, in general. Indeed, it is enough to show
the optimality of logarithm in (2.12). The function f is taken to be identically one on a large
cube Q ⊂ R

n . For each k = 1, 2, . . . , N , it is very easy to construct a sparse operator �Sk

based on a sparse collection of cubes Sk so that {�Sk f > c log N }will have measure at least
|Q|/N . These sets can be made to be essentially statistically independent, so that one sees
that the logarithmic bound is sharp in (2.12). A careful examination of the same argument
can show also the sharpness of the estimates (2.16) and (2.17), in general.

The papers [6,7] prove a variety of results for TV defined as a maximum of a fixed
Hormander-Mihklin multiplier computed in directions v ∈ V . Their estimates are slightly
better than ours in Corollary 1.2. This raises two questions:

Question 4.1 First, if one fixes the specific sparse operator computed in every direction, can
bounds be proved that match those of say [7]?

This paper [7] proves results for themaximal truncations of theHilbert transformcomputed
in different directions. Again, their bounds are better than ours.

Question 4.2 Can one formulate a maximal sparse operator which is less general than ours,
but still general enough to capture these results for maximal truncations of the Hilbert
transform?

Recent papers [17,18] have established variants of these results in higher dimensions.
Other papers [8,9] consider certain Lipschitz versions. It would be interesting to study the
analogous questions for both themes.
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