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Abstract
We prove Menshov type “correction” theorems for sequences of compact operators,
recovering several results of Fourier series in trigonometric and Walsh systems. The
paper clarifies the main ingredient that is important in the study of such “correction”
theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator
functions of some specific sets.
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1 Introduction

The modifications of functions in order to improve convergence properties of their
Fourier series is an old issue in Fourier analysis. A well-known modification method
is the change of function values on a set of small measure. Menshov’s two classical
theorems ([14,15], see also [1]) were crucial in this study.

Theorem A (Menshov [14]) For any continuous function f ∈ C(T) and ε > 0, there
is a function g ∈ C(T) whose trigonometric Fourier series is uniformly convergent
and |{ f (x) �= g(x)}| < ε.

Observe that in the statement of this theorem, the initial function f can be equivalently
taken to be an arbitrary finite-valued measurable function, and this follows from the
well-known theorem of Luzin on continuous modification of measurable functions.
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Besides, one can see that in this theorem the modification set { f �= g} depends on the
initial function. In the next theorem of Menshov, the initial function is modified on a
given everywhere dense open set, but the resulting Fourier series is almost everywhere
convergent instead of uniformly convergent.

Theorem B (Menshov [15]) Let f ∈ L1(T) and G ⊂ T be an everywhere dense open
set. Then there is a function g ∈ L1(T) with an a.e. convergent Fourier series such
that {g(x) �= f (x)} ⊂ G.

An elegant proof of Theorem A was given by Olevskii in [16], where one can also
find a nice reviewof someother related results. Extensions of TheoremA forWalsh and
other multiplicative systems were proved in the papers [2,10,13]. The papers [11] and
[12] consider the analogue of Theorem A for trigonometric and general orthonormal
matrices.

It is well known that one cannot claim L1-norm convergence in Theorem B instead
of a.e. convergence. Nevertheless, Grigoryan [5] proved the existence of an open set
G of small measure serving as a correction set for L1-convergence of Fourier series.
Namely:

Theorem C (Grigoryan [5]) For any ε > 0 there exists an open set Gε ⊂ (T) with
|Gε| < ε such that for any f ∈ L1(T) one can find a function g ∈ L1(T) whose
Fourier series converges in L1-norm and {g(x) �= f (x)} ⊂ G.

Note that the full statement of this theorem in [5] provides also some control on the
Fourier coefficients of the resulting function g. Grigoryan [6] extended the result of
Theorem C for complete orthonormal systems of bounded functions. The following
result of Grigoryan–Navasardyan is a version of Theorem C for Walsh systems.

Theorem D (Grigoryan and Navasardyan [9]) For any ε > 0 there exists an open set
Gε ⊂ [0, 1] with |Gε| < ε such that for any f ∈ L1[0, 1] one can find a function
g ∈ L1[0, 1] whose Walsh–Fourier series converges in L1-norm, {g(x) �= f (x)} ⊂
Gε, and the sequence of absolute values of the Fourier-Walsh coefficients of g is
decreasing.

A likewise problem for almost everywhere convergence with a weaker monotonicity
condition on the Fourier coefficients was considered in [7] (see also [4]). That is:

Theorem E (Grigoryan [7]) For any ε > 0 there exists an open set Gε ⊂ [0, 1] with
|Gε| < ε such that for any f ∈ L1[0, 1] one can find a function g ∈ L1[0, 1] whose
Walsh–Fourier series is a.e. convergent, {g(x) �= f (x)} ⊂ Gε, and the sequence of
absolute values of nonzero Fourier–Walsh coefficients of g is decreasing.

Grigoryan–Sargsyan [8] recently proved the analogue ofTheoremE for theVilenkin
systems of bounded type.

In this paper, we consider similar problems for sequences of compact operators
with additional properties that are common for the partial sum operators of Fourier
series. To state the main results, we need some definitions and notation. Intervals in
our definitions are the intervals of the form [a, b) ⊂ [0, 1). A set G ⊂ [0, 1) is said
to be a finite-interval set if it is a union of a finite number of intervals. The indicator
function of a set G will be denoted by IG .
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Definition 1 A sequence of functions fn ∈ L1(0, 1) is said to be weakly convergent
to a function f ∈ L1(0, 1) if

lim
n→∞

∫ 1

0
fng =

∫ 1

0
f g

for any g ∈ L∞(0, 1). We denote this relation by fn
w→ f .

Definition 2 Abounded linear operatorU : L1(0, 1) → L1(0, 1) is said to be compact
if ‖U ( fn) −U ( f )‖1 → 0 whenever fn

w→ f .

Definition 3 A countable family I of intervals is said to be a basis if
1) [0, 1) ∈ I,
2) for any � = [a, b) ∈ I, there are infinitely many integers l > 0 such that

[a + |�|( j − 1)/l, a + |�| j/l) ∈ I, j = 1, 2, . . . , l.

For a sequence of bounded linear operators

Un : L1(0, 1) → L∞(0, 1), n = 1, 2, . . . , (1.1)

we write

U∗ f (x) = sup
n

|Un f (x)|.

We shall consider operator sequences (1.1) satisfying the following properties, where
1 < p < ∞:

(A) each Un is a compact operator,
(B) ‖Un( f ) − f ‖p → 0 as n → ∞ for every f ∈ L p,
(C) Un(IG) converges almost everywhere for any interval G,
(D) for any 0 < ε < 1, there is a sequence of finite-interval setsGl = Gl(ε) ⊂ [0, 1),

l = 1, 2, . . . , such that

αε ≤ |Gl | ≤ ε, (1.2)

|Gl |−1 · IGl

w→ I[0,1) as l → ∞, (1.3)

and there is a basis I such that for any � ∈ I and λ > 0, we have

λ · |{U∗(IGl∩�) > λ}| ≤ β · |Gl ∩ �|, l = 1, 2, . . . , (1.4)

where 0 < α < 1 , β > 0 are constants depending only on Un .

