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1. INTRODUCTION

In this paper, we consider interpolations by the modified trigonometric system

H = {cos πnx : n ∈ Z+} ∪ {sin π(n − 1
2)x : n ∈ N}. (1.1)

The set H is an orthonormal basis of L2[−1, 1], as it consists of eigenfunctions of the Sturm-Liouville
operator L = −d2/dx2 with Neumann boundary conditions u′(1) = u′(−1) = 0. Both, the orthogonality
and density in L2[−1, 1] follow from the classical spectral theory ([1]).

The basis was originally proposed by Krein [2] without investigation of its properties. Expansions
by the modified trigonometric system were investigated in a series of papers [3] – [12]. We denote by
MN (f, x) the truncated modified Fourier series

MN (f, x) =
1
2
f c
0 +

N∑

n=1

[f c
n cos πnx + f s

n sin π(n − 1
2)x], (1.2)

where

f c
n =

∫ 1

−1
f(x) cos πnxdx, f s

n =
∫ 1

−1
f(x) sin π(n − 1

2)xdx. (1.3)

It is easy to verify that the modified trigonometric system can be written also in the form H = {ϕn(x) :
n ∈ Z+}, where

ϕ0(x) =
1√
2
, ϕn(x) =

1
2

(
(−1)ne

iπnx
2 + e−

iπnx
2

)
, n ∈ N. (1.4)

The truncated modified Fourier series can be rewritten more compactly

MN (f, x) =
2N∑

n=0

fm
n ϕn(x), (1.5)
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where

fm
n =

∫ 1

−1
f(x)ϕn(x)dx. (1.6)

It follows from (1.2) and (1.3) that expansions by the modified trigonometric system for even functions
on [−1, 1] coincide with the expansions by the classical trigonometric system

Hclass = {cos πnx : n ∈ Z+} ∪ {sin πnx : n ∈ N}, x ∈ [−1, 1]. (1.7)

Moreover, the modified trigonometric system can be derived from the other classical basis H∗ on [0, 1]

H∗ = {cos πnx : n ∈ Z+}, x ∈ [0, 1] (1.8)

by means of a change of a variable.
Expansions by the modified trigonometric system have better convergence properties for smooth odd

functions on [−1, 1] compared to the classical expansions, as coefficients f s
n tend to zero with higher

order O(n−2), n → ∞ than the classical coefficients corresponding to sin πnx.

Theorem 1.1. [6, 7] Assume f ∈ C2q+2(−1, 1), f (2q+2) ∈ BV [−1, 1], q ≥ 0 and f obeys the first q

odd derivative conditions f (2r+1)(±1) = 0, r = 0, . . . , q − 1. Then, if |x| < 1,

f(x) −MN (f, x) = O(N−2q−2), N → ∞,

otherwise,

f(±1) −MN (f,±1) = O(N−2q−1), N → ∞.

Theorem 1.2. [6, 11] Assume f ∈ C2q+1(−1, 1), f (2q+1) ∈ BV [−1, 1], q ≥ 0 and f obeys the first q

odd derivative conditions f (2r+1)(±1) = 0, r = 0, . . . , q − 1. Then,

||f(x) −MN (f, x)||L2 = O(N−2q− 3
2 ), N → ∞.

We see that the conditions

f (2r+1)(±1) = 0, r = 0, . . . , q − 1 (1.9)

are crucial for convergence properties of the expansions by the modified trigonometric system. If
a function doesn’t obey those derivative conditions, then, application of a well-known polynomial
subtraction method (see [13]-[16]) will correct the derivatives at the endpoints x = ±1. More specifically,
let f ∈ C2q−1[−1, 1] and denote

B2k+1(f) =
(
f (2k+1)(1) + f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q − 1, (1.10)

A2k+1(f) =
(
f (2k+1)(1) − f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q − 1. (1.11)

Assume that even polynomials Pk(x) and odd polynomials Qk(x), k = 0, . . . , q − 1 satisfy the following
conditions (see [16])

A2k+1(Pj(x)) = δk,j, B2k+1(Qj(x)) = δk,j, 0 ≤ k, j ≤ q − 1. (1.12)

The first few polynomials are

P0(x) =
1
4
x2, P1(x) =

1
48

x2(x2 − 2), Q0(x) =
1
2
x, Q1(x) =

1
12

x(x2 − 3).

