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We introduce a procedure for convergence acceleration of the quasi-periodic trigonometric interpolation by application of rational
corrections which leads to quasi-periodic-rational trigonometric interpolation. Rational corrections contain unknown parameters
whose determination is important for realization of interpolation. We investigate the pointwise convergence of the resultant
interpolation for special choice of the unknown parameters and derive the exact constants of the main terms of asymptotic errors.

1. Introduction

The quasi-periodic (QP) interpolation 𝐼
𝑁,𝑚

(𝑓, 𝑥), 𝑚 ≥ 0

(𝑚 is integer) and 𝑥 ∈ [−1, 1], interpolates function 𝑓 on
equidistant grid

𝑥
𝑘
=
𝑘

𝑁
, |𝑘| ≤ 𝑁 (1)

and is exact for a quasi-periodic function

𝑒
𝑖𝜋𝑛𝜎𝑥

, |𝑛| ≤ 𝑁, 𝜎 =
2𝑁

2𝑁 + 𝑚 + 1
(2)

with period 2/𝜎 which tends to 2 as𝑁 → ∞.
The idea of the QP interpolation is introduced in [1, 2]

where it is investigated based on the results of numerical
experiments. Explicit representation of the interpolation is
derived in [3–5]. There, the convergence of the interpolation
is considered in the framework of the 𝐿

2
(−1, 1)-norm and at

the endpoints𝑥 = ±1 in terms of the limit function. Pointwise
convergence in the interval (−1, 1) is explored in [6]. The
main results there, which we need for further comparison,
are the following theorems.

Let

𝐴
𝑠𝑘
(𝑓) = 𝑓

(𝑘)
(1) − (−1)

𝑘+𝑠
𝑓
(𝑘)
(−1) , 𝑘 = 0, . . . , 𝑞,

Φ
𝑘,𝑚

(𝑒
𝑖𝜋𝑥
) = 𝑒
(𝑖𝜋/2)(𝑚−1)𝑥

∞

∑

𝑟=−∞

(−1)
𝑟(𝑚+1)

(2𝑟 + 𝑥)
𝑘+1

.

(3)

We denote by𝑅
𝑁,𝑚

(𝑓, 𝑥) the error of theQP interpolation
as follows:

𝑅
𝑁,𝑚

(𝑓, 𝑥) = 𝑓 (𝑥) − 𝐼𝑁,𝑚 (𝑓, 𝑥) . (4)

Theorem 1 (see [6]). Let𝑓(𝑞+2𝑚) ∈ 𝐴𝐶[−1, 1] for some𝑚 ≥ 1,
𝑞 ≥ 0, and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (5)
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Then, the following estimate holds for |𝑥| < 1 as𝑁 → ∞:

𝑅
𝑁,𝑚

(𝑓, 𝑥) = 𝐶
𝑞,𝑚

(𝑓)
(−1)
𝑁

𝑁𝑞+𝑚+1

× [sin (𝜋 (𝑁 + 1) 𝜎𝑥)

[𝑚/2]

∑

𝑘=0

(
𝑚 − 𝑘

𝑘
)

×
(−1)
𝑘

22𝑘+1cos2𝑘+2 (𝜋𝑥/2)
− sin (𝜋𝑁𝜎𝑥)

×

[𝑚/2]−1

∑

𝑘=0

(
𝑚 − 𝑘 − 2

𝑘
)

×
(−1)
𝑘

22𝑘+3cos2𝑘+4 (𝜋𝑥/2)
] + 𝑜 (𝑁

−𝑞−𝑚−1
) ,

(6)

where

𝐶
𝑞,𝑚

(𝑓) =

𝑞

∑

𝑘=0

𝐴
𝑘𝑞
(𝑓) (𝑚 + 1)

𝑞−𝑘

2𝑞−𝑘+1𝑖𝑘−1𝜋𝑘−𝑚+1 (𝑞 − 𝑘)!
Φ
(𝑚)

𝑘,𝑚
(−1) . (7)

Theorem 2 (see [6]). Let 𝑓(𝑞+1) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0

and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (8)

Then, the following estimate holds for |𝑥| < 1 as𝑁 → ∞:

𝑅
𝑁,0

(𝑓, 𝑥) = 𝐴
0𝑞
(𝑓)

(−1)
𝑁

2𝑞+1𝑁𝑞+1

sin (𝜋𝑁𝑥)
cos (𝜋𝑥/2)

×

[𝑞/2]

∑

𝑘=0

(−1)
𝑘
2
2𝑘

(𝑞 − 2𝑘)!𝜋2𝑘+1

∞

∑

𝑠=−∞

(−1)
𝑠

(2𝑠 + 1)
2𝑘+1

+ 𝑜 (𝑁
−𝑞−1

) .

(9)

In the current paper, we consider convergence accel-
eration of the QP interpolation by rational corrections in
terms of 𝑒𝑖𝜋𝜎𝑥 which leads to quasi-periodic-rational (QPR)
interpolation. We investigate the pointwise convergence of
the QPR interpolation in the interval (−1, 1) and derive
the exact constants of the main terms of asymptotic errors.
Comparison with Theorems 1 and 2 shows the accelerated
convergence for smooth functions. Some results of this
research are reported also in [7].

More specifically, the QP interpolation can be realized by
the following formula:

𝐼
𝑁,𝑚

(𝑓, 𝑥) =

𝑁

∑

𝑛=−𝑁

𝐹
𝑛,𝑚
𝑒
𝑖𝜋𝑛𝜎𝑥

, 𝑚 ∈ 𝑍, 𝑚 ≥ 0, (10)

where

𝐹
𝑛,𝑚

= ̌𝑓
𝑛,𝑚

−

𝑚

∑

ℓ=1

𝜃
𝑛,ℓ

̌𝑓
ℓ+𝑁,𝑚

,

̌𝑓
𝑛,𝑚

=
1

2𝑁 + 𝑚 + 1

𝑁

∑

𝑘=−𝑁

𝑓(
𝑘

𝑁
) 𝑒
−2𝑖𝜋𝑛𝑘/(2𝑁+𝑚+1)

,

𝜃
𝑛,ℓ
= 𝑒
2𝑖𝜋(ℓ+𝑁−𝑛)(𝑁+𝑚)/(2𝑁+𝑚+1)

𝑚

∑

𝑠=1

V−1
ℓ,𝑠
𝑒
2𝑖𝜋𝑛(𝑠−1)/(2𝑁+𝑚+1)

.