Theorem 1 Let anoperator sequenceUn : L1(0, 1) → L∞(0, 1) satisfy the properties
(A), (B) and ε > 0. Then there is an open set Gε ⊂ (0, 1) such that |Gε| < ε and for
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every function f ∈ L1(0, 1) one can find a g ∈ L1(0, 1) with { f (x) �= g(x)} ⊂ G
and satisfying

‖Ung − g‖1 → 0.

If Un satisfies also conditions (C) and (D), then we will additionally have

Ung(x) → g(x) almost everywhere.

A slight change in the statement of property (D) allows us to prove the full analogue
of Menshov’s Theorem B for sequences of compact operators. So in the next theorem
instead of property (D) we shall suppose that

(D*) for every 0 < ε < 1 and everywhere dense open set U there is a sequence of
finite-interval sets Gl ⊂ U , l = 1, 2, . . . , such that |Gl | ≤ ε and relations (1.3)
and (1.4) hold.

Theorem 2 Let anoperator sequenceUn : L1(0, 1) → L∞(0, 1) satisfy the properties
(A), (B), (C), and (D*) and U ⊂ [0, 1) be an everywhere dense open set. Then for
every f ∈ L1(0, 1), there is a function g ∈ L1(0, 1) such that g(x) = f (x), x ∈ G,
and

Ung(x) → g(x) almost everywhere.

Corollary 1 Let f ∈ L1[0, 1] and G ⊂ [0, 1] be an everywhere dense open set. Then
there is a function g ∈ L1[0, 1] whose Fourier series with respect to a Walsh system
(in a given bounded type Vilenkin system) converges a.e. and {g(x) �= f (x)} ⊂ G.

Corollary 2 Let {φn ∈ L∞(0, 1) : n = 1, 2, . . .} be a basis in L p(0, 1), 1 < p < ∞,
and ε > 0. Then there exists an open set G ⊂ (0, 1) with |G| < ε such that for
any f ∈ L1(0, 1) one can find a function g ∈ L1(0, 1), whose Fourier series in {φn}
converges in L1-norm and {g(x) �= f (x)} ⊂ G.

It is well known that the partial sum operators of Fourier series in classical orthog-
onal systems satisfy the properties (A), (B) and (C), while the weak-L1-condition
(1.4) is more delicate. We will see in the last section that properties (D) and (D*) are
satisfied for trigonometric, Walsh and for the bounded type Vilenkin systems. The
proof of those properties are based on the corresponding propositions (Propositions 1,
3) showing weak type estimates for the maximal partial sum operators of indicator
functions of “uniformly distributed” finite-interval sets. These results are interesting
in themselves. The trigonometric case is more delicate. These propositions clarify the
main ingredient, which is important in the study of such “correction” theorems.

Hence, Corollary 1 immediately follows from the combination of Theorem 2 and
Proposition 4. Likewise, the combination of Theorem 2 and Proposition 2 implies
Menshov’s Theorem B.

As for Corollary 2, which is the extension of the analogous theorem for complete
orthonormal systems from [6], it immediately follows from Theorem 1.
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Finally, note that Theorem 1 partially implies Theorems C, D, and E as well as
some other results of papers [4,6,8], without claiming the monotonicity conditions of
the Fourier coefficients.

2 Proof of Theorems

Before stating the main lemma, we will need the following:

Remark 1 An example of sets Gl(ε) satisfying (1.2) and (1.3) is very simple. One can
choose

Gl(ε) =
l−1⋃
k=0

[
k

l
,
k + ε

l

)
. (2.1)

Remark 2 If the operatorsUn satisfy properties (A) and (C) and the sequence of finite
interval setsGn satisfy (1.3) and (1.4), thenwewill have the sameweak type inequality
(1.4) for any G ∈ I. Indeed, given λ > 0, using a.e. convergence of Un(IG), one can
find an integer m such that

|{sup
n>m

|Un(IG)| > λ}| < |G|/λ. (2.2)

The compactness of Un and the weak convergence property (1.3) easily yield

|Gk |−1 · |Gk ∩ G| → |G| as k → ∞,∥∥∥Un

(
|Gk |−1 · IGk∩G

)
−Un(IG)

∥∥∥
1

→ 0 as k → ∞.

Thus, applying also (1.4), we get

|{ sup
1≤n≤m

|Un(IG)| > λ}| ≤ lim sup
k→∞

∣∣∣∣∣
{

sup
1≤n≤m

∣∣∣∣Un

(
IGk∩G
|Gk |

)∣∣∣∣ > λ

}∣∣∣∣∣
≤ lim sup

k→∞

∣∣∣∣
{
U∗

(
IGk∩G
|Gk |

)
> λ

}∣∣∣∣
≤ lim sup

k→∞

(
β|Gk |−1|Gk ∩ G|

λ

)
= β|G|

λ
.

Combining (2.2) with this, we will get

|{U∗(IG) > λ}| � |G|/λ.

Here and throughout, the notation a � b will stand for the inequality a ≤ c · b, where
c > 0 is a constant depending only on the parameters of the operator sequenceUn that
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can appear in the statements of properties (A)-(D*). We shall say f is a step function
if it can be written in the form

f (x) =
l∑

k=1

akI�k (x), ak �= 0, k = 1, 2, . . . , l, (2.3)

where �k are pairwise disjoint intervals, and we say it is a I-step function if each �k

is from a given basis I.