Let F be defined as follows

F (x) = f(x) −
q−1∑

k=0

A2k+1(f)Pk(x) −
q−1∑

k=0

B2k+1(f)Qk(x). (1.13)
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Then, F obeys the first q odd derivative conditions. Now, if we denote

MN,q(f, x) = MN (F, x) +
q−1∑

k=0

A2k+1(f)Pk(x) +
q−1∑

k=0

B2k+1(f)Qk(x), (1.14)

Theorems 1.1 and 1.2 will be valid for approximation MN,q(f, x) without derivative conditions if the
exact values of A2k+1 and B2k+1, k = 0, . . . , q − 1 are known. Otherwise, they can be approximated by
a solution of system of linear equations (see [16]).

In this paper, we consider interpolation by the modified trigonometric system and explore its
convergence in different frameworks. We derive exact constants of the asymptotic errors for the L2-
convergence, pointwise convergence on |x| < 1 and at the endpoints x = ±1. Comparison to the inter-
polation with the classical trigonometric system shows better convergence of the modified interpolation
for odd functions in all frameworks.

2. MODIFIED INTERPOLATION

Eigenfunctions defined by (1.4) have important discrete orthogonality properties. Let xk = 2k
2N+1 ,

|k| ≤ N be the uniform grid on [−1, 1]. It is easy to verify that

2
2N + 1

2N∑

n=0

ϕn(xk)ϕn(xs) = δk,s, |k|, |s| ≤ N, (2.1)

and

2
2N + 1

N∑

n=−N

ϕn(xk)ϕm(xk) = δn,m, 0 ≤ m,n ≤ 2N. (2.2)

Hence

IN (f, x) =
2N∑

n=0

f̌m
n ϕn(x), (2.3)

where

f̌m
n =

2
2N + 1

N∑

k=−N

f(xk)ϕn(xk) (2.4)

is exact on the orthonormal basis H and interpolates f ∈ C[−1, 1] on the grid xk, |k| ≤ N .
We call IN (f, x) as interpolation by the modified trigonometric system, or simply, as modified

interpolation. When f is a real-valued function, then the modified interpolation could be rewritten as
follows

IN (f, x) =
N∑

n=0

f̌ c
n cos πnx +

N∑

n=1

f̌ s
n sin π(n − 1

2)x, (2.5)

where

f̌ c
0 =

1
2N + 1

N∑

k=−N

f(xk), f̌ c
n =

2
2N + 1

N∑

k=−N

f(xk) cos πnxk, (2.6)

and

f̌ s
n =

2
2N + 1

N∑

k=−N

f(xk) sin π(n − 1
2)xk. (2.7)

This form should be more convenient for analysis when f is either odd or even on [−1, 1]. Recall that
the modified interpolation for even f coincide with the classical interpolation. Below, we explore the
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properties of the modified interpolation only for odd f on [−1, 1]. Furthermore, the polynomial correction
approach is valid also for the modified interpolation. We write,

IN,q(f, x) =
N∑

n=0

F̌ c
n cos πnx +

N∑

n=1

F̌ s
n sin π(n − 1

2)x +
q−1∑

k=0

A2k+1(f)Pk(x) +
q−1∑

k=0

B2k+1(f)Qk(x),

where

F̌ c
n = f̌ c

n −
q−1∑

k=0

A2k+1(f)P̌ c
n(k), F̌ s

n = f̌ s
n −

q−1∑

k=0

B2k+1(f)Q̌s
n(k).

