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We consider the convergence acceleration of the Krylov-Lanczos interpolation by rational correction functions and investigate
convergence of the resultant parametric rational-trigonometric-polynomial interpolation. Exact constants of asymptotic errors are
obtained in the regions away from discontinuities, and fast convergence of the rational-trigonometric-polynomial interpolation
compared to the Krylov-Lanczos interpolation is observed. Results of numerical experiments confirm theoretical estimates and
show how the parameters of the interpolations can be determined in practice.

1. Introduction

In this paper, we continue investigations started in [1] where
we considered the convergence acceleration of the classical
trigonometric interpolation

𝐼
𝑁
(𝑓, 𝑥) =

𝑁

∑

𝑛 =−𝑁

�̌�
𝑛
𝑒
𝑖𝜋𝑛𝑥

, (1)

�̌�
𝑛
=

1

2𝑁 + 1

𝑁

∑

𝑘 =−𝑁

𝑓 (𝑥
𝑘
) 𝑒
−𝑖𝜋𝑛𝑥𝑘 , 𝑥

𝑘
=

2𝑘

2𝑁 + 1
, (2)

via polynomial corrections representing discontinuities of the
function 𝑓 and some of its first 𝑞 derivatives (jumps). The
resultant interpolation 𝐼

𝑁,𝑞
(𝑓, 𝑥) was called as the Krylov-

Lanczos (KL-) interpolation.That approach was suggested in
1906 by Krylov [2] and later in 1964 by Lanczos [3, 4] (see also
[1, 5–10] with references therein).

Here, we consider the convergence acceleration of theKL-
interpolation by the application of rational (by 𝑒𝑖𝜋𝑥) correc-
tion functions along the ideas of the rational approximations
(see [11–13] with references therein). The approach discussed
here leads to the parametric (depending on parameters
𝜃
1
, . . . , 𝜃

𝑝
) rational-trigonometric-polynomial (rtp-) interpo-

lation 𝐼𝑝
𝑁,𝑞
(𝑓, 𝑥). The idea of the convergence acceleration via

sequential application of polynomial and rational corrections
was described in [14–17]. The KL-interpolation is a special
case of the rtp-interpolation corresponding to the choice of
parameters 𝜃

𝑘
= 0, 𝑘 = 1, . . . , 𝑝. Besides, rational corrections

can be applied immediately to the classical interpolation
without polynomial corrections (see interpolation 𝐼𝑝

𝑁
(𝑓, 𝑥)).

In this paper, we reveal the convergence properties of the
rtp-interpolation, show its fast convergence compared to the
KL-interpolation in the regions away from the singularities
(𝑥 = ±1), and discuss the problem of parameters determina-
tion in rational corrections.

2. Rational Interpolations

In this section, we introduce a rational interpolation as
a method of the convergence acceleration of the classical
trigonometric interpolation. Here, we recap some details
from [15, 16].

By 𝑟
𝑁
(𝑓, 𝑥), we denote the error of the classical trigono-

metric interpolation

𝑟
𝑁
(𝑓, 𝑥) = 𝑓 (𝑥) − 𝐼𝑁 (𝑓, 𝑥) , (3)
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and write

𝑟
𝑁
(𝑓, 𝑥) =

𝑁

∑

𝑛 =−𝑁

(𝑓
𝑛
− �̌�
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

+

∞
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+
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∑
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𝑓
𝑛
𝑒
𝑖𝜋𝑛𝑥

,

(4)

where 𝑓
𝑛
is the 𝑛th Fourier coefficient of 𝑓

𝑓
𝑛
=
1

2
∫

1

−1

𝑓 (𝑥) 𝑒
−𝑖𝜋𝑛𝑥

𝑑𝑥. (5)

Rational corrections considered in this paper are based
on a series of formulae of summation by parts applied to
the error terms in (4). Such transformations lead to new
interpolations with correction terms in the form of rational
(by 𝑒𝑖𝜋𝑥) functions. Consider a vector of complex numbers
𝜃 = {𝜃

1
, . . . , 𝜃

𝑝
}. The first formula of summation by parts is

easy to verify straightforwardly as
∞

∑

𝑛 =𝑁+1

𝑓
𝑛
𝑒
𝑖𝜋𝑛𝑥

= − 𝜃
1
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1
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1
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1
𝑓
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𝑖𝜋𝑛𝑥

.

(6)

If here |𝜃
1
| < 1, then the formula is valid for all |𝑥| ≤ 1.

This is the main reason of including the parameters 𝜃
𝑘
here

and further. If 𝜃
1
is chosen appropriately (see (32)), then the

second term in the right-hand side of (6) converges faster
(however, for |𝑥| < 1) than the sum in the left-hand side. The
next, slightly different formula of summation by parts is also
easy to derive as
∞

∑

𝑛 =𝑁+1

𝑓
𝑛
𝑒
𝑖𝜋𝑛𝑥
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1
𝑓
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1
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∞

∑
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𝑛
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𝑓
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) 𝑒
𝑖𝜋𝑛𝑥

.

(7)

Application of (7) to the second term in the right-hand side
of (6) leads to the needed expansion
∞

∑

𝑛 =𝑁+1

𝑓
𝑛
𝑒
𝑖𝜋𝑛𝑥

=
1

(1 + 𝜃
1
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𝑓
𝑁

𝑒
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(1 + 𝜃
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𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

+ 𝜃
1
𝑓
𝑁+1

𝑒
𝑖𝜋𝑁𝑥

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

.

(8)

Here, also, as wementioned above, the sum on the right-hand
side converges faster than on the left-hand side if parameter
𝜃
1
is chosen appropriately.
In a similar manner, we transform the third term in the

right-hand side of (4):

−𝑁−1

∑

𝑛 =−∞

𝑓
𝑛
𝑒
𝑖𝜋𝑛𝑥
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1

(1 + 𝜃
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(9)

For the first term in the right-hand side of (4), the formula
of summation by parts is the following:

𝑁
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,

(10)

where 𝑐
𝑛
= 𝑓
𝑛
− �̌�
𝑛
.

Substituting (8), (9), and (10) into (4), after some simpli-
fications, provides with the following expansion of the error

𝑟
𝑁
(𝑓, 𝑥) = 𝜃

1
�̌�
𝑁
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−𝑖𝜋𝑁𝑥
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1
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𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥
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1
𝑒−𝑖𝜋𝑥)
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+
1

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

×

∞

∑

|𝑛| =𝑁+1

(𝑓
𝑛
+ 𝜃
1
𝑓
𝑛−1

+ 𝜃
1
(𝑓
𝑛+1

+ 𝜃
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𝑓
𝑛
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𝑖𝜋𝑛𝑥

+
1

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

×

𝑁

∑

𝑛 =−𝑁

(𝑐
𝑛
+ 𝜃
1
𝑐
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1
(𝑐
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1
𝑐
𝑛
)) 𝑒
𝑖𝜋𝑛𝑥

,

(11)

where 𝑐
𝑛
= 𝑓
𝑛
− �̌�
𝑛
. Here, we also took into account the

periodicity of the coefficients �̌�
𝑛

�̌�
𝑁+1

= �̌�
−𝑁
, �̌�

−𝑁−1
= �̌�
𝑁
. (12)

For writing the expansion (11) in a short form and also for
further reiterations of this transformation, we introduce the
following generalized finite differences 𝛿𝑘

𝑛
(𝜃, 𝑦
𝑛
) determined

recurrently:

𝛿
0

𝑛
(𝜃, 𝑦
𝑛
) = 𝑦
𝑛
,

𝛿
𝑘

𝑛
(𝜃, 𝑦
𝑛
) = 𝛿
𝑘−1

𝑛
(𝜃, 𝑦
𝑛
) + 𝜃
𝑘
𝛿
𝑘−1

𝑛−1
(𝜃, 𝑦
𝑛
)

+ 𝜃
𝑘
(𝛿
𝑘−1

𝑛+1
(𝜃, 𝑦
𝑛
) + 𝜃
𝑘
𝛿
𝑘−1

𝑛
(𝜃, 𝑦
𝑛
)) ,

(13)

for some sequence 𝑦
𝑛
. Now, (11) can be rewritten in the form

𝑟
𝑁
(𝑓, 𝑥) = 𝜃

1
𝛿
0

𝑁
(𝜃, �̌�
𝑛
)

𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

+ 𝜃
1
𝛿
0

−𝑁
(𝜃, �̌�
𝑛
)

𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

+
1

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

×

∞

∑

|𝑛| =𝑁+1

𝛿
1

𝑛
(𝜃, 𝑓
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

+
1

(1 + 𝜃
1
𝑒𝑖𝜋𝑥) (1 + 𝜃

1
𝑒−𝑖𝜋𝑥)

×

𝑁

∑

𝑛 =−𝑁

𝛿
1

𝑛
(𝜃, 𝑓
𝑛
− �̌�
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

.