Lemma 1 Let a sequence of bounded linear operators (1.1) satisfy conditions (A) and
(B). Then for any choice of numbers 0 < ε, η < 1 and a step function f (x), there is
a step function g(x) such that

|{g(x) �= f (x)}| ≤ ε, (2.4)

‖Un(g)‖1 � ‖g‖1 ≤ 2‖ f ‖1, n = 1, 2, . . . . (2.5)

If in addition Un satisfies (C) and (D) and f is a I-step function, then we will also
have

t · |{U∗(g) > t}| � ‖ f ‖1, η < t < 1. (2.6)

Proof First we shall prove the basic part of the lemma, supposing that all conditions
(A), (B), (C), and (D) hold simultaneously. Hence, let f (x) be a I-step function of
the form (2.3). By the definition of I, each interval from I can be split into smaller
intervals from I. Thus we can suppose that all �k in (2.3) satisfy

�k ∈ I, |�k | < δ, k = 1, 2, . . . , l, (2.7)

where δ > 0 can be arbitrarily small. Choose a sequence of finite-interval sets Gm

satisfying the conditions of property (D) corresponding to a number ε/2. Using weak
convergence property (1.3), we have |Gm∩�k |/|Gm | → |�k | for any k = 1, 2, . . . , l.
Thus, applying (1.2), one can check that the sets G(k)

m = Gm ∩ �k can satisfy the
inequalities

αε

4
|�k | ≤ |G(k)

m | ≤ ε|�k |, m > m0, (2.8)

and we have

λ(k)
m (x) = ak

(
I�k (x) −

|�k | · I
G(k)
m

(x)

|G(k)
m |

)
w→ 0 as m → ∞ (2.9)

for any fixed k, where ak are the coefficients from (2.3). Applying (2.7) and the lower
bound in (2.8), one can easily check that ‖λ(k)

m ‖p � max |ak | · (δ/ε p−1)1/p and so we
can fix a smaller enough δ in (2.7) to ensure

‖λ(k)
m ‖p ≤ ‖ f ‖1, k,m = 1, 2, . . . . (2.10)
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Using (1.4) and the remark before the lemma, we conclude

|{U∗(λ(k)
m ) > λ}| ≤ |{U∗(akI�k ) > λ/2}|

+
∣∣∣∣∣
{
U∗

(
ak |�k | · I

G(k)
m

(x)

|G(k)
m |

)
> λ/2

}∣∣∣∣∣
� |ak ||�k |

λ
+ |ak ||�k ||G(k)

m |
λ|G(k)

m |
� |ak ||�k |

λ
. (2.11)

For any number ξ > 0, one can inductively construct integers 1 ≤ N1 < · · · < Nl

and 1 ≤ m1 < m2 < · · · < ml such that

∥∥∥Un

(
λ

( j)
m j

)
− λ

( j)
m j

∥∥∥
1

< ξ, n ≥ N j , 1 ≤ j ≤ l, (2.12)∣∣∣∣∣
{

sup
m≥N j

|Um(λ
( j)
m j ) − λ

( j)
m j | >

η

4l

}∣∣∣∣∣ < ξ, 1 ≤ j ≤ l, (2.13)

∥∥∥Un

(
λ

( j)
m j

)∥∥∥
1

<
ξ

N j−1
, n ≤ N j−1, 2 ≤ j ≤ l, (2.14)

and those are constructed in the order m1, N1,m2, N2, . . . ,ml , Nl . For (2.12) the
property (B) is used, while (2.13) follows from a.e. convergence property (C). The
inequality (2.14) is based on the compactness of operators Un combined with (2.9).
We define the desired function by

g(x) =
l∑

j=1

λ
( j)
m j (x),

choosing ξ to be a small enough number. From (2.8) and (2.9), we immediately get

‖g‖1 ≤ 2‖ f ‖1, |{g(x) �= f (x)}| =
l∑

j=1

|G( j)
m j | ≤ ε. (2.15)

For our further convenience, we set N0 = 0, Nl+1 = ∞, λ
(l+1)
ml+1 ≡ 0, and assume∑b

a = 0 whenever a > b. Applying the Banach–Steinhaus theorem, from property
(B) we get ‖Un‖L p→L p ≤ M and so by (2.10),

∥∥∥Un

(
λ

( j)
m j

)∥∥∥
1

≤
∥∥∥Un

(
λ

( j)
m j

)∥∥∥
p

≤ M‖λ( j)
m j ‖p � ‖ f ‖1. (2.16)

Then, using also (2.12), (2.14), and (2.15), for

Nk−1 < n ≤ Nk, k = 1, 2, . . . , l + 1 (2.17)
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and for a small enough ξ (ξ < ‖ f ‖1/l), we conclude

‖Un(g)‖1 ≤
∥∥∥∥∥∥
k−1∑
j=1

Un

(
λ

( j)
m j

)∥∥∥∥∥∥
1

+
∥∥∥∥∥∥

l∑
j=k

Un

(
λ

( j)
m j

)∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥
k−1∑
j=1

λ
( j)
m j

∥∥∥∥∥∥
1

+
k−1∑
j=1

∥∥∥Un

(
λ

( j)
m j

)
− λ

( j)
m j

∥∥∥
1

+
l∑

j=k+1

∥∥∥Un

(
λ

( j)
m j

)∥∥∥
1
+

∥∥∥Un

(
λ(k)
mk

)∥∥∥
1

� ‖g‖1 + lξ + lξ

Nk
+ ‖ f ‖1

≤ 4‖ f ‖1, (2.18)

which implies (2.5). To prove (2.6) we let n be an arbitrary positive integer and let it
satisfy (2.17). We have

|Un(g)| ≤
l∑

j=1

∣∣∣Un

(
λ

( j)
m j

)∣∣∣

≤
k−1∑
j=1

∣∣∣λ( j)
m j

∣∣∣ +
k−1∑
j=1

∣∣∣Un

(
λ

( j)
m j

)
− λ

( j)
m j

∣∣∣ +
l∑

j=k+1

∣∣∣Un

(
λ

( j)
m j

)∣∣∣ +
∣∣∣Un

(
λ(k)
mk

)∣∣∣

≤ |g(x)| +
l∑

j=1

sup
m≥N j

∣∣∣Um(λ
( j)
m j ) − λ

( j)
m j

∣∣∣

+
l−1∑
s=1

l∑
j=s+1

Ns∑
m=Ns−1+1

∣∣∣Um

(
λ

( j)
m j

)∣∣∣ + sup
1≤ j≤l

U∗ (
λ

( j)
m j

)

= A1 + A2 + A3 + A4.

