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Abstract

We apply the idea of Fourier-Pade approximation for accelerating the
convergence of the truncated Fourier series. The resultant rational lin-
ear approximation of the smooth function f on [−1, 1] is constructed by
the roots of the Laguerre polynomial that depends on the smoothness
of the approximated function. Numerical results outlined the quality of
approximations.
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1. Basic Formulae Denote

SN (f) =

N∑
n=−N

fne
i�nx, fn =

1

2

∫ 1

−1

f(x)e−i�nxdx. (1)

For a finite sequence of complex numbers � := {�k}pk=−p, p ≥ 1 we put

Δ0
n(�) = fn, Δk

n(�) = Δk−1
n (�) + �k sgn(n)Δ

k−1
(∣n∣−1)sqn(n)(�), k ≥ 1,

where sgn(n) = 1 if n ≥ 0 and sgn(n) = −1 if n < 0.
By RN (f) denote the approximation error of the truncated Fourier series

RN (f) = f(x)− SN (f) = R+
N (f) +R−N (f),

where

R+
N (f) =

∞∑
n=N+1

fne
i�nx, R−N (f) =

−N−1∑
n=−∞

fne
i�nx.
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Applying the Abel transformation, we get

R+
N (f) = −ei�(N+1)x

p∑
k=1

�kΔk−1
N (�)∏k

s=1(1 + �sei�x)

+
1∏p

k=1(1 + �kei�x)

∞∑
n=N+1

Δp
n(�)ei�nx.

Similar expansion of R−N (f) reduces to the following approximation ([2])

Sp,N (f) :=

N∑
n=−N

fne
i�nx − ei�(N+1)x

p∑
k=1

�kΔk−1
N (�)∏k

s=1(1 + �sei�x)

− e−i�(N+1)x

p∑
k=1

�−kΔk−1
−N (�)∏k

s=1(1 + �−se−i�x)

with the error

Rp,N (f) = f(x)− Sp,N (f) = R+
p,N (f) +R−p,N (f),

where

R±p,N (f) :=
1∏p

k=1(1 + �±ke±i�x)

∞∑
n=N+1

Δp
±n(�)e±i�nx.

If � is the solution of system

Δp
n(�) = 0, n = −N − 1, ⋅ ⋅ ⋅ ,−N − p;N + 1, ⋅ ⋅ ⋅ , N + p, (2)

then approximation Sp,N (f) coincides with the Fourier-Pade approximation
[1].

In this paper we introduce an alternative approach for determining the
parameters �k when the approximated function is smooth on [−1, 1]. The
resultant approximates f by means of rational functions but realizes linear
approximation.

We put
Ak(f) = f (k)(1)− f (k)(−1).

Further we suppose that

�k = �−k = 1− �k
N
, k = 1, ⋅ ⋅ ⋅ , p. (3)

By 
k(p), k = 0, ⋅ ⋅ ⋅ , p we denote the coefficients of the polynomial
p∏
k=1

(1 + �kx) ≡
p∑
k=0


k(p)xk.

First we need the following Lemma.
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Lemma 1. [2] Suppose f ∈ Cq+p[−1, 1], q ≥ 0, p ≥ 1, and f (q+p) is
absolutely continuous on [−1, 1]. Then, if Aj(f) = 0 for j = 0, ⋅ ⋅ ⋅ , q − 1
and �k are chosen as in (3), the following asymptotic expansion holds
as N →∞, n ≥ N + 1

Δp
n(�) = Aq(f)

(−1)n+p+1

2(i�)q+1q!

p∑
k=0

(q + p− k)!(−1)k
k(p)

Nknq+p−k+1
+ o(n−q−p−1).

In view of Lemma 1 and system (2) we get the following system for deter-
mining the numbers �k

p∑
k=0

(q + p− k)!(−1)k
k(p)(
1 + s

N

)q+p−k+1
= 0, s = 1, ⋅ ⋅ ⋅ , p.

Expansion into Taylor series in terms of 1/N leads to the following equations

p∑
k=0

(−1)k
k(p)(m+ q + p− k)! = 0, m = 0, ⋅ ⋅ ⋅ , p− 1.

From here we get


k(p) =

(
p

k

)
(q + p)!

(q + p− k)!
, k = 0, ⋅ ⋅ ⋅ , p, 
0(p) = 1.
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Figure 1: Absolute errors while ap-
proximating (??) by the truncated
Fourier series (solid line) and ratio-
nal approximation for p = 1 (dashed
line) when N = 16 and q = 2.
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Figure 2: Absolute errors while ap-
proximating (4) by the rational ap-
proximation for p=1 (thick solid line),
p = 2 (dashed line) and p = 3 (thin
solid line) when N=16 and q=2.

Taking into account the definition of 
k we obtain the equation

(p+ q)!

p∑
k=0

(−1)k

(p− k)! k! (q + k)!
xk = 0,
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with Laguerre polynomial ([3]) Lqp(x) in the left hand side that has positive
single roots {xk}pk=1 satisfying the condition xk = �k. Now Sp,N (f) with
�k defined by (3), where �k are the roots of the Laguerre polynomial Lqp(x),
realizes rational linear approximation of the smooth function f on [−1, 1].

It is easy to check that for p = 1 we have �1 = 1 + q and for p = 2 we get
�1 = q + 2 +

√
q + 2 and �2 = q + 2−

√
q + 2.

2. Numerical Illustrations Consider the following simple function

f(x) = (1− x2)2 sin(x− 0.5). (4)

Figures 1 and 2 compare truncated Fourier series with the rational ap-
proximations at the point x = 1. Figure 3 shows the plots of the absolute
errors on the interval [−0.5, 0.5] while approximating (4) by the truncated
Fourier series and rational approximations.
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Figure 3: Absolute errors while approximating (4) by the truncated Fourier
series and rational approximations on the interval [−0.5, 0.5] for N = 16 and
q = 2.
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