(14)

Reiteration of this transformation up to 𝑝 times leads to the
following expansion of the error:

𝑟
𝑁
(𝑓, 𝑥)

= (𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

×

𝑝

∑

𝑘 = 1

𝜃
𝑘
𝛿
𝑘−1

𝑁
(𝜃, �̌�
𝑛
)

∏
𝑘

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

+ (𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

×

𝑝

∑

𝑘 = 1

𝜃
𝑘
𝛿
𝑘−1

−𝑁
(𝜃, �̌�
𝑛
)

∏
𝑘

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

+
1

∏
𝑝

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

∞

∑

|𝑛| =𝑁+1

𝛿
𝑝

𝑛
(𝜃, 𝑓
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

+
1

∏
𝑝

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

×

𝑁

∑

𝑛 =−𝑁

𝛿
𝑝

𝑛
(𝜃, 𝑓
𝑛
− �̌�
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

,

(15)

where the first two terms in the right-hand side can be viewed
as rational corrections to the error and the last two terms
as the actual error. This observation leads to the following
rational-trigonometric interpolation:

𝐼
𝑝

𝑁
(𝑓, 𝑥) = 𝐼

𝑁
(𝑓, 𝑥) + (𝑒

−𝑖𝜋𝑁𝑥
− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

×

𝑝

∑

𝑘 = 1

𝜃
𝑘
𝛿
𝑘−1

𝑁
(𝜃, �̌�
𝑛
)

∏
𝑘

𝑠=1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

+ (𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

×

𝑝

∑

𝑘 = 1

𝜃
𝑘
𝛿
𝑘−1

−𝑁
(𝜃, �̌�
𝑛
)

∏
𝑘

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

,

(16)

with the error

𝑟
𝑝

𝑁
(𝑓, 𝑥) =

1

∏
𝑝

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

×

∞

∑

|𝑛| =𝑁+1

𝛿
𝑝

𝑛
(𝜃, 𝑓
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

+
1

∏
𝑝

𝑠 = 1
(1 + 𝜃

𝑠
𝑒𝑖𝜋𝑥) (1 + 𝜃

𝑠
𝑒−𝑖𝜋𝑥)

×

𝑁

∑

𝑛 =−𝑁

𝛿
𝑝

𝑛
(𝜃, 𝑓
𝑛
− �̌�
𝑛
) 𝑒
𝑖𝜋𝑛𝑥

.

(17)

The problem of the determination of parameters 𝜃
𝑘
will

be discussed later.
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3. The KL-Interpolation

In this section, we consider the additional acceleration of
the rational-trigonometric interpolation by the polynomial
correction method known as the Krylov-Lanczos approach.
We recap the main ideas from [1].

Let 𝑓 ∈ 𝐶
𝑞−1
[−1, 1]. By 𝐴

𝑘
(𝑓), we denote the jumps of 𝑓

at the end points of the interval

𝐴
𝑘
(𝑓) = 𝑓

(𝑘)
(1) − 𝑓

(𝑘)
(−1) , 𝑘 = 0, . . . , 𝑞 − 1. (18)

The polynomial correction method is based on the
following representation of the interpolated function:

𝑓 (𝑥) =

𝑞−1

∑

𝑘 = 0

𝐴
𝑘
(𝑓) 𝐵
𝑘 (𝑥) + 𝐹 (𝑥) , (19)

where 𝐵
𝑘
are 2-periodic Bernoulli polynomials

𝐵
0 (𝑥) =

𝑥

2
, 𝐵

𝑘 (𝑥) = ∫𝐵𝑘−1 (𝑥) 𝑑𝑥,

∫

1

−1

𝐵
𝑘 (𝑥) 𝑑𝑥 = 0, 𝑥 ∈ [−1, 1] ,

(20)

with the Fourier coefficients

𝐵
𝑛 (𝑘) =

(−1)
𝑛+1

2(𝑖𝜋𝑛)
𝑘+1

, 𝑛 ̸= 0, 𝐵
0 (𝑘) = 0. (21)

Function 𝐹 is a 2-periodic and relatively smooth function
on the real line (𝐹 ∈ 𝐶

𝑞−1
(𝑅)) with the discrete Fourier

coefficients

�̌�
𝑛
= �̌�
𝑛
−

𝑞−1

∑

𝑘 = 0

𝐴
𝑘
(𝑓) �̌�
𝑛 (𝑘) . (22)

The approximation of 𝐹 in (19) by the classical trigonometric
interpolation leads to theKrylov-Lanczos (KL-) interpolation

𝐼
𝑁,𝑞

(𝑓, 𝑥) =

𝑞−1

∑

𝑘 = 0

𝐴
𝑘
(𝑓) 𝐵
𝑘 (𝑥) + 𝐼𝑁 (𝐹, 𝑥) , (23)

and the approximation of 𝐹 by the rational-trigonometric
interpolation leads to the rational-trigonometric-polynomial
(rtp-) interpolation

𝐼
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝑞−1

∑

𝑘 = 0

𝐴
𝑘
(𝑓) 𝐵
𝑘 (𝑥) + 𝐼

𝑝

𝑁
(𝐹, 𝑥) (24)

with the errors

𝑟
𝑁,𝑞

(𝑓, 𝑥) = 𝑓 (𝑥) − 𝐼𝑁,𝑞 (𝑓, 𝑥) , (25)

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) = 𝑓 (𝑥) − 𝐼

𝑝

𝑁,𝑞
(𝑓, 𝑥) , (26)

respectively.
We need the next results for further comparisons. Theo-

rems 1 and 2 show the behavior of the KL-interpolation in the
regions away from the singularities (𝑥 = ±1).

Denote

𝜙
𝑚
=

∞

∑

𝑠 = −∞

(−1)
𝑠

(2𝑠 + 1)
𝑚
. (27)

Theorem 1 (see [1]). Let 𝑞 ≥ 2 be even, 𝑓 ∈ 𝐶
𝑞+1
[−1, 1], and

𝑓
(𝑞+1)

∈ 𝐴𝐶[−1, 1].Then, the following estimate holds for |𝑥| <
1,

𝑟
𝑁,𝑞

(𝑓, 𝑥) =

𝜑
𝑁,𝑞

(𝑓, 𝑥)

𝑁𝑞+1
+ 𝑜 (𝑁

−𝑞−1
) , 𝑁 → ∞, (28)

where

𝜑
𝑁,𝑞

(𝑓, 𝑥) = 𝐴
𝑞
(𝑓)

(−1)
𝑁+𝑞/2

2𝜋𝑞+1

sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos (𝜋𝑥/2)
𝜙
𝑞+1
.