Observe that each of the functions Ai , i = 1, 2, 3, 4, is independent of n, and so we
can write

U∗g(x) ≤ A1(x) + A2(x) + A3(x) + A4(x). (2.19)

For A1 = |g|, we write Chebyshev’s inequality

|{x ∈ (0, 1) : A1(x) > t/4}| � ‖g‖1
t

≤ 2‖ f ‖1
t

, t > 0. (2.20)
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Then, applying (2.13), for t > η and a small enough ξ (ξ < ‖ f ‖1/l), we get

|{x ∈ (0, 1) : A2(x) > t/4}| ≤ |{x ∈ (0, 1) : A2(x) > η/4}|
≤ l · ξ ≤ ‖ f ‖1, t > η. (2.21)

From (2.14) with ξ < ‖ f ‖1/l2, it follows that

‖A3‖1 ≤ l2 · (Ns − Ns−1) · ξ

Ns
≤ ‖ f ‖1,

and then, again writing Chebyshev’s inequality, we will get

|{x ∈ (0, 1) : A3(x) > t/4}| � ‖ f ‖1
t

, t > 0. (2.22)

Applying (2.11) we obtain

|{A4(x) > t/4}|}| ≤
l∑

j=1

|{U∗ (
λ

( j)
m j

)
> t/4}|

�
l∑

j=1

|a j ||� j |
t

= ‖ f ‖1
t

. (2.23)

Combining (2.19), (2.20), (2.21), (2.22), and (2.23), we obtain (2.6), which completes
the proof of the basic part of the lemma.

Now suppose that only properties (A) and (B) hold and f is an arbitrary step
function. So the lemma claims to find a function g satisfying (2.4) and (2.5). To do
it we need to review once again the proof of the basic part of the lemma with slight
changes described below. As before, we shall consider the step function (2.3), where
�k , k = 1, 2, . . . , l are arbitrary intervals satisfying (2.7) for small enough δ, but the
sets G(k)

m should be defined differently, that is

G(k)
m = Gm(ε) ∩ �k,

where Gm(ε) is the set defined in (2.1). This gives a slight change in the definition of
the function g, but g will still satisfy (2.4) and (2.5). To proceed with the proof, one
needs to omit inequalities (2.11) and (2.13) obtained from conditions (C) and (D) and
neglect the part of the proof concerning the bound (2.6). �
Proof of Theorem 1 Let fk(x), k = 1, 2, . . ., be a sequence of step functions that is
everywhere dense in L1(0, 1). In the case of extra conditions of the theorem, we take
fk to be a I-step function, where I is the basis from the statement of condition (D).
Existence of a such a sequence follows from the properties of basis I. Applying the
lemma for εk = ε · 2−k and ηk = 4−k , we find a sequence of step functions gk(x) and
sets Ek ⊂ (0, 1) such that
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|{ fk(x) �= gk(x)}| < ε · 2−k, (2.24)

‖Ungk‖1 � ‖gk‖1 � ‖ fk‖1, n = 1, 2, . . . , (2.25)

|{U∗gk(x) > t}| � ‖ fk‖1
t

, t > 4−k, (2.26)

where the last inequality holds in the case of extra conditions, and it will only be used
in the proof of a.e. convergence. Using (2.24), we can fix an open set G such that
|G| < ε and

⋃
k≥1

{ fk(x) �= gk(x)} ⊂ G. (2.27)

We claim that G is the desired set that establishes the theorem. Let f ∈ L1(0, 1) be
an arbitrary function. We may suppose that ‖ f ‖1 = 1. One can see that there exists a
subsequence fnk such that

∥∥∥∥∥
n∑

k=1

fnk − f

∥∥∥∥∥
1

→ 0,

‖ fnk‖1 � 4−k, k = 1, 2, . . . . (2.28)

Set

g =
∞∑
k=1

gnk . (2.29)

From (2.25) and (2.28), it follows that

‖gnk‖1 � ‖ fnk‖1 � 4−k, (2.30)

and so the series (2.29) converges in L1. By (2.27) we have { f (x) �= g(x)} ⊂ G.
Since Un is a bounded operator on L1, we have Un(g) = ∑∞

k=1Un(gnk ) in the sense
of L1-convergence. Given δ > 0, we can fix an integer l such that 4−l < δ. Then, by
(2.25) we will have

∞∑
k=l+1

‖Un(gnk )‖1 �
∞∑

k=l+1

‖gnk‖1 � δ. (2.31)

On the other hand, applying property (B), for a bigger enough integer n0, we obtain

l∑
k=1

∥∥Un(gnk ) − gnk
∥∥
1 ≤

l∑
k=1

∥∥Un(gnk ) − gnk
∥∥
p ≤ δ, n ≥ n0. (2.32)
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Hence, from (2.30) and (2.31) for n ≥ n0 we get

‖Un(g) − g‖1 ≤
l∑

k=1

∥∥Un(gnk ) − gnk
∥∥
1 +

∞∑
k=l+1

(∥∥Un(gnk )
∥∥
1 + ∥∥gnk

∥∥
1

)
� δ,

(2.33)

which implies L1 convergence ofUn(g) to g. To prove a.e. convergence, first note that
from property (C) it follows that

lim
n→∞Un

(
m∑

k=1

gnk

)
=

m∑
k=1

gnk a.e. (2.34)

for any fixed m. Given numbers λ > 0, set tk = λ · 2−k−1 and choose m satisfying the
conditions

2−m < λ2 and tk ≥ 4−nk = ηnk , k > m.