(11)

Here, V−1
ℓ,𝑠

are the elements of the inverse of the Vandermonde
matrix (V

𝑠,ℓ
) as

V
𝑠,ℓ
= 𝛼
𝑠−1

ℓ
, 𝛼

ℓ
= 𝑒
2𝑖𝜋(ℓ+𝑁)/(2𝑁+𝑚+1)

, (12)

and have the following explicit form [8]:

V−1
ℓ,𝑠
= −

1

𝛼
𝑠

ℓ
∏
𝑚

𝑖=1, 𝑖 ̸= ℓ
(𝛼
ℓ
− 𝛼
𝑖
)

𝑠−1

∑

𝑗=0

𝛽
𝑗
𝛼
𝑗

ℓ
, ℓ, 𝑠 = 1, . . . , 𝑚, (13)

where 𝛽
𝑗
are the coefficients of the following polynomial:

𝑚

∏

𝑗=1

(𝑥 − 𝛼
𝑗
) =

𝑚

∑

𝑗=0

𝛽
𝑗
𝑥
𝑗
. (14)

Taking into account that 𝛼
𝑠
− 𝛼
𝑖
= 𝑂(1/𝑁), from (13), we

get

V−1
ℓ,𝑠
= 𝑂 (𝑁

𝑚−1
) , 𝑁 → ∞, (15)

𝜃
𝑛,ℓ
= 𝑂 (𝑁

𝑚−1
) , 𝑁 → ∞. (16)

2. Quasi-Periodic-Rational Interpolation

In this section, we consider convergence acceleration of the
QP interpolation by rational trigonometric correctionswhich
leads to the QPR interpolation.

Consider a vector 𝜇 = {𝜇
𝑘
}
𝑝

𝑘=1
. By Δ𝑘

𝑛
(𝜇, 𝑐
𝑛
), we denote

generalized finite differences defined by the following recur-
rent relations:

Δ
0

𝑛
(𝜇, 𝑐
𝑛
) = 𝑐
𝑛
,

Δ
𝑘

𝑛
(𝜇, 𝑐
𝑛
) = Δ
𝑘−1

𝑛
(𝜇, 𝑐
𝑛
) + 𝜇
𝑘
Δ
𝑘−1

𝑛−1
(𝜇, 𝑐
𝑛
) , 𝑘 ≥ 1,

(17)

for some sequence 𝑐
𝑛
. When 𝜇 ≡ 1, we put

Δ
𝑘

𝑛
(𝜇, 𝑐
𝑛
) = Δ
𝑘

𝑛
(𝑐
𝑛
) . (18)

It is easy to verify that

Δ
1

𝑛
(𝜇, 𝑐
𝑛
) = 𝑐
𝑛
+ 𝜇
1
𝑐
𝑛−1
,

Δ
2

𝑛
(𝜇, 𝑐
𝑛
) = Δ
1

𝑛
(𝜇, 𝑐
𝑛
) + 𝜇
2
Δ
1

𝑛−1
(𝜇, 𝑐
𝑛
)

= 𝑐
𝑛
+ (𝜇
1
+ 𝜇
2
) 𝑐
𝑛−1

+ 𝜇
1
𝜇
2
𝑐
𝑛−2
,

Δ
3

𝑛
(𝜇, 𝑐
𝑛
) = 𝑐
𝑛
+ (𝜇
1
+ 𝜇
2
+ 𝜇
3
) 𝑐
𝑛−1

+ (𝜇
1
𝜇
2
+ 𝜇
1
𝜇
3
+ 𝜇
2
𝜇
3
) 𝑐
𝑛−2

+ 𝜇
1
𝜇
2
𝜇
3
𝑐
𝑛−3
.

(19)
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In general, we can prove by the mathematical induction that

Δ
𝑝

𝑛
(𝜇, 𝑐
𝑛
) =

𝑝

∑

𝑠=0

𝛾
𝑠
(𝜇) 𝑐
𝑛−𝑠
, (20)

where 𝛾
𝑠
(𝜇) are the coefficients of the following polynomial:

𝑝

∑

𝑠=0

𝛾
𝑠
(𝜇) 𝑥
𝑠
=

𝑝

∏

𝑠=1

(1 + 𝜇
𝑠
𝑥) . (21)

Consider the following vectors: 𝜆 = {𝜆
𝑘
}
𝑝

|𝑘|=1
, 𝜆+ =

{𝜆
𝑘
}
𝑝

𝑘=1
, and 𝜆− = {𝜆

−𝑘
}
𝑝

𝑘=1
. By 𝛿𝑘

𝑛
(𝜆, 𝑐
𝑛
), we denote modified

finite differences defined by the following recurrent relations:

𝛿
0

𝑛
(𝜆, 𝑐
𝑛
) = 𝑐
𝑛
,

𝛿
𝑘

𝑛
(𝜆, 𝑐
𝑛
) = 𝛿
𝑘−1

𝑛
(𝜆, 𝑐
𝑛
) + 𝜆
−𝑘
𝛿
𝑘−1

𝑛−1
(𝜆, 𝑐
𝑛
)

+ 𝜆
𝑘
(𝛿
𝑘−1

𝑛+1
(𝜆, 𝑐
𝑛
) + 𝜆
−𝑘
𝛿
𝑘−1

𝑛
(𝜆, 𝑐
𝑛
)) , 𝑘 ≥ 1,

(22)

for some sequence 𝑐
𝑛
. When 𝜆 ≡ 1, we put

𝛿
𝑘

𝑛
(𝜆, 𝑐
𝑛
) = 𝛿
𝑘

𝑛
(𝑐
𝑛
) . (23)

Similar to (20), we can show that

𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
) =

𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
+
)

𝑝

∑

𝑠=0

𝛾
𝑠
(𝜆
−
) 𝑐
𝑛+𝑘−𝑠

, (24)

where

𝑝

∏

𝑘=1

(1 + 𝜆
𝑘
𝑥) =

𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
+
) 𝑥
𝑘
,

𝑝

∏

𝑘=1

(1 + 𝜆
−𝑘
𝑥) =

𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
−
) 𝑥
𝑘
.