(29)

Theorem 2 (see [1]). Let 𝑞 ≥ 1 be odd, 𝑓 ∈ 𝐶
𝑞+2
[−1, 1], and

𝑓
(𝑞+2)

∈ 𝐴𝐶[−1, 1].Then, the following estimate holds for |𝑥| <
1,

𝑟
𝑁,𝑞

(𝑓, 𝑥) =

𝜑
𝑁,𝑞

(𝑓, 𝑥)

𝑁𝑞+2
+ 𝑜 (𝑁

−𝑞−2
) , 𝑁 → ∞, (30)

where
𝜑
𝑁,𝑞

(𝑓, 𝑥)

= 𝐴
𝑞
(𝑓)

(−1)
𝑁+(𝑞+1)/2+1

(𝑞 + 1)

4𝜋𝑞+1

×
sin (𝜋𝑥/2) sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos2 (𝜋𝑥/2)
𝜙
𝑞+2

+ 𝐴
𝑞+1

(𝑓)
(−1)
𝑁+(𝑞+1)/2

2𝜋𝑞+2

sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos (𝜋𝑥/2)
𝜙
𝑞+2
.

(31)

The aim of this paper is the derivation of analogs of
Theorems 1 and 2 for the rtp-interpolations.

The determination of parameters 𝜃
𝑘
is crucial for the

realization of the rtp-interpolation. General method leads to
the Fourier-Padé interpolation (see [16]).

Here, we consider a smooth function 𝑓 on [−1, 1] and
take

𝜃
𝑘
= 1 −

𝜏
𝑘

𝑁
, 𝑘 = 1, . . . , 𝑝, (32)

where the new parameters 𝜏
𝑘
are independent of 𝑁. They

can be determined differently. One approach leads to the 𝐿
2
-

minimal interpolation [14, 18]. This idea was introduced and
investigated in [14] for the Fourier-Padé approximations.The
first step towards𝐿

2
-minimal interpolationwas performed in

[18]. The idea of this interpolation was in the determination
of unknown parameters 𝜏

𝑘
from the condition

lim
𝑁→∞

𝑁
𝑞+1/2

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥)

𝐿2
→ minimum. (33)

Paper [18] showed the solution of that problem for 𝑝 = 1 and
1 ≤ 𝑞 ≤ 6.

Another approach for the determination of parameters
𝜏
𝑘
was described in [17], where 𝜏

𝑘
were the roots of the

associated Laguerre polynomial 𝐿𝑞𝑝(𝑥). Below, in numerical
experiments, we use this approach.

The following theorem, proved in [15], shows the conver-
gence rate of the rtp-interpolation in the regions away from
the singularities 𝑥 = ±1 for parameters 𝜃

𝑘
chosen as in (32).
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Theorem 3 (see [15]). Let 𝑓 ∈ 𝐶
𝑞+2𝑝+1

[−1, 1] and 𝑓(𝑞+2𝑝+1) ∈
𝐴𝐶[−1, 1] for some 𝑞, 𝑝 ≥ 1. Let parameters 𝜃

𝑘
be chosen as

in (32). Then, the following estimate holds as 𝑁 → ∞ and
|𝑥| < 1

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) = 𝑂 (𝑁

−𝑞−2𝑝−1
) . (34)

The main purpose of this paper is the derivation of
the exact estimates of the 𝑟𝑝

𝑁, 𝑞
(𝑓, 𝑥) when |𝑥| < 1 getting

more accurate ones than Theorem 3 presents. Based on
such estimates, we discuss the problem of parameters (𝜃, 𝑝,
and 𝑞) determination for accurate interpolation. Theoretical
estimates show the fast convergence of the rtp-interpolation
compared to the KL-interpolation. Numerical experiments
confirm theoretical estimates.

Throughout the paper, it is supposed that the exact values
of the jumps𝐴

𝑘
(𝑓) are known and that interpolated function

is smooth on [−1, 1].

4. Pointwise Convergence of
the RTP-Interpolation

Let 𝜃
𝑘
be defined as in (32) and by 𝛾

𝑘
(𝜏)denote the coefficients

of the polynomial

𝑝

∏

𝑠 = 1

(1 + 𝜏
𝑠
𝑥) =

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏) 𝑥

𝑠
. (35)

Also denote

𝜓
𝑚,𝑝

=

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏) (2𝑝 − 𝑘 − 𝑠 + 𝑚)!𝜙2𝑝−𝑘−𝑠+𝑚+1.

(36)

Theorems 4 and 5 describe pointwise behavior of the rtp-
interpolation in the regions away from the singularities 𝑥 =

±1. Theorem 4 deals with even values of 𝑞 and Theorem 5
with odd values.

Theorem 4. Let 𝑞 ≥ 2 be even and 𝑓 ∈ 𝐶
𝑞+2𝑝+1

[−1, 1] with
𝑓
(𝑞+2𝑝+1)

∈ 𝐴𝐶[−1, 1] for some 𝑝 ≥ 1. Let parameters 𝜃
𝑘
be

chosen as in (32).Then, the following estimate holds for |𝑥| < 1,

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)

𝑁2𝑝+𝑞+1
+ 𝑜 (𝑁

−2𝑝−𝑞−1
) , 𝑁 → ∞,

(37)

where

𝜑
𝑁,𝑞, 𝑝

(𝑓, 𝑥) = 𝐴
𝑞
(𝑓)

(−1)
𝑁+𝑝+𝑞/2

22𝑝+1𝜋𝑞+1𝑞!

sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos2𝑝+1 (𝜋𝑥/2)
𝜓
𝑞,𝑝
.

(38)

Proof. Expansion (19) and definition of interpolation
𝐼
𝑝

𝑁,𝑞
(𝑓, 𝑥) show that

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) = 𝑟

𝑝

𝑁
(𝐹, 𝑥) . (39)

The application of transformation (14) to (17) with 𝜃
𝑝+1

= 1

implies

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝛿
𝑝

𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
𝑝

−𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

+
1

𝑐 (𝑥)

𝑁

∑

𝑛 =−𝑁

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
− �̌�
𝑛
)) 𝑒
𝑖𝜋𝑛𝑥

+
1

𝑐 (𝑥)

∞

∑

|𝑛| =𝑁+1

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) 𝑒
𝑖𝜋𝑛𝑥

,

(40)

where, by 𝛿𝑠
𝑛
(𝑦
𝑛
), we denoted 𝛿

𝑠

𝑛
(𝜃, 𝑦
𝑛
) with 𝜃

𝑘
= 1, 𝑘 =

1, . . . , 𝑠 and

𝑐 (𝑥) = (1 + 𝑒
𝑖𝜋𝑥
) (1 + 𝑒

−𝑖𝜋𝑥
)

𝑝

∏

𝑠 = 1

(1 + 𝜃
𝑠
𝑒
𝑖𝜋𝑥
) (1 + 𝜃

𝑠
𝑒
−𝑖𝜋𝑥

)

= 4cos2𝜋𝑥
2

𝑝

∏

𝑠 = 1

(1 + 2𝜃
𝑠
cos𝜋𝑥 + 𝜃2

𝑠
) .

(41)

First, we estimate the last term in the right-hand side of
(40). We need to estimate 𝛿1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) for |𝑛| > 𝑁 as 𝑁 →

∞. In view of the smoothness of 𝐹, we get from expansion
(19) by means of integration by parts

𝐹
𝑛
=

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝐵
𝑛 (𝑚) +

1

2(𝑖𝜋𝑛)
2𝑝+𝑞+2

× ∫

1

−1

𝑓
(2𝑝+𝑞+2)

(𝑥) 𝑒
−𝑖𝜋𝑛𝑥

𝑑𝑥

=

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝐵
𝑛 (𝑚) + 𝑜 (𝑛

−2𝑝−𝑞−2
) ,

(42)

and consequently

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) =

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

+ 𝑜 (𝑛
−2𝑝−𝑞−2

) .

