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Abstract—Incorporation of user feedback in enterprise manage-
ment products can greatly enhance our understanding of mo-
dern technology challenges and amplify the ability for those 
products to home in to user environments. In this paper we pre-
sent an entropy-based confidence determination approach to 
process user feedback data (direct or indirect) to automatically 
rank and update the beliefs of any recommender system. Several 
examples of application of this method are discussed in the 
context of VMware products. Moreover, an optimization algo-
rithm is demonstrated for adaptive thresholding of monitoring 
flows based on user ratings of generated alerts effectiveness.   

Keywords —Feedback computing, recommendation systems, 
belief ranking, entropy, adaptive thresholds.   

I. INTRODUCTION 
With emerging challenges in automated system manage-

ment for the cloud computing age, there is an unprecedented 
motivation in new smart software solutions with data-agnostic 
instrumentation. Such an approach, in particular, is adopted by 
virtualization and hybrid cloud leader VMware within a series 
of products [1], as in vRealize Operations Manager (vR Ops), 
Log Insight, vSphere Dynamic Resource Scheduler (DRS). 
Those products and their features that are mostly delivered by 
means of data learning methods with minimum involvement 
of user or expert/administrator knowledge provide a high level 
universality in problem solutions at the customers indepen-
dently of their environment. (In this paper the words user or 
customer refers to both the human user of the products and 
also the beneficiary of actions taken by the products. For 
example, a host can be the customer of DRS actions). These 
are indispensable technologies in modern large-scale and 
heterogeneous cloud systems. However, these technologies 
have inevitable drawbacks that can be overcome with employ-
ment of new algorithmic solutions based on the feedbacks that 
user or expert provides during exploitation of those intelligent 
software systems. Statistical processing of feedback data can 
enhance the original data-driven analytics by enabling a 
closed-loop self-tuning product. Deployed products or 
features that either take or recommend an action to the user for 
automatic management purposes (based on prior beliefs in 
best practices or learned from its ecosystem) or whose output 
invokes an action from the user fall into this category. User 
feedback can be obtained directly, via asking the user 
questions (can be as simple as a “like” button), or indirectly, 
by following user behavior. More importantly, incorporation 
of a closed-loop feedback mechanism can dramatically boost 
the enterprise solutions by tuning themselves to the 
customer’s usage patterns.  

In general, we can think of the feedback computing as an 
umbrella domain for vast variety of research and application 

areas ranging from modern recommender systems to systems 
design for peta-scale compute and storage environments [2] 
and clouds [3]. In all cases, the feedback incorporation aims at 
maximizing systems throughputs. In particular, [2] discusses 
a feedback computing framework that can alleviate system 
bottlenecks for better utilization of system resources, and [3] 
elaborates an optimal resource allocation scheme for IaaS. 
While recommender systems represent a well-developed 
computer science area, the feedback compute in system 
design issues remains fragmentary and lacking a systematic 
treatment. To the best of our knowledge, there is no simple 
and unified data science framework for processing of 
feedback information in improvement of the above 
mentioned cognitive technologies that concern system and 
product design. Therefore, an idea arises to interpret the 
feedback compute in terms of validation of systems main 
cognitive convictions/beliefs that they operate on, employing 
a formalism of statistical inference with the concepts of 
confidence, information uncertainty, and ranking.  

A data-agnostic analysis of an environment results in 
certain “beliefs”. Beliefs can be computed or gained through 
prior knowledge of certain systems (e.g. when to move a 
virtual machine (VM) to another host within a virtualized 
infrastructure). These beliefs are applied as tools for systems 
management, in particular, in recommending the user (or 
many distributed users) to take actions or indicating certain 
status of the system such as anomalous states. Sometimes 
those beliefs, or equivalently, the recommendations gene-
rated based on those beliefs can be evaluated by the user or 
expert feedback. Moreover, the assessment feedback by the 
same user about the same belief can vary from one time 
instant to another based on many factors, such as evolution of 
the underlying environment, re-comprehension of the belief’s 
influence over time, and situation-based specifics. Collecting 
this feedback and comprehending it by means of a second 
layer data-agnostic processing, we are able to come up with 
more reliable recommendations to the user by modifying the 
original beliefs. In case of multiple users of the system 
beliefs, those updated recommendations need to be 
generalized, a trade-off for all parties satisfaction. This means 
that those products and their features will be adequately self-
tuned at the user environment in terms of smarter belief 
retrieval. The term “recommendation systems/engines” 
applied here primarily covers any recommendation gene-
ration apparatus in the sense above. This means that our 
research can sit on top of any recommender system.  