(25)

It is easy to verify that

𝛿
𝑘

𝑛
(𝑐
𝑛
) = Δ
2𝑘

𝑛+𝑘
(𝑐
𝑛
) , (26)

Δ
𝑘

𝑛
(𝑐
𝑛
) =

𝑘

∑

𝑠=0

(
𝑘

𝑠
) 𝑐
𝑛−𝑠
, (27)

𝛿
𝑘

𝑛
(𝑐
𝑛
) =

2𝑘

∑

𝑠=0

(
2𝑘

𝑠
) 𝑐
𝑛+𝑘−𝑠

. (28)

We assume that 𝑓 ∈ 𝐶
𝛼
[−1, 1] for some 𝛼 ≥ 1 and we

denote

𝑓
∗
(𝑥) =

{{{

{{{

{

𝑓left (𝑥) , 𝑥 ∈ [−1, −𝜎) ,

𝑓 (
𝑥

𝜎
) , 𝑥 ∈ [−𝜎, 𝜎] ,

𝑓right (𝑥) , 𝑥 ∈ (𝜎, 1] ,

(29)

where

𝑓left (𝑥) =
𝛼

∑

𝑗=0

𝑓
(𝑗)
(−1)

𝑗!
(
𝑥

𝜎
+ 1)

𝑗

,

𝑓right (𝑥) =
𝛼

∑

𝑗=0

𝑓
(𝑗)
(1)

𝑗!
(
𝑥

𝜎
− 1)

𝑗

.

(30)

According to definition of 𝑓∗, we can write

𝑓
∗
(𝑥) =

∞

∑

𝑛=−∞

𝑓
∗

𝑛
𝑒
𝑖𝜋𝑛𝑥

, 𝑥 ∈ (−1, 1) . (31)

Hence,

𝑓 (𝑥) =

∞

∑

𝑛=−∞

𝑓
∗

𝑛
𝑒
𝑖𝜋𝑛𝜎𝑥

, 𝑥 ∈ [−1, 1] . (32)

Therefore,

𝑅
𝑁,𝑚

(𝑓, 𝑥) =

𝑁

∑

𝑛=−𝑁

(𝑓
∗

𝑛
− 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝑛𝜎𝑥

+ ∑

|𝑛|>𝑁

𝑓
∗

𝑛
𝑒
𝑖𝜋𝑛𝜎𝑥

. (33)

The following transformation is easy to verify (see details
in [9] for similar transformation):

𝑅
𝑁,𝑚

(𝑓, 𝑥) = 𝜆
−1

𝐹
−𝑁−1,𝑚

𝑒
−𝑖𝜋𝜎𝑁𝑥

− 𝐹
𝑁,𝑚

𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

(1 + 𝜆
−1
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

1
𝑒−𝑖𝜋𝜎𝑥)

+ 𝜆
1

𝐹
𝑁+1,𝑚

𝑒
𝑖𝜋𝜎𝑁𝑥

− 𝐹
−𝑁,𝑚

𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

(1 + 𝜆
−1
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

1
𝑒−𝑖𝜋𝜎𝑥)

+
1

(1 + 𝜆
−1
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

1
𝑒−𝑖𝜋𝜎𝑥)

×

𝑁

∑

𝑛=−𝑁

𝛿
1

𝑛
(𝜆, 𝑓
∗

𝑛
− 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝑛𝜎𝑥

+
1

(1 + 𝜆
−1
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

1
𝑒−𝑖𝜋𝜎𝑥)

× ∑

|𝑛|>𝑁

𝛿
1

𝑛
(𝜆, 𝑓
∗

𝑛
) 𝑒
𝑖𝜋𝑛𝜎𝑥

.

(34)

Reiteration of it up to𝑝 times leads to the following expansion
of the error:

𝑅
𝑁,𝑚

(𝑓, 𝑥)

=

𝑝

∑

𝑘=1

𝜆
−𝑘

𝛿
𝑘−1

−𝑁−1
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
−𝑖𝜋𝜎𝑁𝑥

− 𝛿
𝑘−1

𝑁
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

∏
𝑘

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)
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+

𝑝

∑

𝑘=1

𝜆
𝑘

𝛿
𝑘−1

𝑁+1
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝜎𝑁𝑥

− 𝛿
𝑘−1

−𝑁
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

∏
𝑘

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

+
1

∏
𝑝

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

× ∑

|𝑛|≤𝑁

𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
− 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝑛𝜎𝑥

+
1

∏
𝑝

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

× ∑

|𝑛|>𝑁

𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
) 𝑒
𝑖𝜋𝑛𝜎𝑥

,

(35)

where the first two terms can be assumed as corrections
of the error. This observation leads to the following QPR
interpolation:

𝐼
𝑝

𝑁,𝑚
(𝑓, 𝑥)

= 𝐼
𝑁,𝑚

(𝑓, 𝑥)

+

𝑝

∑

𝑘=1

𝜆
−𝑘

𝛿
𝑘−1

−𝑁−1
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
−𝑖𝜋𝜎𝑁𝑥

− 𝛿
𝑘−1

𝑁
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

∏
𝑘

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

+

𝑝

∑

𝑘=1

𝜆
𝑘

𝛿
𝑘−1

𝑁+1
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝜎𝑁𝑥

− 𝛿
𝑘−1

−𝑁
(𝜆, 𝐹
𝑛,𝑚
) 𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

∏
𝑘

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

(36)

with the error

𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) =

1

∏
𝑝

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

× ∑

|𝑛|≤𝑁

𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
− 𝐹
𝑛,𝑚
) 𝑒
𝑖𝜋𝜎𝑛𝑥

+
1

∏
𝑝

𝑠=1
(1 + 𝜆

−𝑠
𝑒𝑖𝜋𝜎𝑥) (1 + 𝜆

𝑠
𝑒−𝑖𝜋𝜎𝑥)

× ∑

|𝑛|>𝑁

𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
) 𝑒
𝑖𝜋𝜎𝑛𝑥

.

(37)

The QPR interpolation is undefined until parameters 𝜆
𝑘

are unknown. Hence, determination of these parameters is
a crucial problem for realization of the QPR interpolation.
First, we assume that

𝜆
−𝑘
= 𝜆
𝑘
= 1 −

𝜏
𝑘

𝑁
, 𝑘 = 1, . . . , 𝑝, (38)

where 𝜏
𝑘
are some new parameters independent of 𝑁. In

the next section, we investigate convergence of the QPR
interpolation independent of the choice of parameters 𝜏

𝑘
.

Then, we discuss some choices of these parameters. We also
consider an approach connected with the idea of the Fourier-
Pade interpolation which leads to quasi-periodic Fourier-
Pade interpolation.

3. Convergence Analysis

Let 𝜆
𝑘
be chosen as in (38) and let 𝛾

𝑘
(𝜏) be the coefficients of

the following polynomial:
𝑝

∏

𝑠=1

(1 + 𝜏
𝑠
𝑥) =

𝑝

∑

𝑘=0

𝛾
𝑘 (𝜏) 𝑥

𝑘
, (39)

where 𝜏 = {𝜏
1
, . . . , 𝜏

𝑝
}.