In the case of extra conditions (C) and (D), applying (2.26),(2.28), (2.30) and (2.34),
we obtain

∣∣∣∣
{
lim sup
n→∞

|Un(g) − g| > λ

}∣∣∣∣
=

∣∣∣∣∣
{
lim sup
n→∞

∣∣∣∣∣Un

( ∞∑
k=m+1

gnk

)
−

∞∑
k=m+1

gnk

∣∣∣∣∣ > λ

}∣∣∣∣∣

≤
∣∣∣∣∣
{
U∗

( ∞∑
k=m+1

gnk

)
+

∞∑
k=m+1

|gnk | > λ

}∣∣∣∣∣

≤
∣∣∣∣∣
{ ∞∑
k=m+1

U∗ (
gnk

)
> λ/2

}∣∣∣∣∣ +
∣∣∣∣∣
{ ∞∑
k=m+1

|gnk | > λ/2

}∣∣∣∣∣

≤
∞∑

k=m+1

∣∣{U∗ (
gnk

)
> tk

}∣∣ + 2

λ

∞∑
k=m+1

‖gnk‖1

� 1

λ

∞∑
k=m+1

2k · ‖ fnk‖1 + λ

� λ.

Since λ > 0 can be chosen to be arbitrarily small, this immediately implies a.e.
convergence of Un(g) and completes the proof of the theorem. �

The proof of Theorem 2 is based on the following lemma, analogous to Lemma 1.
Instead of hypothesis (D), Lemma 2 uses (D∗) and claims the same properties as
Lemma 1 except the inequality ‖Un(g)‖1 � ‖g‖1.
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Lemma 2 Let U ⊂ [0, 1) be an everywhere dense open set, and let a sequence of
bounded linear operators (1.1) satisfy conditions (A), (B), (C), and (D∗). Then for any
number 0 < η < 1 and a I-step function f (x), there is a step function g(x) such that

{g(x) �= f (x)} ⊂ U ,

‖g‖1 ≤ 2‖ f ‖1, n = 1, 2, . . . ,

t · |{U∗(g) > t}| � ‖ f ‖1, η < t < 1. (2.35)

Proof The proof of this lemma is a literal repetition of the proof of Lemma 1 with
slight changes. Namely, the sets Gm and so G(k)

m should be chosen from a given open
setU , according to property (D∗) instead of (D). So in (2.8) wewill have only an upper
bound for the measures ofG(k)

m , but instead we will have (2.35). Hence the inequalities
(2.10), (2.16), and finally (2.18) will fail; that is why the bound ‖Un(g)‖1 � ‖g‖1
is missing in Lemma 2. None of the mentioned inequalities used in the proofs of the
other relations of Lemma 1 are the same as in Lemma 2. With this we can finish the
proof of Lemma 2. �
Proof of Theorem 2 The proof of Theorem 2 is based on Lemma 2 and reflected in the
proof of Theorem 1. Indeed, instead of (2.24) we will have the condition {gk(x) �=
fk(x)} ⊂ U , which will imply {g(x) �= f (x)} ⊂ U . Besides, the lack of condition
‖Un‖1 � ‖g‖1 in Lemma 2 will only affect the L1-convergence property of operators.
Namely, we will not have the inequalities (2.31), (2.32), and (2.33), but they are not
needed in the proof of a.e. convergence. So the Theorem 2 follows. �

3 Weak Type Estimates and Fourier Series

3.1 Trigonometric System

We shall consider the trigonometric system {e2π inx } on [0, 1). Denote by Sn(x, f ) the
partial sums of Fourier series of a function f , and let

S∗(x, f ) = sup
n≥0

|Sn(x, f )|.

For an interval � = [a, b) ⊂ [0, 1) and an integer l, define the partition

�k = [a + (k − 1)d, a + kd) , d = b − a

l
k = 1, 2, . . . , l.

Set δk = [tk − dε/2, tk + dε/2), where tk = a + (2k − 1)d/2 is the center of �k and
0 < ε < 1, and write

Gl = Gl(�, ε) =
l⋃

k=1

δk . (3.1)
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The following proposition shows a weak-L1 inequality for the indicator functions of
such sets deriving (D) and (D∗) conditions for the partial sum operators of trigono-
metric Fourier series.

Proposition 1 There is an absolute constant c > 0 such that for any set G = Gl(�, ε)

of the form (3.1), the inequality

|{S∗(x, IG) > λ}| ≤ c · |G|
λ

, λ > 0, (3.2)

holds.

Proof of Proposition 1 We shall use the well-known formula

Sn(x, f ) =
∫ 1

0

sin 2πn(x − t)

x − t
f (t)dt + O(‖ f ‖1), (3.3)

where the integral (that is the modified partial sum) will be denoted by S̃n(x, f ). We
also set

S̃∗( f , x) = sup
n≥1

|S̃n(x, f )|.

Using (3.3), one can observe that it is enough to prove (3.2) for S̃∗ instead of S∗. First
let us show (3.2) when G consists of a single interval δ = [α, β). If x ∈ T \ δ̄, then
we have

|S̃n(x, Iδ)| �
∫ β

α

dt

|x − t |
= ln

(
1 + |δ|

dist (x, δ)

)
<

|δ|
dist (x, δ)

, x ∈ T \ δ̄. (3.4)

From the uniform boundedness of the integrals
∫ b
0

sin at
t dt a, b > 0, we can conclude

|S̃n(x, Iδ)| ≤ c, x ∈ δ, (3.5)

where c > 0 is an absolute constant. If λ > c, then from (3.4) and (3.5) we obtain

|{x ∈ T : S̃∗(x, Iδ) > λ}| = |{x ∈ T \ δ : S̃∗(x, Iδ) > λ}|
≤

∣∣∣∣
{
x ∈ T \ δ : |δ|

dist (x, δ)
> λ

}∣∣∣∣ = 2|δ|
λ

.