II. ENTROPY-BASED CONFIDENCE 
Assume we have observed some beliefs from data 

representing the system at the user. In a data-agnostic 
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management approach of systems we apply those beliefs 
directly without measuring user perception of (confidence 
on) effectiveness of our recommendations based on those 
beliefs. If there is an opportunity to ask the user for some 
feedback about the observed beliefs and evaluate its statistical 
nature, then we are able to manage the system more 
effectively. Let nBBB ,....,, 21  be the initial beliefs (with their 
data-agnostic maximum confidences equal to 1), and let 

)(),...,(),()( 21 iKiii BfBfBfBF �  be the feedback statistics 
(collected into a uniform array from possibly many 
distributed users of the system instances over time) on belief 

iB  taking value from ]1,0[ . We assume that any indirect 
feedback that can be tracked is also convertible to the same 
interval. We also assume that the feedback statistics for 
different beliefs are independent of each other. An extension 
of this model needs to account for correlated feedback 
statistics regarding different beliefs. By processing )( iBF  

we want to come up with a confidence )( iBC , ni ,1� , of iB  
that tells us the degree of the belief “strength” as a managing 
utility. This allows introducing an order among those beliefs 
in terms of their confidences converted to ranks )( iBR . The 
ranked list of beliefs then can be applied to adjustment of 
basic data-agnostic usage of the beliefs.  

Let the user be asked to answer a question if he/she is 
satisfied (and to what degree) by the recommendation related 
to a belief iB . And let the user provide a feedback taking 
value from ]1,0[ (or quantized to l  degrees within that 
interval) at each time kt  when facing the belief iB . So the 
feedback for iB  is a series of statistics:  

� � � �K
kik

K
kiki BfBtfBF 11 )(),()( �� ��  

where 1 is full satisfaction and 0 is complete dissatisfaction. 
The “like”/“dislike” feedback option is the most extreme case 
in this model. Based on )( iBF  we want to make a 
convergence evaluation in user opinion and output a 
confidence )( iBC  which can be incorporated into the 
existing analysis to tune its performance. This confidence 
will support the degree of validity of the initial belief iB . Our 
main postulates are: 1) the posting of feedback statistics is 
assumed to be a process with increasing degree of importance 
with respect to time; 2) if there is no convergence in user 
feedback statistics then we have to keep our basic belief 
system without update; 3) if there is a convergence to some 
degree of user feedback then the basic beliefs are updated 
according to confidences obtained. Therefore, we want to 
have a map that at each time instant rt returns a weighted 
statistics of the past feedback series: 
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where the weight function )(tw  can be, for instance, of linear 
or exponential form. In exponential case it can be determined 
by  

1)( �ktw  and )()( rk tt
r etw ���  for .kr �  (2) 

 

Let 
� �))(()),...,(()( 1 iKii BfSBfSBS �  (3) 

be the obtained data (taking values on ]1,0[ ) after (1) and (2). 
Now we estimate the uncertainty in the data (3) in terms of 
its distribution/histogram on the l  intervals from ]1,0[ , 
applying  the entropy measure:  
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where rh  is the normalized frequency of values ))(( ik BfS  

within one of the mentioned intervals r , lr ,1� . Note that 
.1))((0 		 iBSH  Then the confidence in belief iB  can be 

measured by the characterized uncertainty: 
))((1)( ii BSHBC ��  (5) 

where we set 
,0)( �iBC if HBSH i 
))((  (6) 

with a threshold value H . This is the case of high uncertainty 
in feedback data (i.e. there is no convergence in user opinion) 
and the corresponding confidence should be the minimum.  

Now let )( maxhm  be the average of the values ))(( ik BfS   
from the mode maxh : � �.,...,,max 21max lhhhh � This will take 
into account the degree of importance in time for the values 
that fall into the modal column in the histogram. If entropy is 
within H , we determine the needed confidence )( iBC  by 
identifying the interval of the bias in uncertainty, hence, by 
the mode maxh . Now we can rank the equal-weighted original 
beliefs by their confidences. Alternatively, based on the 
computed confidences, new beliefs can be designed as 
combination of the original and respective feedback-based 
beliefs within specific applications.  