Let us modify (20) in view of (38). For 𝑝 = 1, we write

Δ
1

𝑛
(𝜆
+
, 𝑐
𝑛
) = 𝑐
𝑛
+ (1 −

𝜏
1

𝑁
) 𝑐
𝑛−1

= Δ
1

𝑛
(𝑐
𝑛
) −

𝜏
1

𝑁
𝑐
𝑛−1
. (40)

For 𝑝 = 2, we have

Δ
2

𝑛
(𝜆
+
, 𝑐
𝑛
) = Δ
1

𝑛
(𝜆
+
, 𝑐
𝑛
) + (1 −

𝜏
2

𝑁
)Δ
1

𝑛−1
(𝜆
+
, 𝑐
𝑛
)

= Δ
1

𝑛
(𝑐
𝑛
) −

𝜏
1

𝑁
𝑐
𝑛−1

+ (1 −
𝜏
2

𝑁
)(Δ
1

𝑛−1
(𝑐
𝑛
) −

𝜏
1

𝑁
𝑐
𝑛−2
)

= Δ
2

𝑛
(𝑐
𝑛
) −

𝜏
1
+ 𝜏
2

𝑁
Δ
1

𝑛−1
(𝑐
𝑛
) +

𝜏
1
𝜏
2

𝑁2
Δ
0

𝑛−2
(𝑐
𝑛
) .

(41)

In general, we can prove by the mathematical induction the
following expansion [10]:

Δ
𝑝

𝑛
(𝜆
+
, 𝑐
𝑛
) =

𝑝

∑

𝑠=0

𝛾
𝑠
(𝜆
+
) 𝑐
𝑛−𝑠

=

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠
Δ
𝑝−𝑠

𝑛−𝑠
(𝑐
𝑛
) .

(42)

Now, let us modify (24) in view of (38). According to (20)
and (42), we get (note that 𝜆+ = 𝜆−)

𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
) =

𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
+
)

𝑝

∑

𝑠=0

𝛾
𝑠
(𝜆
−
) 𝑐
𝑛+𝑘−𝑠

=

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
+
) Δ
𝑝−𝑠

𝑛+𝑘−𝑠
(𝑐
𝑛
) .

(43)

Similar to (42), we can show that
𝑝

∑

𝑘=0

𝛾
𝑘
(𝜆
+
) 𝑐
𝑛+𝑘

=

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
𝑝−𝑘

𝑛+𝑝
(𝑐
𝑛
) . (44)

Then, from (43), we have

𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
) =

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
𝑝−𝑘

𝑛+𝑝
(Δ
𝑝−𝑠

𝑛−𝑠
(𝑐
𝑛
)) .

(45)

This leads to the following needed expansion:

𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
) =

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝑐
𝑛
) (46)

as Δ𝑝−𝑘
𝑛+𝑝

(Δ
𝑝−𝑠

𝑛−𝑠
(𝑐
𝑛
)) = Δ

2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝑐
𝑛
).
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Then,

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
))

=

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑤

𝑛+𝑤
(Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝑐
𝑛
)) .

(47)

Taking into account that

Δ
2𝑤

𝑛+𝑤
(Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝑐
𝑛
)) = Δ

2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
(𝑐
𝑛
) , (48)

we find that

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑐
𝑛
))

=

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
(𝑐
𝑛
) .

(49)

We will frequently use the latest formula.
We denote by 𝑓

𝑛
the 𝑛th Fourier coefficient of 𝑓 as

𝑓
𝑛
=
1

2
∫

1

−1

𝑓 (𝑥) 𝑒
−𝑖𝜋𝑛𝑥

𝑑𝑥. (50)

Let

𝐵
𝑛
(𝑗) =

(−1)
𝑛+1

2(𝑖𝜋𝑛)
𝑗+1

, 𝑛 ̸= 0, 𝐵
0
(𝑗) = 0,

𝜓
±

𝑝,𝑚,𝑗
(𝜏) =

𝑝

∑

𝑠=0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘=0

𝛾
𝑘 (𝜏) (2𝑝 − 𝑘 − 𝑠 + 𝑗)!

×

∞

∑

𝑟=−∞

(−1)
𝑟(𝑚+1)

(2𝑟 ± 1)
2𝑝−𝑘−𝑠+𝑗+1

.

(51)

First, we prove some lemmas.

Lemma 3. Let 𝑓(𝑞+2𝑝+𝑚) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0, 𝑝,𝑚 ≥

1, and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (52)

Let parameters 𝜆
𝑘
be chosen as in (38). Then,

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
)) = 𝑂 (𝑛

−2𝑤−1
𝑁
−2𝑝−𝑞

) + 𝑜 (𝑛
−𝑞−2𝑝−𝑚−1

) ,

|𝑛| > 𝑁, 𝑁 → ∞.

(53)

Proof. We have (see details in [5])

𝑓
∗

𝑛
=

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

2𝑗𝑁𝑗

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘
(2𝑁 + 𝑚 + 1)

𝑘

(𝑗 − 𝑘)!
𝐵
𝑛 (𝑘)

+ 𝑜 (𝑛
−𝑞−2𝑝−𝑚−1

) ,

(54)

and, consequently,

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
)) =

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

2𝑗𝑁𝑗

×

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘
(2𝑁 + 𝑚 + 1)

𝑘

(𝑗 − 𝑘)!

× 𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝐵
𝑛 (𝑘))) + 𝑜 (𝑛

−𝑞−2𝑝−𝑚−1
) .

(55)

Taking into account (49) and estimating Δ
𝑝

𝑛
(𝐵
𝑛
(𝑘)) =

𝑂(𝑛
−𝑘−1−𝑝

) (see details in [9]), we get

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝐵
𝑛 (𝑘))) = 𝑂 (𝑛

−2𝑤−𝑘−1
𝑁
−2𝑝

) (56)

which completes the proof.