If 0 < λ ≤ c, then we have

|{x ∈ T : S̃∗(x, Iδ) > λ}| ≤ |δ| + |{x ∈ T \ δ : S̃∗(x, Iδ) > λ}| ≤ (2 + c)|δ|
λ

,
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which completes the proof of (3.2) in the single interval case. Now take an arbitrary
set G of the form (3.1). Without loss of generality, we can suppose ε < 1/3. Using
the structure of G, one can easily check that for x ∈ T \ �̄, we have

|S̃n(x, IG)| �
∫
G

dt

|x − t |
� ε

∫ dist (x,�)+|�|

dist (x,�)

dt

|x − t | ≤ ε|�|
dist (x,�)

= |G|
dist (x,�)

.

Thus we get

|{x ∈ T \ � : S̃∗(x, IG) > λ}|
�

∣∣∣∣
{
x ∈ T \ � : dist (x,�) <

|G|
λ

}∣∣∣∣ � |G|
λ

. (3.6)

If x ∈ �, then we have x ∈ �k(x) for some k(x). We set L = {1, 2, . . . , l}. Splitting
the partial sum integral, we write

S̃n(x, IG) =
∫

δk(x)

sin 2πn(x − t)

x − t
dt +

∑
j∈L: j �=k(x)

∫
δ j

sin 2πn(x − t)

x − t
dt

= un(x) + vn(x). (3.7)

Applying the inequality in the single interval case, we get

|{x ∈ � : sup
n

|un(x)| > λ}| =
l∑

k=1

|{x ∈ �k : sup
n

|un(x)| > λ}|

=
l∑

k=1

|{x ∈ �k : S̃∗(x, Iδk )| > λ}|

� lεd

λ
= |G|

λ
. (3.8)

For the function vn , we have

|vn(x)| ≤
∣∣∣∣∣∣

∑
j∈L: j �=k(x)

∫
δ j

e2π in(x−t)

x − t
dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
j∈L: j �=k(x)

∫
δ j

e−2π int

x − t
dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ εd/2

−εd/2

∑
j∈L: j �=k(x)

e−2π in(t+t j )

x − t − t j
dt

∣∣∣∣∣∣ . (3.9)

123

Author's personal copy



Constructive Approximation (2020) 51:331–352 345

If t ∈ [−εd/2, εd/2], then
∑

j∈L: j �=k(x)

∣∣∣∣ 1

x − t − t j
− 1

tk(x) − t j

∣∣∣∣ �
∑

j∈L: j �=k(x)

d

|tk(x) − t j |2 � 1

d
. (3.10)

Further, one can write the unique decomposition n = m
d + n∗, where m is a positive

integer and n∗ ∈ [−1/2d, 1/2d). By definition, we have t j = a − d/2 + d j , and so
we get

e−2π int j = e−2π i md t j · e−2π in∗t j = e−2π i md (a−d/2) · e−2π im j · e−2π in∗t j

= e−2π i md (a−d/2) · e−2π in∗t j .

From this and (3.10), we obtain

∣∣∣∣∣∣
∑

j∈L: j �=k(x)

e−2π in(t+t j )

x − t − t j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
j∈L: j �=k(x)

e−2π int j

x − t − t j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
j∈L: j �=k(x)

e−2π in∗t j

x − t − t j

∣∣∣∣∣∣

�

∣∣∣∣∣∣
∑

j∈L: j �=k(x)

e−2π in∗t j

tk(x) − t j

∣∣∣∣∣∣ + 1

d

≤
∣∣∣∣∣∣

∑
j∈L: 0<| j−k(x)|≤ν(n)

e−2π in∗t j

tk(x) − t j

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∑
j∈L: | j−k(x)|>ν(n)

e−2π in∗t j

tk(x) − t j

∣∣∣∣∣∣ + 1

d
, (3.11)

where ν(n) = [1/d|n∗|]. For the estimation of the second sum, recall the well-known
inequality

∣∣∣∣∣
m∑

k=0

ake
ikx

∣∣∣∣∣ ≤ a1
| sin(x/2)| ,

which holds whenever a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and 0 < |x | ≤ π . So, using
|n∗| ≤ 1/2d under an additional condition |n∗| > 0, we get

∣∣∣∣∣∣
∑

j∈L: | j−k(x)|>ν(n)

e−2π in∗t j

tk(x) − t j

∣∣∣∣∣∣ ≤ 2

(ν(n) + 1)d
· 1

| sin(πdn∗)|

� d|n∗|
d

· 1

d|n∗| = 1

d
. (3.12)
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The condition |n∗| > 0 is not a restriction, since for a small enough |n∗| in the left
side of (3.12) we will have an empty sum. To estimate the first sum in (3.11), without
loss of generality we can suppose that k(x) ≤ l/2 and write

r = r(x, n) = min{k(x) − 1, ν(n)}.