Here, P̌ c
n(k) and Q̌s

n(k) are the discrete modified Fourier coefficients of Pk(x) and Qk(x), respectively.
Let

RN,q(f, x) = f(x) − IN,q(f, x). (2.8)

The main goal of the paper is investigation of RN,q(f, x) in different frameworks. Section 3 explores
convergence in the L2-norm and Section 4, the pointwise convergence on [−1, 1]. In each case, we
perform comparison with the corresponding results of the interpolations by the classical trigonometric
system

Iclassic
N (f, x) =

N∑

n=−N

f̌neiπnx, (2.9)

where

f̌n =
1

2N + 1

N∑

k=−N

f(xk)e−iπnxk .

3. CONVERGENCE IN THE L2-NORM

In this section, we explore the convergence of the modified interpolation in the L2-norm. The next
lemma establishes connection between the modified discrete and continuous coefficients.

Lemma 3.1. Assume that f ∈ C2[−1, 1] and f ′′ ∈ BV [−1, 1]. Then, the following identity holds

f̌m
n = fm

n +
∞∑

j=1

fm
n+(2N+1)2j + (−1)n

∞∑

j=1

fm
−n+(2N+1)2j , n = 1, . . . 2N. (3.1)

Proof. From the pointwise convergence of the modified Fourier expansion (see Theorem 1.1 with q = 0),
we have

f(x) =
∞∑

j=0

fm
j ϕj(x) =

∞∑

r=0

4N+1∑

j=0

fm
j+2r(2N+1)ϕj+2r(2N+1)(x). (3.2)

Taking into account that ϕj+2r(2N+1)(xk) = ϕj(xk), we write

f̌m
n =

∞∑

r=0

4N+1∑

j=0

fm
j+2r(2N+1)

2
2N + 1

N∑

k=−N

ϕj(xk)ϕn(xk). (3.3)

It is easy to verify that for j = 2N + 1, . . . , 4N + 1

2
2N + 1

N∑

k=−N

ϕj(xk)ϕn(xk) =

{
0 , n = 0
(−1)nδ4N+2−n,j , 1 ≤ n ≤ 2N

(3.4)

This, together with (2.2), completes the proof due to (3.3).
We can rewrite Lemma 3.1 for coefficients f s

n.
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Remark 3.1. Assume that f ∈ C2[−1, 1] and f ′′ ∈ BV [−1, 1]. Then, the following identity holds

f̌ s
n = f s

n +
∑

j �=0

f s
n+(2N+1)j , n = 1, . . . , N. (3.5)

The next theorem describes the convergence in the L2-norm.

Theorem 3.1. Let f be odd function on [−1, 1]. Assume that f ∈ C2q+1[−1, 1] and f (2q+1) ∈
BV [−1, 1], q ≥ 0. Then, the following estimate holds

lim
N→∞

N2q+ 3
2 ||RN,q||L2 = |B2q+1(f)|

√
a(q)

π2q+2
, (3.6)

where

a(q) =
1

4q + 3
+

∫ 1

0

⎛

⎝
∑

s �=0

(−1)s

(2s + x)2q+2

⎞

⎠
2

dx. (3.7)

Proof. We can rewrite RN,q(f, x) for odd f as follows

RN,q(f, x) =
N∑

n=1

(F s
n − F̌ s

n) sin π(n − 1
2)x +

∞∑

n=N+1

F s
n sin π(n − 1

2)x. (3.8)

Due to the orthonormality of the basis functions of H, we get

||RN,q||2L2
=

N∑

n=1

(
F s

n − F̌ s
n

)2 +
∞∑

n=N+1

(F s
n)2 . (3.9)

Taking into account that function F obeys the first q odd derivative conditions (1.9), we derive the
following asymptotic expansion of its modified Fourier coefficients by means of integration by parts

F s
n = B2q+1(f)

(−1)n+1

(π(n − 1
2))2q+2

+ o(n−2q−2). (3.10)

Then, application of Remark 3.1 leads to the following estimate for n = 1, . . . , N

F̌ s
n − F s

n = B2q+1(f)
(−1)n+1

(πN)2q+2

∑

j �=0

(−1)j

(2j + n
N )2q+2

+ o(N−2q−2). (3.11)

Estimates (3.10) and (3.11), together with (3.9), complete the proof.