Lemma 4. Let 𝜆
𝑘
be chosen as in (38), and let 𝛽 ∈ R be a

constant. Then, the following estimate holds for 𝑛 ∈ Z as𝑁 →

∞:

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, (−1)

𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

))

= (
𝜋𝛽

2
)

2𝑤
(−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

𝑁2𝑤+2𝑝
ℎ
𝑝
(𝛽, 𝜏)

+ 𝑂 (𝑁
−2𝑤−2𝑝−1

) ,

(57)

where

ℎ
𝑝
(𝛽, 𝜏) = (

𝜋𝛽

2
)

2𝑝 𝑝

∑

𝑠=0

𝛾
𝑠 (𝜏)

𝑝

∑

𝑘=0

(−1)
𝑘
𝛾
𝑘 (𝜏) (

2

𝑖𝜋𝛽
)

𝑘+𝑠

. (58)

Proof. From (49), we have

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, (−1)

𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

))

=

𝑝

∑

𝑠=0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘=0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

× Δ
2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
((−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

) .

(59)

In view of (27), we write

Δ
𝑝

𝑛
((−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

)

= (−1)
𝑛

𝑝

∑

𝑘=0

(
𝑝

𝑘
) (−1)

𝑘
𝑒
𝑖𝜋𝛽(𝑛−𝑘)/(2𝑁+𝑚+1)

= (−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

𝑝

∑

𝑘=0

(
𝑝

𝑘
) (−1)

𝑘

×

∞

∑

𝑡=0

(𝑖𝜋𝛽)
𝑡
(−1)
𝑡
𝑘
𝑡

𝑡!(2𝑁 + 𝑚 + 1)
𝑡

= (−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

∞

∑

𝑡=0

(−1)
𝑡
(𝑖𝜋𝛽)
𝑡

𝑡!(2𝑁 + 𝑚 + 1)
𝑡
𝜔
𝑝,𝑡
,

(60)
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where

𝜔
𝑝,𝑡
=

𝑝

∑

𝑠=0

(
𝑝

𝑠
) (−1)

𝑠
𝑠
𝑡
. (61)

Taking into account that 𝜔
𝑝,𝑗

= 0, 0 ≤ 𝑗 < 𝑝 and 𝜔
𝑝,𝑝

=

(−1)
𝑝
𝑝! (see [10], Lemma 2.1), we get

Δ
𝑝

𝑛
((−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

)

=
(−1)
𝑛
(𝑖𝜋𝛽)
𝑝

2𝑝𝑁𝑝
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

+ 𝑂 (𝑁
−𝑝−1

) .

(62)

Then,

Δ
2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
((−1)
𝑛
𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

)

= (−1)
𝑛+𝑝+𝑠+𝑤

(
𝑖𝜋𝛽

2𝑁
)

2𝑤+2𝑝−𝑘−𝑠

𝑒
𝑖𝜋𝛽(𝑛+𝑝−𝑠+𝑤)/(2𝑁+𝑚+1)

+ 𝑂 (𝑁
−2𝑤−2𝑝+𝑘+𝑠−1

)

= (−1)
𝑛+𝑝+𝑠+𝑤

𝑒
𝑖𝜋𝛽𝑛/(2𝑁+𝑚+1)

(
𝑖𝜋𝛽

2𝑁
)

2𝑤+2𝑝−𝑘−𝑠

+ 𝑂 (𝑁
−2𝑤−2𝑝+𝑘+𝑠−1

)

(63)

which completes the proof together with (59).

Lemma 5. Let 𝑓(𝑞+2𝑝+𝑚) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0, 𝑝,𝑚 ≥

1, and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (64)

Let parameters 𝜆
𝑘
be chosen as in (38). Then, the following

estimate holds as𝑁 → ∞:

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝐹
𝑛,𝑚

− 𝑓
∗

𝑛
)) = 𝑂 (𝑁

−𝑞−2𝑤−2𝑝−1
) + 𝑜 (𝑁

−𝑞−2𝑝−2
) ,

− 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑚.

(65)

Proof. First, we estimate𝐹
𝑛,𝑚

−𝑓
∗

𝑛
. We have (see details in [5],

at the beginning of the proof of Lemma 5)

𝐹
𝑛,𝑚

=

∞

∑

𝑟=−∞

𝑓
∗

𝑛+𝑟(2𝑁+𝑚+1)
−

𝑚

∑

ℓ=1

𝜃
𝑛,ℓ

∞

∑

𝑟=−∞

𝑓
∗

𝑁+ℓ+𝑟(2𝑁+𝑚+1)
,

𝐹
𝑛,𝑚

− 𝑓
∗

𝑛
= ∑

𝑟 ̸= 0

𝑓
∗

𝑛+𝑟(2𝑁+𝑚+1)
−

𝑚

∑

ℓ=1

𝜃
𝑛,ℓ

∞

∑

𝑟=−∞

𝑓
∗

𝑁+ℓ+𝑟(2𝑁+𝑚+1)
.

(66)

Then, in view of (54), we get

∑

𝑟 ̸= 0

𝑓
∗

𝑛+𝑟(2𝑁+𝑚+1)

=

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

2𝑗𝑁𝑗

×

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘
(2𝑁 + 𝑚 + 1)

𝑘

(𝑗 − 𝑘)!

× ∑

𝑟 ̸= 0

𝐵
𝑛+𝑟(2𝑁+𝑚+1) (𝑘) + 𝑜 (𝑁

−𝑞−2𝑝−𝑚−1
) ,

𝑚

∑

ℓ=1

𝜃
𝑛,ℓ

∞

∑

𝑟=−∞

𝑓
∗

𝑁+ℓ+𝑟(2𝑁+𝑚+1)

=
(−1)
𝑛+1

2𝑁 + 𝑚 + 1

×

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

𝑁𝑗

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘

2𝑗−𝑘(𝑖𝜋)
𝑘+1

(𝑗 − 𝑘)!

× 𝑒
−𝑖𝜋(𝑚−1)𝑛/(2𝑁+𝑚+1)

𝑚

∑

ℓ=1

Φ
𝑘,𝑚

(𝑒
2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)

)

×

𝑚

∑

𝑠=1

V−1
ℓ,𝑠
𝑒
2𝚤𝜋𝑛(𝑠−1)/(2𝑁+𝑚+1)

+ 𝑜 (𝑁
−𝑞−2𝑝−2

) ,

(67)

where we used estimate (16).
According to the Taylor expansion

Φ
𝑘,𝑚

(𝑒
2𝚤𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)

)

=

2𝑝+𝑚

∑

𝑡=0

1

𝑡!
Φ
(𝑡)

𝑘,𝑚
(−1) (𝑒

2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)
+ 1)
𝑡

+ 𝑂 (𝑁
−2𝑝−𝑚−1

)

(68)

and relations

𝑚

∑

ℓ=1

(𝑒
2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)

+ 1)
𝜏
𝑚

∑

𝑠=1

V−1
ℓ,𝑠
𝑒
2𝚤𝜋𝑛(𝑠−1)/(2𝑁+𝑚+1)

= (𝑒
2𝑖𝜋𝑛/(2𝑁+𝑚+1)

+ 1)
𝜏

, 𝜏 = 0, . . . , 𝑚 − 1,

(69)

we derive

𝐹
𝑛,𝑚

− 𝑓
∗

𝑛
=

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

2𝑗𝑁𝑗

×

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘
(2𝑁 + 𝑚 + 1)

𝑘

(𝑗 − 𝑘)!