(43)

According to Lemma A.1,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚))) =

1

𝑁2𝑝
𝑂(𝑛
−𝑚−3

) , (44)

and, therefore,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) =

1

𝑁2𝑝
𝑜 (𝑛
−𝑞−2

) . (45)

Thus, we conclude that the last term in the right-hand side of
(40) is 𝑜(𝑁−𝑞−2𝑝−1).
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Now, we estimate the third term in the right-hand side of
(40). We need to estimate 𝛿1

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
− �̌�
𝑛
)) for |𝑛| ≤ 𝑁 as

𝑁 → ∞. Observing that

�̌�
𝑛
− 𝐹
𝑛
= ∑

𝑠 ̸= 0

𝐹
𝑛+𝑠(2𝑁+1)

, (46)

and, applying (42), we obtain

�̌�
𝑛
− 𝐹
𝑛
=

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓)(∑

𝑠 ̸= 0

𝐵
𝑛+𝑠(2𝑁+1)

) +
1

𝑁2𝑝+𝑞+2

× ∑

𝑠 ̸= 0

𝜀
𝑛+𝑠(2𝑁+1)

(𝑛/ (2𝑁 + 1) + 𝑠)
𝑞+2𝑝+2

=

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) (�̌�

𝑛 (𝑚) − 𝐵𝑛 (𝑚)) + 𝑜 (𝑁
−2𝑝−𝑞−2

) ,

|𝑛| ≤ 𝑁, 𝑁 → ∞,

(47)

where, by 𝜀
𝑛
, we denoted

𝜀
𝑛
=

1

2(𝑖𝜋)
2𝑝+𝑞+2

∫

1

−1

𝑓
(2𝑝+𝑞+2)

(𝑥) 𝑒
−𝑖𝜋𝑛𝑥

𝑑𝑥 (48)

and took into account that 𝜀
𝑛
= 𝑜(1) as 𝑛 → ∞. Now, it

follows that

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
− 𝐹
𝑛
))

=

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

+ 𝑜 (𝑁
−2𝑝−𝑞−2

) .

(49)

According to Lemma A.2,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚))) = 𝑂 (𝑁

−2𝑝−𝑞−3
) , (50)

and, therefore,

𝛿
1

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
− 𝐹
𝑛
)) = 𝑜 (𝑁

−2𝑝−𝑞−2
) . (51)

Hence, the third term in the right-hand side of (40) is also
𝑜(𝑁
−𝑞−2𝑝−1

) as𝑁 → ∞.
Finally, we get

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝛿
𝑝

𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
𝑝

−𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

+ 𝑜 (𝑁
−𝑞−2𝑝−1

) ,

(52)

and we need to estimate 𝛿𝑝
±𝑁
(𝜃, �̌�
𝑛
). Similarly, as above,

𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
) =

𝑞+2𝑝+1

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛 (𝑚)) + 𝑜 (𝑁

−2𝑝−𝑞−2
) .

(53)

In view of Lemmas A.3 and A.4,

𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
) = 𝐴

𝑞
(𝑓) 𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
(𝑞)) + 𝑜 (𝑁

−2𝑝−𝑞−2
)

= ± 𝐴
𝑞
(𝑓)

(−1)
𝑁+𝑝+1

2(𝑖𝜋)
𝑞+1
𝑁2𝑝+𝑞+1𝑞!

𝜓
𝑞,𝑝

+ 𝑂 (𝑁
−2𝑝−𝑞−2

) .

(54)

Substituting this into (52), we get the required estimate as
𝜃
𝑘
→ 1 and

lim
𝑁→∞

𝑐 (𝑥) = 2
2𝑝+2cos2𝑝+2𝜋𝑥

2
. (55)

We prove similar result for odd values of 𝑞.

Theorem 5. Let 𝑞 be odd, 𝑞 ≥ 1, and 𝑓 ∈ 𝐶
𝑞+2𝑝+2

[−1, 1] with
𝑓
(𝑞+2𝑝+2)

∈ 𝐴𝐶[−1, 1] for some 𝑝 ≥ 1. Let parameters 𝜃
𝑘
be

chosen as in (32).Then, the following estimate holds for |𝑥| < 1,

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)

𝑁2𝑝+𝑞+2
+ 𝑜 (𝑁

−2𝑝−𝑞−2
) , 𝑁 → ∞,

(56)

where

𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)

= 𝐴
𝑞
(𝑓)

(−1)
𝑁+𝑝+(𝑞+1)/2+1

22𝑝+2𝜋𝑞+1𝑞!

×
sin (𝜋𝑥/2) sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos2𝑝+2 (𝜋𝑥/2)
𝜓
𝑞+1, 𝑝

+ 𝐴
𝑞+1

(𝑓)
(−1)
𝑁+𝑝+(𝑞+1)/2

22𝑝+1𝜋𝑞+2 (𝑞 + 1)!

×
sin (𝜋 (2𝑁 + 1) 𝑥/2)

cos2𝑝+1 (𝜋𝑥/2)
𝜓
𝑞+1,𝑝

.

(57)

Proof. As the proof of this theorem mimics the proof of the
previous one, we omit some details.

The application of transformation (14) to (17) twice with
𝜃
𝑝+1

= 𝜃
𝑝+2

= 1 implies that

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝛿
𝑝

𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
𝑝

−𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
1

𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
))

𝑑 (𝑥)
(𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
1

−𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
))

𝑑 (𝑥)
(𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)
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+
1

𝑑 (𝑥)

𝑁

∑

𝑛 =−𝑁

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
− �̌�
𝑛
)) 𝑒
𝑖𝜋𝑛𝑥

+
1

𝑑 (𝑥)

∞

∑

|𝑛| =𝑁+1

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) 𝑒
𝑖𝜋𝑛𝑥

,

(58)

where, by 𝛿𝑠
𝑛
(𝑦
𝑛
), we denoted 𝛿

𝑠

𝑛
(𝜃, 𝑦
𝑛
) with 𝜃

𝑘
= 1, 𝑘 =

1, . . . , 𝑠, and

𝑐 (𝑥) = 4 cos2𝜋𝑥
2

𝑝

∏

𝑠 = 1

(1 + 2𝜃
𝑠
cos𝜋𝑥 + 𝜃2

𝑠
) ,

𝑑 (𝑥) = (1 + 𝑒
𝑖𝜋𝑥
)
2

(1 + 𝑒
−𝑖𝜋𝑥

)
2
𝑝

∏

𝑠 = 1

(1 + 𝜃
𝑠
𝑒
𝑖𝜋𝑥
) (1 + 𝜃

𝑠
𝑒
−𝑖𝜋𝑥

)

= 16 cos4𝜋𝑥
2

𝑝

∏

𝑠 = 1

(1 + 2𝜃
𝑠
cos𝜋𝑥 + 𝜃2

𝑠
) .

(59)

We have

𝐹
𝑛
=

𝑞+2𝑝+2

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝐵
𝑛 (𝑚) + 𝑜 (𝑛

−2𝑝−𝑞−3
) ,

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) =

𝑞+2𝑝+2

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

+ 𝑜 (𝑛
−2𝑝−𝑞−3

) .

(60)

According to Lemma A.1,

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐹
𝑛
)) =

1

𝑁2𝑝
𝑜 (𝑛
−𝑞−3

) , (61)

and the last term in the right-hand side of (58) is 𝑜(𝑁−𝑞−2𝑝−2)
as𝑁 → ∞.

Similarly,

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
− 𝐹
𝑛
))

=

𝑞+2𝑝+2

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

+ 𝑜 (𝑁
−2𝑝−𝑞−3

) ,

(62)

and, according to Lemma A.2,

𝛿
2

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
− 𝐹
𝑛
)) = 𝑜 (𝑁

−2𝑝−𝑞−3
) , 𝑁 → ∞. (63)

Hence, the fifth term in the right-hand side of (58) is
𝑜(𝑁
−𝑞−2𝑝−2

) as𝑁 → ∞.
Then,

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
)) =

𝑞+2𝑝+2

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

+ 𝑜 (𝑁
−2𝑝−𝑞−3

) .