The rank for iB  is computed by 
)()1()( maxhmBR i �� ���  (7) 

where 1�� , if ;0)( �iBC )( iBC�� , if .0)( 
iBC Thus, 
given (7) we have a list of beliefs ranked according to their 
feedback-based confidences. Further and specific usage of 

)( iBC  depends on the application as shown in Section 4.  

III. APPLICATION USE CASES 
Several domains of potential applications of the frame-

work of Section 2 are discussed below on VMware’s cloud 
management solutions.  
 Root cause detection (vR Ops). Problem root cause 
determination is a crucial element in infrastructure 
management products. The recommendations for root cause 
localization with anomaly impact ranking are generated 
purely based on beliefs (say correlations of anomalies) 
learned from the infrastructure [4]. With the introduced 
feedback compute framework on user satisfaction this 
domain gains an additional capability for re-ranking of the 
initial beliefs to produce more effective recommendations.   
 Dimension reduction (vR Ops). Monitoring and 
surveillance of modern IT infrastructures is a complex task. 
Currently vR Ops has a strategy to apply dimensionality 
reduction methods, such as “principal feature analysis”, to 
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substantially lower the complexity of computations for 
measured data center processes (metrics). This reduction can 
be pushed further with user feedback ratings against impacts 
of different metrics or group of metrics on the whole system. 
To state simply, it will result in elimination of low weight 
metrics from the product’s analytics engine thus mitigating 
the high computational burden for anomaly detection through 
dynamic thresholds [5].   
 False positive alarm reduction (vR Ops). Generation of 
alarms and alerts of different severity is the cornerstone 
recommendation instrument that vR Ops applies. Sometimes 
the level of false positive alarms is high at specific user 
environments. Moreover, the alerts generated by vR Ops can 
indicate not only system performance issues but also change 
indications that may not be of interest to the user. On the way 
of reducing this kind of noise for the users, the feedback 
compute can be of immense help. The corresponding alarm 
and alert recommendations ranked appropriately will 
converge to an optimal product usage pattern at a particular 
IT ecosystem.     
 Log analysis (Log Insight). An application of feedback 
compute might be related to anomaly detection in logs by 
fundamental structure extraction in terms of Dynamic 
Normalcy Graphs [6]. In particular, we are able to enhance 
the efficiency of the DNG as a causation tool via processing 
of user feedback statistics on correlation breakage alarms. 
That can be performed if we evaluate the confidences of each 
correlation (belief) in DNG from that statistics and apply it in 
computation of abnormality degree of data stream. Another 
problem in log analysis is the optimized task execution by 
users. In particular, facing an error type event the user 
executes some tasks to remedy the system. This information 
on relations of various error events and tasks can optimize the 
execution of those tasks now ranked appropriately as the best 
priority recommendations.  
 Automatic execution of VM migration (DRS). If the 
cluster is fully automated, vCenter places VM’s that join the 
cluster on appropriate hosts and migrates running VM’s 
between hosts, as needed, to ensure the best possible use of 
cluster resources. The migration threshold varying from 
Conservative to Aggressive controls this automatic move 
based on some best practices or beliefs. Tracking the hosts’ 
behavior (which is the end recipient of the actions) in terms 
of their responses in migration we are then able to rank those 
prior beliefs and make the migration threshold dynamic, 
suited to the deployment environment. One such response 
maybe the rate of vMotion actions performed per host which 
can be an indication of incorrect prior belief about the 
suitability of the host. Another source of feedback infor-
mation might be employed to revise the DRS affinity rules. 
Namely, the statistics from performance issues at the cluster 
associated with certain VMs will allow ranking the prior 
affinity rules for VMs. In that way, the original affinity rules 
would be effective in trade-off with performance of the 
infrastructure, thus enabling dynamic rules.    
 Social-media platform for virtualization management. 
This is an application for the proposed feedback mechanism 
related to the work [7] on organizing a virtual environment 
into a social network of its own. This kind of social inter-
action between humans, hosts, VM’s, and servers, is a unique 

repository of feedback information that can be turned into 
valuable knowledge improving the social network tools and 
efficiency of such platforms. Consider the canonical design 
in [7], where an administrator follows the vCenter server, the 
latter in turn follows hosts, and the hosts follow VMs. 
Processing the like/dislike interaction within this hierarchy 
by our method we can highlight the most unbalanced  social 
links in the network by ranking them in terms of confidences 
among users. That will imply recommendations towards 
improvement of social health with indication of relevant 
network sectors to better virtualization management.   