× ∑

𝑟 ̸= 0

𝐵
𝑛+𝑟(2𝑁+𝑚+1) (𝑘)
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+
(−1)
𝑛
𝑒
−𝑖𝜋(𝑚−1)𝑛/(2𝑁+𝑚+1)

2𝑁 + 𝑚 + 1

×

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

𝑁𝑗

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘

2𝑗−𝑘(𝑖𝜋)
𝑘+1

(𝑗 − 𝑘)!

× [

𝑚−1

∑

𝑡=0

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!
(𝑒
2𝑖𝜋𝑛/(2𝑁+𝑚+1)

+ 1)
𝑡

+

𝑚+2𝑝

∑

𝑡=𝑚

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

×

𝑚

∑

ℓ=1

(𝑒
2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)

+ 1)
𝑡

×

𝑚

∑

𝑠=1

V−1
ℓ,𝑠
𝑒
2𝚤𝜋𝑛(𝑠−1)/(2𝑁+𝑚+1)

]

+ 𝑜 (𝑁
−𝑞−2𝑝−2

) .

(70)

This completes the proof in view of (49), Lemma 4, and the
following estimate [9]:

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜆, ∑

𝑟 ̸= 0

𝐵
𝑛+𝑟(2𝑁+𝑚+1) (𝑘))) = 𝑂 (𝑁

−2𝑤−2𝑝−𝑘−1
) .

(71)

Weused also the fact that 𝑒2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)+1 = 𝑂(1/𝑁).

Lemma 6. Let 𝑓(𝑞+2𝑝+𝑚) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0, 𝑝,𝑚 ≥

1, and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (72)

Let parameters 𝜆
𝑘
be chosen as in (38). Then,

𝛿
𝑝

±𝑁
(𝜆, 𝐹
𝑛,𝑚
) =

(−1)
𝑁+1

2𝑞+1𝑁𝑞+2𝑝+1

×

𝑞

∑

𝑘=0

𝐴
𝑘𝑞
(𝑓) (𝑚 + 1)

𝑞−𝑘
2
𝑘

(𝑞 − 𝑘)!(𝑖𝜋)
𝑘+1

× [ (−1)
𝑝
𝜓
±

𝑝,𝑚,𝑘
(𝜏)

𝑘!
−

𝑚−1

∑

𝑡=0

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

×

𝑡

∑

𝜇=0

(
𝑡

𝜇
) 𝑒
±𝑖𝜋𝑁(2𝜇−𝑚+1)/(2𝑁+𝑚+1)

× ℎ
𝑝
(2𝜇 − 𝑚 + 1, 𝜏) ]

+ 𝑂 (𝑁
−𝑞−2𝑝−2

) ,

(73)

𝛿
𝑝

±(𝑁+1)
(𝜆, 𝐹
𝑛,𝑚
) = −𝛿

𝑝

±𝑁
(𝜆, 𝐹
𝑛,𝑚
) + 𝑂 (𝑁

−𝑞−2𝑝−2
) , (74)

𝛿
𝑝

−𝑁
(𝜆, 𝐹
𝑛,𝑚
) = (−1)

𝑚+1
𝛿
𝑝

𝑁
(𝜆, 𝐹
𝑛,𝑚
) + 𝑂 (𝑁

−𝑞−2𝑝−2
) . (75)

Proof. We proceed as in the proof of Lemma 5 and derive

𝛿
𝑝

±𝑁
(𝜆, 𝐹
𝑛,𝑚
) =

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

2𝑗𝑁𝑗

×

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (2𝑁 + 𝑚 + 1)

𝑘

(𝑗 − 𝑘)!(𝑚 + 1)
𝑘−𝑗

× 𝛿
𝑝

±𝑁
(𝜆,

∞

∑

𝑟=−∞

𝐵
𝑛+𝑟(2𝑁+𝑚+1) (𝑘))

+
1

2𝑁 + 𝑚 + 1

𝑞+2𝑝+𝑚

∑

𝑗=𝑞

1

𝑁𝑗

×

𝑗

∑

𝑘=0

𝐴
𝑘𝑗
(𝑓) (𝑚 + 1)

𝑗−𝑘

2𝑗−𝑘(𝑖𝜋)
𝑘+1

(𝑗 − 𝑘)!

× [

𝑚−1

∑

𝑡=0

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

𝑡

∑

𝜇=0

(
𝑡

𝜇
)

× 𝛿
𝑝

±𝑁
(𝜆, (−1)

𝑛
𝑒
𝑖𝜋𝑛(2𝜇−𝑚+1)/(2𝑁+𝑚+1)

)

+

𝑚+2𝑝

∑

𝑡=𝑚

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

×

𝑚

∑

ℓ=1

(𝑒
2𝑖𝜋(𝑁+ℓ)/(2𝑁+𝑚+1)

+ 1)
𝑡

×

𝑚

∑

𝑠=1

V−1
ℓ,𝑠

× 𝛿
𝑝

±𝑁
(𝜆, (−1)

𝑛
𝑒
𝑖𝜋𝑛(2𝑠−1−𝑚)/(2𝑁+𝑚+1)

) ]

+ 𝑜 (𝑁
−𝑞−2𝑝−2

) .

(76)

This completes the proof in view of Lemma 4 and the follow-
ing estimate:

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜆,

∞

∑

𝑟=−∞

𝐵
𝑛+𝑟(2𝑁+𝑚+1)

(𝑗)))

=
(−1)
𝑁+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑗+1
𝑁2𝑤+2𝑝𝑗!

𝜓
±

𝑝,𝑚,𝑗+2𝑤
(𝜏)

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑗−2

) .

(77)

The proof of (77), for 𝑚 = 0, can be found in [9]. General
case can be proved similarly and we omit it.

Estimates (74) and (75) can be proved similarly.