When q = 0, Theorem 3.1 shows convergence rate O(N− 3
2 ) in the L2-norm. The classical interpo-

lation has convergence rate O(N− 1
2 ) in the L2-norm for odd functions on [−1, 1] (see [17]). Hence, the

improvement is by factor N−1.

4. POINTWISE CONVERGENCE

In this section, we investigate the pointwise convergence of the modified interpolations on |x| < 1
and the endpoints x = ±1. We need some auxiliary estimates for the proof of the main results. We will
frequently use the properties of the following numbers

ωp,m =
p∑

s=0

(
p

s

)
(−1)ssm, (4.1)

which are connected with the Stirling numbers of the second kind ([18]). In [15] it was verified that

ωp,m = 0, 0 ≤ m < p, ωp,p = (−1)pp!, ωp,p+1 = (−1)p
p(p + 1)!

2
. (4.2)
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Let c = {cn} be a sequence of complex numbers and by Δp
n(c) denote the following finite differences

Δp
n(c) =

2p∑

s=0

(
2p
s

)
cn+p−s, p ≥ 0. (4.3)

Let

Qn(m) =
(−1)n+1

(π(n − 1
2))2m+2

, Q(m) = {Qn(m)}∞n=1. (4.4)

From (1.13) and asymptotic expansion (3.10), it follows that Qn(m) are the modified Fourier coefficients
of correction polynomial Qm(x). Then, denote Q̌(m) = {Q̌s

n(m)}N
n=1, where Q̌s

n(m) are the discrete
modified coefficients of Qm(x).

Lemma 4.1. For any p ≥ 0 and m ≥ 0 the following estimate holds

Δp
n(Q(m)) =

(−1)n+p+1(2m + 2p + 1)!
(π(n − 1

2))2m+2(n − 1
2)2p(2m + 1)!

+ O(n−2m−2p−3), n → ∞. (4.5)

Proof. From definition of Δp
n(Q(m)), we have

Δp
n(Q(m)) =

2p∑

s=0

(
2p
s

)
Qn+p−s(m) =

(−1)n+p+1

(π(n − 1
2 ))2m+2

2p∑

s=0

(
2p
s

)
(−1)k

(
1 + p−k

n− 1
2

)2m+2

=
(−1)n+p+1

(π(n − 1
2 ))2m+2

∞∑

s=0

(
s + 2m + 1

2m + 1

)
(−1)s

(n − 1
2 )s

s∑

j=0

(
s

j

)
(−1)jps−jω2p,j,

(4.6)

where ω2p,j are defined by (4.1). This completes the proof in view of (4.2).

Lemma 4.2. For any p ≥ 0 and m ≥ 0 the following estimates hold

Δp
n(Q̌(m) − Q(m)) =

(−1)n+p+1(2m + 2p + 1)!
(πN)2m+2N2p(2m + 1)!

∑

j �=0

(−1)j

(2j + n
N )2m+2p+2

+ O(N−2m−2p−3), (4.7)

n = 1, . . . , N , N → ∞.

Proof. According to Remark 3.1, we can write

Δp
n(Q̌(m) − Q(m)) =

∑

j �=0

Δp
n+(2N+1)j (Q(m))

=
(−1)n+p+1

(πN)2m+2

2p∑

k=0

(
2p
k

)
(−1)k

∑

j �=0

(−1)j

(2j + n
N )2m+2

1
(

1 + j+p−k− 1
2

N(2j+
n
N )

)2m+2

=
(−1)n+p

(πN)2m+2

∞∑

t=0

(−1)t

N t

(
2m + 1 + t

2m + 1

) t∑

s=0

(
t

s

)
(−1)sω2p,s

∑

j �=0

(−1)j(p + j − 1
2)t−s

(2j + n
N )2m+2

,

where ω2p,s are defined by (4.1). This completes the proof in view of (4.2).