Observe that { j ∈ Z : 0 < | j − k(x)| ≤ r(x, n)} ⊂ L , and we get

∣∣∣∣∣∣
∑

j∈L: 0<| j−k(x)|≤r(x,n)

e2π in
∗(tk(x)−t j )

tk(x) − t j

∣∣∣∣∣∣

=
∣∣∣∣∣∣
r(x,n)∑
j=1

(
e2π in

∗(tk(x)−tk(x)− j )

tk(x) − tk(x)− j
+ e2π in

∗(tk(x)−tk(x)+ j )

tk(x) − tk(x)+ j

)∣∣∣∣∣∣

=
∣∣∣∣∣∣
r(x,n)∑
j=1

(
e2π in

∗(tk(x)−tk(x)− j )

tk(x) − tk(x)− j
− e−2π in∗(tk(x)−tk(x)− j )

tk(x) − tk(x)− j

)∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
r(x,n)∑
j=1

sin 2πn∗(tk(x) − tk(x)− j )

tk(x) − tk(x)− j

∣∣∣∣∣∣
� r(x, n) · n∗ ≤ ν(n) · n∗ ≤ 1

d
.

Thus we obtain

∣∣∣∣∣∣
∑

j∈L: 0<| j−k(x)|≤ν(n)

e−2π in∗t j

tk(x) − t j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
j∈L: 0<| j−k(x)|≤ν(n)

e2π in
∗(tk(x)−t j )

tk(x) − t j

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑
j∈L: 0<| j−k(x)|≤r(x,n)

e2π in
∗(tk(x)−t j )

tk(x) − t j

∣∣∣∣∣∣
+

∑
j∈L: r(x,n)<| j−k(x)|≤ν(n)

1

|tk(x) − t j |

� 1

d
+ 1

d
· ln min{ν(n), l}

r(x, n) + 1
. (3.13)

Note that in the case ν(n) < k(x), we have r(x, n) = ν(n), so in the last estimate we
will have just 1/d. Combining thiswith (3.9), (3.12), and (3.13),we obtain |vn(x)| � ε.
In the case k(x) ≤ ν(n), we have r(x, n) = k(x)− 1, and so from (3.9) and (3.13) we
get

|vn(x)| � ε + ε · ln l

r(x, n) + 1
≤ ε + ε · ln l

k(x)
= γ (x), (3.14)
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and hence the inequality (3.14) holds for every x ∈ �. Thus, for λ > 2ε with an
appropriate constant c > 0, we have

|{x ∈ � : sup
n

|vn(x)| > c · λ}| � |{x ∈ � : γ (x) > λ}|

�
∣∣∣∣
{
x ∈ � : ε ln

l

k(x)
> λ/2

}∣∣∣∣
=

∣∣∣∣
{
x ∈ � : k(x) <

l

eλ/2ε

}∣∣∣∣
≤

∣∣∣∣
{
x ∈ � : k(x) <

2lε

λ

}∣∣∣∣
� 2lε

λ
· d

= 2|G|
λ

. (3.15)

If λ ≤ 2ε, then we will trivially have

|{x ∈ � : sup
n

|vn(x)| > c · λ} ≤ |�| = |G|
ε

≤ 2|G|
λ

. (3.16)

Combining (3.6), (3.7), and (3.8) with the last estimates (3.15) and (3.16), we deduce
(3.2). �
Proposition 2 The partial sum operators of trigonometric Fourier series satisfy con-
ditions (D) and (D∗).

Proof To show condition (D), we choose I to be the family of all intervals from [0, 1).
From Proposition 1 it follows that the set sequence Gl = Gl([0, 1), ε) (see (3.1))
satisfies condition (D). Now let U be an everywhere dence open set. Observe that for
any l ∈ N there exists a number α such that tk = α+k/l ∈ U for each k = 1, 2, . . . , l.
SinceU is open, for small enough 0 < δ < ε wewill haveGl = ∪l

k=1[tk−δ, tk+δ) ⊂
U . One can easily check that now the sequence Gl satisfies condition (D∗). �

3.2 Walsh andVilenkin Systems

Now consider theWalsh system.We shall use the integral formulas of the partial sums

Sm(x, f ) =
m−1∑
n=0

an( f )wn(x) =
∫ 1

0
Dm(x ⊕ t) f (t)dt,

where

Dm(x) =
m−1∑
k=1

wk(x)
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is the Dirichlet kernel and ⊕ denotes the dyadic summation. We shall suppose that
every function and set on [0, 1) is 1-periodically continued. For a set E ⊂ [0, 1) and
an integer n > 0, we set

E(n) = {x ∈ [0, 1) : nx ∈ E}.

The following properties of the Dirichlet kernel are well known (see [3]):

D2n (x) =
{
2n if x ∈ �

(n)
1 = [0, 2−n),

0 if x ∈ [0, 1) \ �
(n)
1 ,

(3.17)

|Dm(x ⊕ y)| ≤ 1

|x − y| , x, y ∈ [0, 1). (3.18)

Let φ(x) be the function 1/x on [0, 1) periodically continued. Then, from (3.18) (with
y = 0), it immediately follows that

|Dm(2nx)| ≤ φ(2nx), x ∈ [0, 1), m = 1, 2, . . . . (3.19)

We shall consider the dyadic intervals

�
(n)
k =

[
k − 1

2n
,
k

2n

)
, 1 ≤ k ≤ 2n, n = 0, 1, 2, . . . .

Given � = �
(n)
k and integers r > 0 and 1 ≤ t ≤ 2r , define the sequense

Gl(�, r , t) = � ∩ (�
(r)
t (2l)), l = 1, 2, . . . . (3.20)

The following statement is the analogue of Proposition 1 for Walsh systems.

Proposition 3 There is an absolute constant c > 0 such that for any set G =
Gl(�, r , t) of the form (3.20), the inequality

|{S∗(x, IG) > λ}| ≤ c · |G|
λ

, λ > 0, (3.21)

holds.