Now, we present the main results of the paper.
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Theorem7. Let𝑓(𝑞+2𝑝+𝑚) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0, 𝑝,𝑚 ≥

1, and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (78)

Let parameters 𝜆
𝑘
be chosen as in (38). Then, the following

estimate holds for |𝑥| < 1:

𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) =

(−1)
𝑁

(2𝑁)
𝑞+2𝑝+1

sin (𝜋𝜎 (𝑁 + (1/2)) 𝑥 − (𝜋𝑚/2))

cos2𝑝+1 (𝜋𝑥/2)

×

𝑞

∑

𝑘=0

𝐴
𝑘𝑞
(𝑓) (𝑚 + 1)

𝑞−𝑘
2
𝑘

(𝑞 − 𝑘)!𝑖𝑘−𝑚𝜋𝑘+1

× ((−1)
𝑝
𝜓
+

𝑝,𝑚,𝑘
(𝜏)

𝑘!
−

𝑚−1

∑

𝑡=0

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

×

𝑡

∑

𝜇=0

(
𝑡

𝜇
) 𝑖
2𝜇−𝑚+1

ℎ
𝑝
(2𝜇 − 𝑚 + 1, 𝜏))

+ 𝑜 (𝑁
−𝑞−2𝑝−1

) , 𝑁 → ∞.

(79)

Proof. We have from (37) by the Abel transformation (see
transformation from (33) to (34) with 𝜆 ≡ 1)

𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) = 𝑒

−𝑖𝜋𝜎𝑁𝑥
𝛿
𝑝

−𝑁−1
(𝜆, 𝐹
𝑛,𝑚
)

𝑐 (𝑥)

− 𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

𝛿
𝑝

𝑁
(𝜆, 𝐹
𝑛,𝑚
)

𝑐 (𝑥)

+ 𝑒
𝑖𝜋𝜎𝑁𝑥

𝛿
𝑝

𝑁+1
(𝜆, 𝐹
𝑛,𝑚
)

𝑐 (𝑥)

− 𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

𝛿
𝑝

−𝑁
(𝜆, 𝐹
𝑛,𝑚
)

𝑐 (𝑥)

+
1

𝑐 (𝑥)

𝑁

∑

𝑛=−𝑁

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
− 𝐹
𝑛,𝑚
)) 𝑒
𝑖𝜋𝜎𝑛𝑥

+
1

𝑐 (𝑥)
∑

|𝑛|>𝑁

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
)) 𝑒
𝑖𝜋𝜎𝑛𝑥

,

(80)

where

𝑐 (𝑥) = 4cos2 (𝜋𝜎𝑥
2
)

𝑝

∏

𝑠=1

(1 + 𝜆
−𝑠
𝑒
𝑖𝜋𝜎𝑥

) (1 + 𝜆
𝑠
𝑒
−𝑖𝜋𝜎𝑥

) .

(81)

It is easy to verify that

lim
𝑁→∞

𝑐 (𝑥) = 2
2𝑝+2cos2𝑝+2 (𝜋𝑥

2
) . (82)

According to Lemma 3,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝑓
∗

𝑛
)) = 𝑂 (𝑛

−3
𝑁
−2𝑝−𝑞

) + 𝑜 (𝑛
−𝑞−2𝑝−2

) ,

|𝑛| > 𝑁, 𝑁 → ∞.

(83)

Hence, the last term in the right-hand side of (80) is
𝑜(𝑁
−𝑞−2𝑝−1

). Then, by Lemma 5,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜆, 𝐹
𝑛,𝑚

− 𝑓
∗

𝑛
)) = 𝑂 (𝑁

−𝑞−2𝑝−3
) + 𝑜 (𝑁

−𝑞−2𝑝−2
) ,

− 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑚, 𝑁 → ∞

(84)

and the fifth term is also 𝑜(𝑁−𝑞−2𝑝−1).
Therefore,

𝑐 (𝑥) 𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) = 𝑒

−𝑖𝜋𝜎𝑁𝑥
𝛿
𝑝

−𝑁−1
(𝜆, 𝐹
𝑛,𝑚
)

− 𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

𝛿
𝑝

𝑁
(𝜆, 𝐹
𝑛,𝑚
)

+ 𝑒
𝑖𝜋𝜎𝑁𝑥

𝛿
𝑝

𝑁+1
(𝜆, 𝐹
𝑛,𝑚
)

− 𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

𝛿
𝑝

−𝑁
(𝜆, 𝐹
𝑛,𝑚
)

+ 𝑜 (𝑁
−𝑞−2𝑝−1

) .

(85)

Taking into account estimates (74) and (75), we get

𝑐 (𝑥) 𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) = 𝛿

𝑝

𝑁
(𝜆, 𝐹
𝑛,𝑚
)

× ((−1)
𝑚
(𝑒
−𝑖𝜋𝜎𝑁𝑥

+ 𝑒
−𝑖𝜋𝜎(𝑁+1)𝑥

)

− (𝑒
𝑖𝜋𝜎𝑁𝑥

+ 𝑒
𝑖𝜋𝜎(𝑁+1)𝑥

))

+ 𝑜 (𝑁
−𝑞−2𝑝−1

)

(86)

which concludes the proof in view of Lemma 6.

Let us compare the results ofTheorems 1 and 7.Theorem 1
investigates the pointwise convergence of the QP interpo-
lation on (−1, 1) and states that for 𝑓(𝑞+2𝑚) ∈ 𝐴𝐶[−1, 1]

the convergence rate is 𝑂(𝑁−𝑞−𝑚−1) for 𝑚 ≥ 1. Theorem 7
explores the pointwise convergence of the QPR interpola-
tion and shows that convergence rate is 𝑂(𝑁−𝑞−2𝑝−1) for
𝑓
(𝑞+2𝑝+𝑚)

∈ 𝐴𝐶[−1, 1] and 𝑚 ≥ 1. We see that for
𝑚 = 2𝑝 both theorems are provided with the same rates of
convergence by putting the same smoothness requirements
on 𝑓, although the exact constants of the asymptotic errors
are different. Then, we see that for 𝑝 > 𝑚/2 the QPR
interpolation has improved accuracy compared to the QP
interpolation and improvement is by factor𝑂(𝑁2𝑝−𝑚). In this
case, Theorem 7 puts additional smoothness requirement on
𝑓 and comparison is valid if only the interpolated function
has enough smoothness (for example, if it is infinitely differ-
entiable). It is worth recalling that parameter𝑚 indicates the
size of the Vandermonde matrix (12) that must be inverted
for realization of the QP and QPR interpolations. It is well-
known that the Vandermonde matrices are ill-conditioned
and standard numerical methods fail to accurately compute
the entries of the inverses when the sizes of the matrices are
big. Hence, from practical point of view, it is more reasonable
to take 𝑚 small (𝑚 ≤ 6) and additional accuracy obtain by
increasing 𝑝.
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Figure 1: The graphs of the absolute errors |𝑅𝑝
256,𝑚

(𝑓, 𝑥)| on interval [−0.7, 0.7] for𝑚 = 2 and 𝑝 = 4 when 𝜏
𝑘
= 𝑘 (a) and with optimal 𝜏

𝑘
(see

(94)) (b) while interpolating (90).