(64)

According to Lemma A.4, when 𝑤 = 1 in (64) and 𝑞 is odd,
we get

𝛿
1

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
)) = 𝐴

𝑞
(𝑓) 𝛿
1

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛
(𝑞)))

+ 𝑜 (𝑁
−2𝑝−𝑞−3

)

= 𝑜 (𝑁
−2𝑝−𝑞−3

) ,

(65)

and hence the third and fourth terms in the right hand side of
(58) are 𝑜(𝑁−𝑞−2𝑝−2) as𝑁 → ∞. Now, from (58), we derive

𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥) =

𝛿
𝑝

𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
−𝑖𝜋𝑁𝑥

− 𝑒
𝑖𝜋(𝑁+1)𝑥

)

+

𝛿
𝑝

−𝑁
(𝜃, �̌�
𝑛
)

𝑐 (𝑥)
(𝑒
𝑖𝜋𝑁𝑥

− 𝑒
−𝑖𝜋(𝑁+1)𝑥

)

+ 𝑜 (𝑁
−𝑞−2𝑝−2

) .

(66)

Taking 𝑤 = 0 in (64), we write

𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
)

=

𝑞+2𝑝+2

∑

𝑚=𝑞

𝐴
𝑚
(𝑓) 𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛 (𝑚)) + 𝑜 (𝑁

−2𝑝−𝑞−3
)

= 𝐴
𝑞
(𝑓) 𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
(𝑞)) + 𝐴

𝑞+1
(𝑓) 𝛿
𝑝

±𝑁
(𝜃, �̌�
𝑛
(𝑞 + 1))

+ 𝑜 (𝑁
−2𝑝−𝑞−3

) .

(67)

Now, the application of Lemmas A.2 and A.3 completes the
proof.

Note that Theorems 4 and 5 are valid also for 𝑝 = 0.
In that case, the rtp-interpolation coincides with the KL-
interpolation as 𝐼0

𝑁,𝑞
(𝑓, 𝑥) ≡ 𝐼

𝑁,𝑞
(𝑓, 𝑥) and consequently

𝑟
0

𝑁,𝑞
(𝑓, 𝑥) ≡ 𝑟

𝑁,𝑞
(𝑓, 𝑥). Hence, for 𝑝 = 0, Theorems 4 and

5 coincide withTheorems 1 and 2, respectively.

5. Results and Discussion

First, let us compare Theorems 4 and 5. Theorem 4 states
that on the interval |𝑥| < 1, the rate of convergence of
𝐼
𝑝

𝑁,𝑞
(𝑓, 𝑥) is 𝑂(𝑁−𝑞−2𝑝−1) for even values of 𝑞. According

to Theorem 5, the rate of convergence of 𝐼𝑝
𝑁,𝑞
(𝑓, 𝑥) for odd

values of 𝑞 is 𝑂(𝑁−𝑞−2𝑝−2), and we have an improvement in
the convergence by the factor 𝑂(𝑁). From the other side,
Theorem 5 puts an additional smoothness requirement on
the interpolated function. Moreover, while the estimate in
Theorem 4depends only on𝐴

𝑞
(𝑓), the estimate ofTheorem 5

depends on both 𝐴
𝑞
(𝑓) and 𝐴

𝑞+1
(𝑓). All these mimic the

behavior of the KL-interpolation where we have the same
differences in the asymptotic estimates of Theorems 1 and 2.

Now, let us compare convergence of the KL- and the rtp-
interpolations. In this section, we suppose that parameters
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𝜏
𝑘
in (32) are the roots of the associated Laguerre poly-

nomial 𝐿𝑞𝑝(𝑥). Theorems concerning the rtp-interpolations
put additional smoothness requirements on the interpolated
function, and, in comparisons, it must be taken into account.

If an interpolated function is rather smooth (e.g., when
function is infinitely differentiable) such that for given 𝑞 and𝑝
Theorems 4 and 5 are valid, then the rtp-interpolation ismore
precise (however, asymptotically) than the KL-interpolation.
Comparison of Theorems 1 and 2 with Theorems 4 and 5
shows that the rtp-interpolation is more precise than the KL-
interpolation by factor 𝑂(𝑁2𝑝).

Now, we consider functions with finite smoothness and
suppose that all needed jumps are exactly available. Estimates
proved above show (see factors 𝐴

𝑞
(𝑓) and 𝐴

𝑞+1
(𝑓)) that the

utilization of all available jumps by the KL-interpolation is
not reasonable when the jumps of the interpolated function
are rapidly increasing. In such cases, more accuracy can
be achieved with less jumps in combination with rational
corrections.

Further in this section, we suppose that parameters 𝜏
𝑘
are

the roots of the associated Laguerre polynomials 𝐿𝑞𝑝(𝑥).
Let 𝑓 ∈ 𝐶

𝑀+1
[−1, 1], 𝑓(𝑀+1) ∈ 𝐴𝐶[−1, 1], 𝑀 ≥ 1, and

let 𝑞 be an even number. According to Theorems 1 and 4, if
the values of 𝑝 and 𝑞 satisfy the condition 𝑞 + 2𝑝 = 𝑀, then
both theorems are valid, and comparison of corresponding
approximations is legal. Then, asymptotic estimates of these
theorems will show which values of parameters 𝑝 and 𝑞

provide with better accuracy. We show this process for a
specific example. Let

𝑓 (𝑥) = sin (𝑎𝑥 − 1) , (68)

where 𝑎 is some parameter. We use the values 𝑎 =

1/10, 1, 10, 30, 50, and in Table 1 to calculate the values of
𝑁
−𝑞−2𝑝−1max

𝑥∈[−0.5,0.5]
|𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)| for 𝑁 = 1024 and for
different values of 𝑝 and 𝑞 with condition 𝑞 + 2𝑝 = 8. Recall
that 𝑝 = 0 corresponds to the KL-interpolation.

Table 1 shows that for 𝑎 = 1/10 and 𝑎 = 1 utilization
of all available jumps is reasonable and the KL-interpolation
𝐼
𝑁,8
(𝑓, 𝑥) has the best accuracy. For 𝑎 = 10, 30, and 50, the

rtp-interpolation 𝐼
3

𝑁,2
(𝑓, 𝑥) is the best, and as larger is the

value of parameter 𝑎 as more precise is the rtp-interpolation
compared to the KL-interpolation.

It is important to note that results in Table 1 are obtained
based on asymptotic estimates and we must compare these
results to actual errorsmax

𝑥∈[−0.5,0.5]
|𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥)| to see how the

asymptotic errors coincide with actual errors. In Table 2, the
values of the actual errors max

𝑥∈[−0.5,0.5]
|𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥)| for 𝑁 =

1024, and for different values of 𝑝 and 𝑞 with condition 𝑞 +
2𝑝 = 8 are calculated. ComparisonwithTable 1 shows that for
𝑁 = 1024 theoretical estimates of Theorems 1 and 4 coincide
with actual errors rather precisely.

We have the same situation for odd values of 𝑞. Let 𝑓 ∈

𝐶
𝑀+2

[−1, 1], 𝑓(𝑀+2) ∈ 𝐴𝐶[−1, 1], 𝑀 ≥ 1, and let 𝑞 be an
odd number. We use the same values of 𝑎 and in Table 3 to
calculate the values of (1/𝑁𝑞+2𝑝+2)max

𝑥∈[−0.5,0.5]
|𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)|

and in Table 4 to calculate the values ofmax
𝑥∈[−0.5,0.5]

|𝑟
𝑝

𝑁,𝑞
(𝑓)|

for 𝑁 = 1024 and for different values of 𝑝 and 𝑞 with

Table 1: Values of 𝑁−𝑞−2𝑝−1max
𝑥∈[−0.5,0.5]

|𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)| (see (38)) for
𝑁 = 1024, 𝑞 + 2𝑝 = 8 and for function (68). Parameters 𝜏

𝑘
are the

roots of the associated Laguerre polynomials 𝐿𝑞
𝑝
(𝑥).