Lemma 4.3. For any m ≥ 0 the following estimate holds as N → ∞

Δp
N (Q̌(m)) =

(−1)N+p(2m + 2p + 2)!
(πN)2m+2N2p+1(2m + 1)!

∞∑

j=−∞

(−1)j(j − 1
2)

(2j + 1)2m+2p+3
+ O(N−2m−2p−4). (4.8)
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Proof. From Remark 3.1, we have

Δp
N (Q̌(m)) =

∞∑

j=−∞
Δp

N+(2N+1)j(Q(m))

=
(−1)N+p+1

(πN)2m+2

∞∑

t=0

(−1)t

N t

(
2m + 1 + t

2m + 1

) t∑

s=0

(
t

s

)
(−1)sω2p,s

∞∑

j=−∞

(−1)j(p + j − 1
2)t−s

(2j + 1)2m+2
,

where ω2p,s are defined by (4.1). Taking into account that

∞∑

j=−∞

(−1)j

(2j + 1)2m+2
= 0, m = 0, 1, . . . (4.9)

and identities (4.2), we complete the proof.

The next Theorem demonstrates the pointwise convergence of the modified interpolation away from
the endpoints.

Theorem 4.1. Let f be an odd function on [−1, 1]. Assume that f ∈ C2q+3[−1, 1] and f (2q+3) ∈
BV [−1, 1], q ≥ 0. Then, the following estimate holds for |x| < 1

RN,q(f, x) = B2q+1(f)
(−1)N

N2q+3

π|E2q+2|
22q+5(2q + 1)!

sin π(N + 1
2)x

cos2 πx
2

+ o(N−2q−3), N → ∞,

where Ek is the k-th Euler number.

Proof. We put f s
−n = −f s

n+1, f̌ s
−n = −f̌ s

n+1, to rewrite interpolation error (3.8) in a more convenient
form

RN,q(f, x) =
1
2i

N∑

n=−N+1

(
F s

n − F̌ s
n

)
eiπ(n− 1

2
)x +

1
2i

∞∑

n=N+1

F s
neiπ(n− 1

2
)x +

1
2i

−N∑

n=−∞
F s

neiπ(n− 1
2
)x.

We proceed by application of the Abel transformation and derive

RN,q(f, x) =
1

2(1 + cos πx)
(
F̌ s

N+1 sin π(N − 1
2)x − F̌ s

N sinπ(N + 1
2)x

)

+
1

4(1 + cos πx)2
(
Δ1

N+1(F̌
s) sin π(N − 1

2) − Δ1
N (F̌ s) sin π(N + 1

2)
)

+
e−i πx

2

8(1 + cos πx)2

(
N∑

n=1

Δ2
n(F s − F̌ s)eiπnx +

∞∑

n=N+1

Δ2
n(F s)eiπnx

)

+
ei πx

2

8(1 + cos πx)2

( −1∑

n=−N

Δ2
n(F s − F̌ s)eiπnx +

−N−1∑

n=−∞
Δ2

n(F s)eiπnx

)
.