Note that for 𝑚 = 1 the second term in the brackets of
estimate (79) vanishes and also 𝜓+

𝑝,1,0
(1, 𝜏) = 0. Hence,

𝑅
𝑝

𝑁,1
(𝑓, 𝑥) = 𝑜 (𝑁

−2𝑝−1
) , 𝑁 → ∞, 𝑞 = 0. (87)

Similarly, the case 𝑚 = 0 can be analyzed. We present
the corresponding theorem without the proof which can be
performed as the above one.

Theorem 8. Let 𝑓(𝑞+2𝑝+1) ∈ 𝐴𝐶[−1, 1] for some 𝑞 ≥ 0, 𝑝 ≥ 1,
and

𝑓
(𝑘)
(−1) = 𝑓

(𝑘)
(1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (88)

Let parameters 𝜆
𝑘
be chosen as in (38). Then, the following

estimate holds for |𝑥| < 1 as𝑁 → ∞:

𝑅
𝑝

𝑁,0
(𝑓, 𝑥) =

(−1)
𝑁+𝑝

(2𝑁)
𝑞+2𝑝+1

sin (𝜋𝑁𝑥)
cos2𝑝+1 (𝜋𝑥/2)

×

𝑞

∑

𝑘=0

𝐴
𝑘𝑞
(𝑓) 2
𝑘

𝑖𝑘𝜋𝑘+1 (𝑞 − 𝑘)!𝑘!
𝜓
+

𝑝,0,𝑘
(𝜏)

+ 𝑜 (𝑁
−𝑞−2𝑝−1

) .

(89)

Comparison with Theorem 2 shows improvement by
factor 𝑂(𝑁2𝑝) for any 𝑝 ≥ 1 if 𝑓 has enough smoothness.

4. Parameter Determination in
Rational Corrections

Till now, we did not discuss the problem of parameters 𝜏
𝑘

determination as Theorems 7 and 8 are valid for all choices.
Now, let us consider some choices with the corresponding
numerical results.

Let

𝑓 (𝑥) = (1 − 𝑥
2
)
4

sin (𝑥 − 1) . (90)

One choice is 𝜏
𝑘
= 𝑘 which shows satisfactory numerical

results (see Figure 1).

Another choice is based on the asymptotic estimates of
Theorems 7 and 8. If it is possible to vanish the following
expressions by the choice of parameters 𝜏

𝑘
:

(−1)
𝑝
𝜓
+

𝑝,𝑚,𝑘
(𝜏)

𝑘!
−

𝑚−1

∑

𝑡=0

Φ
(𝑡)

𝑘,𝑚
(−1)

𝑡!

×

𝑡

∑

𝜇=0

(
𝑡

𝜇
) 𝑖
2𝜇−𝑚+1

ℎ
𝑝
(2𝜇 − 𝑚 + 1, 𝜏) = 0,

𝑘 = 0, . . . , 𝑞

(91)

or

𝜓
+

𝑝,0,𝑘
(𝜏) = 0, 𝑘 = 0, . . . , 𝑞, (92)

then, Theorems 7 and 8 will be provided with improved
estimate

𝑅
𝑝

𝑁,𝑚
(𝑓, 𝑥) = 𝑜 (𝑁

−𝑞−2𝑝−1
) , |𝑥| < 1. (93)

For example, when 𝑝 = 𝑞 = 4 and𝑚 = 2, we find

𝜏
1
= −0.3047909 − 0.4539705𝑖,

𝜏
2
= 0.9640011 − 0.1481304𝑖,

𝜏
3
= 6.375385 + 0.000739𝑖,

𝜏
4
= 12.877189 − 0.000022𝑖.

(94)

With this choice 𝑅4
256,2

(𝑓, 𝑥) = 𝑜(𝑁
−13
) for (90).

Figure 1 compares the choices 𝜏
𝑘
= 𝑘 (a) and optimal

choice (104) (b). As it was expected the precision of interpo-
lation is higher in (b) compared to (a).

The third choice is not connected with (38) and allows
determining parameters 𝜆

𝑘
immediately along the ideas of

the Fourier-Pade interpolation ([11]). This approach is more
complex as 𝜆

𝑘
must be recalculated for each function 𝑓 and

for each 𝑁 and as a consequence leads to nonlinear inter-
polation but, however, is much more precise when |𝑥| < 1.
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Figure 2:The graph of |𝑅𝑝
256,𝑚

(𝑓, 𝑥)| on interval [−0.7, 0.7] for𝑚 = 2

and 𝑝 = 4 while interpolating (90) by the quasi-periodic Fourier-
Pade interpolation (see (96)).

More specifically, parameters 𝜆 can be determined from the
following system:

𝛿
𝑝

𝑛
(𝜆, 𝐹
𝑛,𝑚
) = 0, |𝑛| = 𝑁 − 𝑝 + 1, . . . , 𝑁. (95)

We will refer to this interpolation as quasi-periodic Fourier-
Pade interpolation.

For example, when 𝑚 = 2, 𝑝 = 4, and𝑁 = 256, then, for
(90), we get

𝜆
1
= 0.922 + 0.010𝑖, 𝜆

2
= 0.952 + 0.010𝑖,

𝜆
3
= 0.975 + 0.010𝑖, 𝜆

4
= 0.994 − 0.011𝑖,

𝜆
−1
= 0.994 + 0.011𝑖, 𝜆

−2
= 0.975 − 0.010𝑖,

𝜆
−3
= 0.952 − 0.010𝑖, 𝜆

−4
= 0.922 − 0.010𝑖.

(96)

Figure 2 shows the graph of |𝑅4
256,2

(𝑓, 𝑥)| for function (90)
with 𝜆

𝑘
from (96). Comparison with Figure 1 shows high

precision of the quasi-periodic Fourier-Pade interpolation
for |𝑥| < 1 compared to other choices of parameters 𝜆

𝑘
.

Theoretical analysis of convergence of the quasi-periodic
Fourier-Pade interpolation will be carried out elsewhere.
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