𝑝 = 3 𝑝 = 2 𝑝 = 1 𝑝 = 0

𝑞 = 2 𝑞 = 4 𝑞 = 6 𝑞 = 8

𝑎 = 1/10 1.5 ⋅ 10
−30

4.6 ⋅ 10
−34

1.2 ⋅ 10
−37

3.9 ⋅ 10
−41

𝑎 = 1 1.2 ⋅ 10
−27

3.9 ⋅ 10
−29

1.1 ⋅ 10
−30

3.3 ⋅ 10
−32

𝑎 = 10 8.0 ⋅ 10
−26

2.5 ⋅ 10
−25

6.8 ⋅ 10
−25

2.2 ⋅ 10
−24

𝑎 = 30 1.3 ⋅ 10
−24

3.7 ⋅ 10
−23

9.0 ⋅ 10
−22

2.6 ⋅ 10
−22

𝑎 = 50 9.7 ⋅ 10
−25

7.6 ⋅ 10
−23

5.1 ⋅ 10
−21

4.1 ⋅ 10
−19

Table 2: Values of max
𝑥∈[−0.5,0.5]

|𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥)| (see (26)) for𝑁 = 1024,

𝑞 + 2𝑝 = 8, and for function (68). Parameters 𝜏
𝑘
are the roots of the

associated Laguerre polynomials 𝐿𝑞
𝑝
(𝑥).

𝑝 = 3 𝑝 = 2 𝑝 = 1 𝑝 = 0

𝑞 = 2 𝑞 = 4 𝑞 = 6 𝑞 = 8

𝑎 = 1/10 1.2 ⋅ 10
−30

3.9 ⋅ 10
−34

1.2 ⋅ 10
−37

3.9 ⋅ 10
−41

𝑎 = 1 9.8 ⋅ 10
−28

3.3 ⋅ 10
−29

9.9 ⋅ 10
−31

3.3 ⋅ 10
−32

𝑎 = 10 6.3 ⋅ 10
−26

2.1 ⋅ 10
−25

6.4 ⋅ 10
−25

2.1 ⋅ 10
−24

𝑎 = 30 1.0 ⋅ 10
−24

3.1 ⋅ 10
−23

8.5 ⋅ 10
−22

2.6 ⋅ 10
−22

𝑎 = 50 7.8 ⋅ 10
−25

6.4 ⋅ 10
−23

4.8 ⋅ 10
−21

4.0 ⋅ 10
−19

Table 3: Values of 𝑁−2𝑝−𝑞−2max
𝑥∈[−0.5,0.5]

|𝜑
𝑁,𝑞,𝑝

(𝑓, 𝑥)| (see (57)) for
𝑁 = 1024, 𝑞 + 2𝑝 = 7 and for function (68). Parameters 𝜏

𝑘
are the

roots of the associated Laguerre polynomials 𝐿𝑞
𝑝
(𝑥).

𝑝 = 3 𝑝 = 2 𝑝 = 1 𝑝 = 0

𝑞 = 1 𝑞 = 3 𝑞 = 5 𝑞 = 7

𝑎 = 1/10 4.0 ⋅ 10
−28

2.0 ⋅ 10
−31

4.8 ⋅ 10
−35

7.1 ⋅ 10
−39

𝑎 = 1 4.0 ⋅ 10
−26

1.9 ⋅ 10
−27

4.3 ⋅ 10
−29

6.3 ⋅ 10
−31

𝑎 = 10 6.6 ⋅ 10
−25

2.3 ⋅ 10
−24

4.5 ⋅ 10
−24

6.0 ⋅ 10
−24

𝑎 = 30 8.6 ⋅ 10
−24

2.3 ⋅ 10
−22

3.7 ⋅ 10
−21

4.1 ⋅ 10
−20

𝑎 = 50 6.0 ⋅ 10
−24

4.3 ⋅ 10
−22

1.9 ⋅ 10
−20

5.5 ⋅ 10
−19

Table 4: Values of max
𝑥∈[−0.5,0.5]

|𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥)| (see (26)) for𝑁 = 1024,

𝑞 + 2𝑝 = 7 and for function (68). Parameters 𝜏
𝑘
are the roots of the

associated Laguerre polynomials 𝐿𝑞
𝑝
(𝑥).

𝑝 = 3 𝑝 = 2 𝑝 = 1 𝑝 = 0

𝑞 = 1 𝑞 = 3 𝑞 = 5 𝑞 = 7

𝑎 = 1/10 3.8 ⋅ 10
−28

2.0 ⋅ 10
−31

4.7 ⋅ 10
−35

7.0 ⋅ 10
−39

𝑎 = 1 3.8 ⋅ 10
−26

1.8 ⋅ 10
−27

4.2 ⋅ 10
−29

6.2 ⋅ 10
−31

𝑎 = 10 6.3 ⋅ 10
−25

2.2 ⋅ 10
−24

4.5 ⋅ 10
−24

6.0 ⋅ 10
−24

𝑎 = 30 8.1 ⋅ 10
−24

2.3 ⋅ 10
−22

3.7 ⋅ 10
−21

4.1 ⋅ 10
−20

𝑎 = 50 5.7 ⋅ 10
−24

4.2 ⋅ 10
−22

1.8 ⋅ 10
−20

5.5 ⋅ 10
−19

condition 𝑞 + 2𝑝 = 7 when both Theorems 2 and 5 are valid.
Again, for 𝑎 = 1/10 and 𝑎 = 1, the best accuracy has the KL-
interpolation. For 𝑎 = 10, 𝑎 = 30, and 𝑎 = 50, the best is
rtp-interpolation 𝐼3

𝑁,1
(𝑓, 𝑥).

Overall conclusion based on these specific examples and
on comparison of the asymptotic estimates is the following:
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not always the utilization of all available jumps, by the KL-
interpolation, leads to the best interpolation (if we mean
pointwise convergence in the regions away from the singu-
larities where the rtp-interpolation has faster convergence
rate.) This is due to the factors 𝐴

𝑞
(𝑓) and 𝐴

𝑞+1
(𝑓) in the

estimates. When the values of jumps are rapidly increasing,
then better accuracy can be achieved by the utilization of
smaller number of jumps (consequently, with smaller 𝐴

𝑞
(𝑓)

and 𝐴
𝑞+1
(𝑓)) and appropriately chosen corrections based on

the smoothness of the interpolated function.Which choice of
𝑞 and𝑝 is the best that can be concluded from the comparison
of the corresponding estimates as we did it above.

Itmust be alsomentioned that when the jumps are rapidly
increasing then getting their approximations is problematic,
so in such cases, the utilization of the rational corrections is
unavoidable for better accuracy.

Appendix

In this section, we prove some lemmas concerning gener-
alized finite differences 𝛿𝑠

𝑛
(𝜃, 𝑦
𝑛
). By 𝛿𝑠

𝑛
(𝑦
𝑛
), we denote the

sequence that corresponds to 𝜃
𝑘
= 1, 𝑘 = 1, . . . , 𝑠. By Δ𝑘

𝑛
(𝑐
𝑛
),

we denote the differences defined by the relations

Δ
0

𝑛
(𝑐
𝑛
) = 𝑐
𝑛
,

Δ
𝑘

𝑛
(𝑐
𝑛
) = Δ
𝑘−1

𝑛
(𝑐
𝑛
) + Δ
𝑘−1

𝑛−1
(𝑐
𝑛
) .

(A.1)

Now, it is easy to verify that

𝛿
𝑘

𝑛
(𝑐
𝑛
) = Δ
2𝑘

𝑛+𝑘
(𝑐
𝑛
) . (A.2)

Lemma A.1. The following estimate holds for 𝑝,𝑤,𝑚 ≥ 0 as
𝑁 → ∞ and |𝑛| ≥ 𝑁 + 1, where 𝜃

𝑘
are chosen as in (32)

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚))) =

(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑛)
𝑚+1

𝑛2𝑤+2𝑝𝑚!