Proof First observe that�(r)
t (2l) consists of 2l component dyadic intervals.Moreover,

in each �
(l)
j , j = 1, 2, . . . , 2l , there is only one such interval. So in the case n > l,

the sets Gl(�, r , t) may either be empty or consist of a single dyadic interval. In the
first case, the inequality (3.21) is trivial. If G is a dyadic interval, say �

(m)
j , then

Sk(x, IG) =
{
IG(x) if k ≥ 2m,

2−mDk

(
x ⊕ j−1

2m

)
if k < 2m .
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So, according to (3.18) we will have |S∗(x, IG)| ≤ 2−m · |x − ( j − 1)/2m |−1; then

|{S∗(x, IG) > λ}| ≤
∣∣∣∣
{
|x − ( j − 1)/2m | <

1

2mλ

}∣∣∣∣ ≤ 2

2mλ
= 2|G|

λ
,

which immediately implies (3.21).
Hence, we can consider the case l ≥ n. Without loss of generality we can suppose

that t = 1 in the definition of the set G. Using (3.20) and (3.17), one can easily check
that

2−nD2n

(
x ⊕ k − 1

2n

)
= I�(x),

and then

IGl (x) = 2−n−r D2r
(
2l · x

)
· D2n

(
x ⊕ k − 1

2n

)
.

Using multiplicative properties of Walsh functions, we get

D2r
(
2l · x

)
=

2r−1∑
j=0

w j

(
2l · x

)
=

2r−1∑
j=0

w j ·2l (x) ,

D2n

(
x ⊕ k − 1

2n

)
=

2n−1∑
i=0

wi

(
x ⊕ k − 1

2n

)
=

2n−1∑
i=0

wi

(
k − 1

2n

)
· wi (x) .

Thus we get

IGl (x) = 2−n−r
2r−1∑
j=0

2n−1∑
i=0

wi

(
k − 1

2n

)
w j ·2l+i (x) . (3.22)

For the spectrums of Walsh polynomials from (3.22), we have

spec

⎛
⎝2n−1∑

i=0

wi

(
k − 1

2n

)
w j ·2l+i (x)

⎞
⎠

= { j · 2l , j · 2l + 1, . . . , j · 2l + 2n − 1},

and so they are increasing with respect to j , since we have l ≥ n. So for a given
integer m, each of those spectrums is either wholly or partially included in [0,m].
Moreover, at most one of them can be partially included. Using this observation, the
m’th partial sum of IGl can be split into two sums, collecting the indexes of wholly
included spectrums in the first sum and the rest in the second sum. Namely, for some
integers 0 ≤ p < 2r , 0 ≤ q ≤ 2n , depending on m, we will have
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Sm(x, IGl ) = 2−n−r
p−1∑
j=0

2n−1∑
i=0

wi

(
k − 1

2n

)
w j ·2l+i (x)

+ 2−n−r
q−1∑
i=0

wi

(
k − 1

2n

)
wp·2l+i (x)

= 2−n−r Dp

(
2l · x

)
· D2n

(
x ⊕ k − 1

2n

)

+ 2−n−r · wp·2l (x)
q−1∑
i=0

wi

(
x ⊕ k − 1

2n

)
,

= 2−n−r Dp

(
2l · x

)
· D2n

(
x ⊕ k − 1

2n

)

+ 2−n−r · wp·2l (x)Dq

(
x ⊕ k − 1

2n

)
,

where we assume
∑b

a = 0 wherever a > b. So, applying (3.19) and (3.17), we can
say

|Sm(x, IGl )| ≤ 2−r · I�(x) ·
∣∣∣Dp

(
2l · x

)∣∣∣
+ 2−n−r ·

∣∣∣∣Dq

(
x ⊕ k − 1

2n

)∣∣∣∣
� 2−r I�(x)φ(2l · x) + 1

2n+r |x − (k − 1)/2n|
= A(x) + B(x), (3.23)

where A(x) and B(x) are independent of m. According to the definition of function
φ and condition l ≥ n, we have

|{x ∈ [0, 1) : A(x) > λ}|
= |{x ∈ � : φ(2l x) > 2rλ}| = |�|

2rλ
= |Gl |

λ
. (3.24)

To estimate B(x), we write

|{x ∈ [0, 1) : B(x) > λ}| =
∣∣∣∣
{
|x − (k − 1)/2n| <

1

2n+rλ

}∣∣∣∣
≤ 2

2n+rλ
= 2|Gl |

λ
. (3.25)

Combining (3.23), (3.24), and (3.25), we get (3.21). �
As in the trigonometric case, Proposition 3 implies

123

Author's personal copy



Constructive Approximation (2020) 51:331–352 351

Proposition 4 The partial sum operators of Walsh series satisfy conditions (D) and
(D∗).

Proof We chose I to be the family of all intervals from [0, 1). From Proposition 3
it follows that the sequence of sets Gl = Gl([0, 1), r , 1) defined in (3.20) and with
r = [log2(1/ε)] + 1 satisfies condition (D).

If U is an everywhere dense open set, then for any integer l > 0, we find a point
x ∈ [0, 2−l) such that V = {x + j2−l : j = 0, 1, . . . , 2l − 1} ⊂ U . Obviously,
for any r one can find 1 ≤ t ≤ 2r such that V ⊂ �

(r)
t (2l). Thus, for a large enough

integer r , satisfying also r < log2(1/ε), we can have Gl = �
(r)
t (2l) ⊂ U . On the

other hand, for any dyadic interval � = �
(n)
k we have (see (3.20))

Gl ∩ � = Gl(�, r , t) = � ∩ �
(r)
t (2l).

So, according to Proposition 3, these sets satisfy the weak inequality (1.4), and so we
will have condition (D∗). �

Remark 3 Analogously, weak type estimate (3.21) and so properties (D) and (D∗) can
be proved also for general Vilenkin systems of bounded type. For the sake of simplicity
we considered only the Walsh system case.

Acknowledgements I am grateful to the referee for useful remarks and corrections.
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