(4.10)

Taking into account the following asymptotic expansion of the modified coefficients

F s
n =

q+1∑

m=q

B2m+1(f)Qn(m) + o(n−2q−4), n → ∞, (4.11)

we get

Δp
n(F s) =

q+1∑

m=q

B2m+1(f)Δp
n(Q(m)) + o(n−2q−4), n → ∞.
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Now, according to Lemma 4.1, we have Δ2
n(F s) = o(n−2q−4), and the infinite sums on the right-hand

side of (4.10) are o(N−2q−3). Again from (4.11), we write

Δ2
n(F̌ s − F s) =

q+1∑

m=q

B2m+1(f)Δ2
n(Q̌(m) − Q(m)) + o(N−2q−4), (4.12)

and from Lemma 4.2, we get

Δ2
n(F s − F̌ s) = o(N−2q−4), n = ±1,±2, . . . ,±N. (4.13)

Hence, the finite sums on the right-hand side of (4.10) are o(N−2q−3).
Lemma 4.3 shows that

Δ1
N (F̌ s) = o(N−2q−3), Δ1

N+1(F̌
s) = o(N−2q−3). (4.14)

All these lead to the following estimate

RN,q(f, x) =
1

4 cos2 πx
2

(
F̌ s

N+1 sin π(N − 1
2)x − F̌ s

N sin π(N + 1
2)x

)
+ o(N−2q−3). (4.15)

According to Lemma 4.3, we get

F̌ s
N = B2q+1(f)

(−1)N (2q + 2)
(πN)2q+2N

∞∑

j=−∞

(−1)j(j − 1
2)

(2j + 1)2m+3
+ o(N−2q−3). (4.16)

From the other side

F̌ s
N+1 =

2
2N + 1

N∑

k=−N

f(xk) sin πk = 0. (4.17)

Hence,

RN,q(f, x) = B2q+1(f)
(−1)N+1(q + 1)
2π2q+2N2q+3

sin π(N + 1
2)x

cos2 πx
2

+∞∑

j=−∞

(−1)j(j − 1
2)

(2j + 1)2q+3
+ o(N−2q−3),

which completes the proof.

When q = 0, Theorem 4.1 implies the convergence rate O(N−3) as N → ∞ for an odd function.
The classical interpolation (see [17]) has convergence rate O(N−1) for the grid xk = 2k/2N + 1 and
convergence rate O(N−2) for the optimal grid xk = (2k ± 1)/2N + 1. Hence, improvement is by factor
O(N) as N → ∞.

Next theorem explores the convergence of the modified interpolations at the endpoints x = ±1.

Theorem 4.2. Let f be an odd function on [−1, 1]. Assume that f ∈ C2q+2[−1, 1] and f (2q+2) ∈
BV [−1, 1], q ≥ 0. Then, the following estimate holds

RN,q(f,±1) = ±B2q+1(f)
(−1)N+1

N2q+1

|E2q|
22q+1π(2q + 1)!

+ o(N−2q−1), N → ∞,

where Ek is the k-th Euler number.

Proof. We use (3.8) and get

RN,q(f,±1) =
N∑

n=1

(F s
n − F̌ s

n)(−1)n+1 +
∞∑

n=N+1

F s
n(−1)n+1. (4.18)

Taking into account the following asymptotic expansion of the modified Fourier coefficients

F s
n = B2q+1(f)Qn(q) + o(n−2q−2), n → ∞, (4.19)
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and applying Remark 3.1, for n = 1, . . . , N and N → ∞ we get

F̌ s
n − F s

n =
B2q+1(f)(−1)n+1

(πN)2q+2

∑

j �=0

(−1)j
1

(2j + n
N )2q+2

+ o(N−2q−2). (4.20)

Equation (4.18), together with (4.19) and (4.20), implies

RN,q(f,±1) = ±B2q+1(f)
(−1)N

π2q+2N2q+1

⎛

⎝ 1
2q + 1

−
∫ 1

0

∑

j �=0

(−1)j

(2j + x)2q+2
dx

⎞

⎠ + o(N−2q−1),

which completes the proof.
When q = 0, Theorem 4.2 shows convergence rate O(1/N). In this case, as f(1) 	= f(−1), the

classical interpolation doesn’t converge at the endpoints. Hence, the modified interpolations have better
convergence rate at the endpoints and the improvement is by factor O(N).
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