×

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠𝑛−𝑠

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

𝑁𝑘𝑛−𝑘

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚)!

+
1

𝑁2𝑝
𝑂(𝑛
−2𝑤−𝑚−2

) .

(A.3)

Proof. In view of definitions of 𝛿𝑘
𝑛
(𝜃, 𝑦
𝑛
), 𝛿𝑘
𝑛
(𝑦
𝑛
) and their

connection with Δ𝑘
𝑛
(𝑦
𝑛
), we write

𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝐵
𝑛 (𝑚)) .

(A.4)

Then,

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑤

𝑛+𝑤
(Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝐵
𝑛 (𝑚))) .

(A.5)

Taking into account that

Δ
2𝑤

𝑛+𝑤
(Δ
2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠
(𝐵
𝑛 (𝑚))) = Δ

2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
(𝐵
𝑛 (𝑚)) , (A.6)

we find

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘
Δ
2𝑤+2𝑝−𝑘−𝑠

𝑛+𝑝−𝑠+𝑤
(𝐵
𝑛 (𝑚)) .

(A.7)

Moreover, since

Δ
𝑤

𝑛
(𝑦
𝑛
) =

2𝑤

∑

ℓ = 0

(
2𝑤

ℓ
)𝑦
𝑛−ℓ
, (A.8)

we obtain

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

×

2𝑤+2𝑝−𝑘−𝑠

∑

ℓ = 0

(
2𝑤 + 2𝑝 − 𝑘 − 𝑠

ℓ
)𝐵
𝑛+𝑝−𝑠+𝑤−ℓ (𝑚) .

(A.9)

Taking into account the explicit form of the Fourier
coefficients of the Bernoulli polynomials

𝐵
𝑛+𝑝−𝑠+𝑤−ℓ (𝑚) =

(−1)
𝑛+𝑝−𝑠+𝑤−ℓ+1

2 (𝑖𝜋 (𝑛 + 𝑝 − 𝑠 + 𝑤 − ℓ))
𝑚+1

=
(−1)
𝑛+𝑝+𝑠+𝑤+ℓ+1

2(𝑖𝜋𝑛)
𝑚+1

×

∞

∑

𝑗 = 0

(
𝑗 + 𝑚

𝑚
)
(ℓ + 𝑠 − 𝑤 − 𝑝)

𝑗

𝑛𝑗

=
(−1)
𝑛+𝑝+𝑠+𝑤+ℓ+1

2(𝑖𝜋𝑛)
𝑚+1

∞

∑

𝑗 = 0

1

𝑛𝑗
(
𝑗 + 𝑚

𝑚
)

×

𝑗

∑

𝑡 = 0

(
𝑗

𝑡
) ℓ
𝑡
(𝑠 − 𝑤 − 𝑝)

𝑗−𝑡
,

(A.10)

we derive

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

=
(−1)
𝑛+p+𝑤+1

2(𝑖𝜋𝑛)
𝑚+1

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

×

∞

∑

𝑗 = 0

1

𝑛𝑗
(
𝑗 + 𝑚

𝑚
)

×

𝑗

∑

𝑡 = 0

(
𝑗

𝑡
) (𝑠 − 𝑤 − 𝑝)

𝑗−𝑡
𝛼
2𝑤+2𝑝−𝑘−𝑠,𝑡

,

(A.11)
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where

𝛼
𝑟,𝑡
=

𝑟

∑

ℓ = 0

(−1)
ℓ
(
𝑟

ℓ
) ℓ
𝑡
. (A.12)

Note that

𝛼
𝑟,𝑡
= 0, 𝑡 ≤ 𝑟 − 1. (A.13)

Thus,

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, 𝐵
𝑛 (𝑚)))

=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑛)
𝑚+1

𝑛2𝑤+2𝑝

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

×

∞

∑

𝑗 = 0

1

𝑛𝑗−𝑘−𝑠
(
2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑗 + 𝑚

𝑚
)

×

𝑗

∑

𝑡 = 0

(
𝑗 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠

𝑡 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠
) (𝑠 − 𝑤 − 𝑝)

𝑗−𝑡

× 𝛼
2𝑤+2𝑝−𝑘−𝑠,𝑡+2𝑤+2𝑝−𝑘−𝑠

=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑛)
𝑚+1

𝑛2𝑤+2𝑝𝑚!

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑁𝑠𝑛−𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘𝑛−𝑘

× (
2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚

𝑚
)𝛼
2𝑤+2𝑝−𝑘−𝑠,2𝑤+2𝑝−𝑘−𝑠

+
1

𝑁2𝑝
𝑂(𝑛
−2𝑤−𝑚−2

) ,

(A.14)

which completes the proof as

𝛼
2𝑤+2𝑝−𝑘−𝑠,2𝑤+2𝑝−𝑘−𝑠

= (−1)
2𝑤+2𝑝−𝑘−𝑠

(2𝑤 + 2𝑝 − 𝑘 − 𝑠)!.

(A.15)

The proof of next lemmas can be obtained in a similar
manner.

Lemma A.2. The following estimate holds for 𝑝,𝑤,𝑚 ≥ 0 as
𝑁 → ∞ and |𝑛| ≤ 𝑁, where 𝜃

𝑘
are chosen as in (32)

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚)!

× ∑

𝑟 ̸= 0

(−1)
𝑟

(2𝑟 + 𝑛/𝑁)
2𝑤+2𝑝−𝑘−𝑠+𝑚+1

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−2

) .

(A.16)

Proof. Similar to (A.9), we get

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

×

2𝑤+2𝑝−𝑘−𝑠

∑

ℓ = 0

(
2𝑤 + 2𝑝 − 𝑘 − 𝑠

ℓ
)

× (�̌�
𝑛+𝑝−𝑠+𝑤−ℓ (𝑚) − 𝐵𝑛+𝑝−𝑠+𝑤−ℓ (𝑚)) .

(A.17)

Taking into account that

�̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚) = ∑

𝑟 ̸= 0

𝐵
𝑛+𝑟(2𝑁+1) (𝑚)

=
(−1)
𝑛+1

2(𝑖𝜋)
𝑚+1

∑

𝑟 ̸= 0

(−1)
𝑟

(𝑛 + 𝑟 (2𝑁 + 1))
𝑚+1

,

(A.18)

we derive

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁k

×

∞

∑

𝑗 = 0

1

𝑁𝑗
(
𝑗 + 𝑚

𝑚
)

𝑗

∑

𝑡 = 0

(
𝑗

𝑡
) 𝛼
2𝑤+2𝑝−𝑘−𝑠,𝑡

× ∑

𝑟 ̸= 0

(−1)
𝑟
(𝑠 − 𝑤 − 𝑝 − 𝑟)

𝑗−𝑡

(2𝑟 + 𝑛/𝑁)
𝑗+𝑚+1

.

(A.19)

In view of identity (A.13), we have

𝛿
𝑤

𝑛
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚) − 𝐵𝑛 (𝑚)))

=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

(−1)
𝑘
𝛾
𝑘 (𝜏)

×

∞

∑

𝑗 = 0

1

𝑁𝑗
(
𝑗 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚

𝑚
)

×

𝑗

∑

𝑡 = 0

(
𝑗 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠

𝑡 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠
)

× 𝛼
2𝑤+2𝑝−𝑘−𝑠,𝑡+2𝑤+2𝑝−𝑘−𝑠

∑

𝑟 ̸= 0

(−1)
𝑟
(𝑠 − 𝑤 − 𝑝 − 𝑟)

𝑗−𝑡

(2𝑟 + 𝑛/𝑁)
𝑗+2𝑤+2𝑝−𝑘−𝑠+𝑚+1
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=
(−1)
𝑛+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝

×

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

(−1)
𝑘
𝛾
𝑘 (𝜏) (

2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚

𝑚
)

× 𝛼
2𝑤+2𝑝−𝑘−𝑠,2𝑤+2𝑝−𝑘−𝑠

× ∑

𝑟 ̸= 0

(−1)
𝑟

(2𝑟 + 𝑛/𝑁)
2𝑤+2𝑝−𝑘−𝑠+𝑚+1

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−2

) ,

(A.20)

which completes the proof as

𝛼
2𝑤+2𝑝−𝑘−𝑠,2𝑤+2𝑝−𝑘−𝑠

= (−1)
2𝑤+2𝑝+𝑘+𝑠

(2𝑤 + 2𝑝 − 𝑘 − 𝑠)!.

(A.21)

LemmaA.3. Let𝑚 be even.Then, the following estimate holds
for 𝑝,𝑤,𝑚 ≥ 0 as𝑁 → ∞, where 𝜃

𝑘
are chosen as in (32)

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=
(−1)
𝑁+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚)!

∞

∑

𝑟 =−∞

(−1)
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+1

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−2

) .

(A.22)

Proof. Similar to (A.9), we get

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=

𝑝

∑

𝑠 = 0

(−1)
𝑠 𝛾𝑠 (𝜏)

𝑁𝑠

𝑝

∑

𝑘 = 0

(−1)
𝑘 𝛾𝑘 (𝜏)

𝑁𝑘

×

2𝑤+2𝑝−𝑘−𝑠

∑

ℓ = 0

(
2𝑤 + 2𝑝 − 𝑘 − 𝑠

ℓ
) �̌�
±𝑁+𝑝−𝑠+𝑤−ℓ (𝑚) .

(A.23)

Taking into account that

�̌�
𝑛 (𝑚) =

∞

∑

𝑠 = −∞

𝐵
𝑛+𝑠(2𝑁+1) (𝑚)

=
(−1)
𝑛+1

2(𝑖𝜋)
𝑚+1

∞

∑

𝑠 = −∞

(−1)
𝑠

(𝑛 + 𝑠 (2𝑁 + 1))
𝑚+1

,

(A.24)

we have

�̌�
±𝑁+𝑝−𝑠+𝑤−ℓ (𝑚) =

(−1)
𝑁+𝑝+𝑤+𝑠+ℓ+1

2(𝑖𝜋𝑁)
𝑚+1

∞

∑

𝑗 = 0

1

𝑁𝑗
(
𝑗 + 𝑚

𝑚
)

×

∞

∑

𝑟 = −∞

(−1)
𝑟
(ℓ + 𝑠 − 𝑝 − 𝑤 − 𝑟)

𝑗

(2𝑟 ± 1)
𝑚+𝑗+1

.

(A.25)

Hence,

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=
(−1)
𝑁+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

(−1)
𝑘
𝛾
𝑘 (𝜏)

×

∞

∑

𝑗 = 0

1

𝑁𝑗
(
𝑗 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚

𝑚
)

×

𝑗

∑

𝑡 = 0

(
𝑗 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠

𝑡 + 2𝑤 + 2𝑝 − 𝑘 − 𝑠
) 𝛼
2𝑤+2𝑝−𝑘−𝑠,𝑡+2𝑤+2𝑝−𝑘−𝑠

×

∞

∑

𝑟 =−∞

(−1)
𝑟
(𝑠 − 𝑝 − 𝑤 − 𝑟)

𝑗−𝑡

(2𝑟 ± 1)
𝑗+2𝑤+2𝑝−𝑘−𝑠+𝑚+1

.

(A.26)

From here, we get

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=
(−1)
𝑁+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝

𝑝

∑

𝑠 = 0

𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

(−1)
𝑘
𝛾
𝑘 (𝜏)

× (
2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚

𝑚
)𝛼
2𝑤+2𝑝−𝑘−𝑠,2𝑤+2𝑝−𝑘−𝑠

×

∞

∑

𝑟 =−∞

(−1)
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+1

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−2

) ,

(A.27)

which completes the proof.

Lemma A.4. Let𝑚 be odd. Then, the following estimate holds
for 𝑝,𝑤 ≥ 0 and𝑚 ≥ 1 as𝑁 → ∞, where 𝜃

𝑘
are chosen as in

(32)

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=
(−1)
𝑁+𝑝+𝑤

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝+1𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚 + 1)!

×

∞

∑

𝑟 =−∞

(−1)
𝑟
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+2

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−3

) .

(A.28)
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Proof. We again use (A.26) and explore terms 𝑗 = 0 and 𝑗 = 1

𝛿
𝑤

±𝑁
(𝛿
𝑝

𝑛
(𝜃, �̌�
𝑛 (𝑚)))

=
(−1)
𝑁+𝑝+𝑤+1

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚)!

∞

∑

𝑟 =−∞

(−1)
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+1

+
(−1)
𝑁+𝑝+𝑤+1

4(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝+1𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚 + 1)! (𝑠 − 𝑘)

×

∞

∑

𝑟 =−∞

(−1)
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+2

+
(−1)
𝑁+𝑝+𝑤

2(𝑖𝜋𝑁)
𝑚+1

𝑁2𝑤+2𝑝+1𝑚!

𝑝

∑

𝑠 = 0

(−1)
𝑠
𝛾
𝑠 (𝜏)

𝑝

∑

𝑘 = 0

𝛾
𝑘 (𝜏)

× (2𝑤 + 2𝑝 − 𝑘 − 𝑠 + 𝑚 + 1)!

×

∞

∑

𝑟 =−∞

(−1)
𝑟
𝑟

(2𝑟 ± 1)
2𝑤+2𝑝−𝑘−𝑠+𝑚+2

+ 𝑂 (𝑁
−2𝑤−2𝑝−𝑚−3

) , 𝑁 → ∞.

(A.29)

It is easy to verify that the first two terms in the right-hand
side of (A.29) vanish for odd values of 𝑚. This observation
completes the proof.

Notations

𝑓
𝑛
: The Fourier coefficient (see (5))

�̌�
𝑛
: The discrete Fourier coefficient (see (2))

𝐼
𝑁
(𝑓, 𝑥): Classic trigonometric interpolation (see

(1))
𝑟
𝑁
(𝑓, 𝑥): Error of classic trigonometric

interpolation (see (4))
𝐼
𝑝

𝑁
(𝑓, 𝑥): Rational-trigonometric interpolation (see

(16))
𝑟
𝑝

𝑁
(𝑓, 𝑥): Error of rational-trigonometric

interpolation (see (17))
𝐼
𝑁,𝑞
(𝑓, 𝑥): The Krylov-Lanczos interpolation (see

(23))
𝑟
𝑁,𝑞
(𝑓, 𝑥): Error of the Krylov-Lanczos interpolation

(see (25))
𝐼
𝑝

𝑁,𝑞
(𝑓, 𝑥): Rational-trigonometric-polynomial

interpolation (see (24))
𝑟
𝑝

𝑁,𝑞
(𝑓, 𝑥): Error of

rational-trigonometric-polynomial
interpolation (see (26))

𝐴
𝑘
(𝑓): Jumps of 𝑓 (see (18))

𝛿
𝑠

𝑛
(𝜃, 𝑦
𝑛
): Generalized finite difference (see (13))

𝛿
𝑠

𝑛
(𝑦
𝑛
): Generalized finite difference with 𝜃

𝑘
= 1,

𝑘 = 1, . . . , 𝑠 (see Section 4 and the
appendix)

Δ
𝑠

𝑛
(𝑦
𝑛
): Finite difference (see (A.1))

𝐵
𝑘
(𝑥): The Bernoulli polynomial (see (20))

𝐵
𝑛
(𝑘): The Fourier coefficient of the Bernoulli

polynomial (see (21))
𝜏
𝑘
: Some parameters joined to 𝜃

𝑘
(see (32))

𝛾
𝑠
(𝜏): Coefficients of polynomial with the roots

−1/𝜏
𝑘
(see (35)).
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