IV. ADJUSTMENT OF THRESHOLDS 
Hard thresholding is an effective monitoring and anomaly 

detection tool in management solutions [8] along with time-
dependent dynamic thresholding [5],[9]. We apply the 
principles of Section 2 to develop a method for self-
modifying hard thresholds (HT). The primary goal is to make 
the common expert knowledge on different processes in 
terms of these time-independent thresholds adaptively 
optimized to the user environment. Processing utility ratings 
of alerts that user inserts into the rating system upon violation 
of a manually set HT (belief), our method automatically leads 
to the optimal HT of the monitoring flow as the best fit for 
the users’ experience and application. This allows generating 
alerts with maximum accuracy, or, alternatively, optimizing 
the trade-off between false positive and negative alerts. 
Collecting user ratings for an HT (denoted by � in upper 
case) alerts via appropriately asking questions about their 
effectiveness, we aim at adjusting the threshold. However, 
this adjustment is controlled by a user-defined tolerance to 
noise degree � (false positive level from [0,1]). Our proto-
type UI within vR Ops allows the distributed users to rate (1 
to 5 stars) active alerts as how indicative they are (or per-
ceived to be). The ratings are converted to quantitative 
options as non-indicative (0), somewhat (0.25), rather (0.5), 
highly (0.75), perfectly (1). As soon as sufficient statistic 
defined by both volume of ratings and users participation in 
feedback generation is available, we execute the algorithm 
below to compute the compromise HT based on relevant 
confidence � in user opinion. According to this system the 
weighted ratings fall into one of four buckets: the first one is 
[0,0.25] and the last one is [0.75,1]. The basic assumption 
behind this adaptive thresholding is that the indicative power 
of alerts increases with their constituent data point distances 
from related HT’s.   

Algorithm (upper HT). If � > 0, calculate �(ℎ��	). If 
|1 − �(ℎ��	) − �| ≤ �, no need to update the threshold, 
where � is a closeness, interpreting 1 − �(ℎ��	) as the 
actual “error term” or noise degree. Two possible cases arise: 
I. If 1 − �(ℎ��	) − � < −�, then this means that the 
acceptable noise level is low and we can add more data points 
under the threshold line by moving the threshold down to 
capture more issues. Since in this case we have no feedback 
below the HT to work with, we need an extrapolation of 
existing statistics above the HT with the worst case scenario, 
and thus optimizing the noise within one rating interval (up 
to 25%). The steps of the procedure are: 
   a. Calculate the average feedback count �(
) per alert; 
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   b. Sequentially move down the HT to its nearest data 
neighbor to hypothetically involve more alerts and estimate 
the noise expectation: 
   b1. Form new alerts (if any) with hypothetical feedbacks 
equal to the winning histogram bucket minimum (denote it 
by �(����)). Take this minimum rating (for a particular new 
alert) �(
)  times;    
   b2. Add the hypothetical statistics from b1 to the existing 
feedback statistics; 
   c. In each iterative “nearest neighbor” move down, cal-
culate the hypothetical error term of the statistics from b2. If 
the latter is close to � within �-accuracy, the iteration stops. 
Otherwise it stops at hypothetical HT with closest to � error 
term smaller than �; 
   d. The procedure stops with the hypothetical HT ���� . Then 
the adjustment of HT is performed by the formula: 

� = (1 − �)� + �����; 
Further optimization, if � is still far away of the actual error 
term, is undertaken after the next round of rating collection. 
Moreover, if the optimization is not possible within one 
bucket, the following partial modification of the above 
mentioned procedure is foreseen only for steps c and d, the 
rest of computations are identical:  
   c. If �(ℎ��	) − �(����) ≤ �, then the minimum rating 
assignment in b1 is modified to take the minimum rating of 
the left neighbor interval of the winning bucket. 
   d. In each iterative “nearest neighbor” move down, cal-
culate the hypothetical confidence for the statistics of new 
and rated alerts. If it is not positive, jump to the next nearest 
neighbor point, otherwise, calculate the error term. If the 
latter is close to � within �-accuracy, the iteration stops. 
Otherwise it stops at hypothetical HT with closest to and 
smaller than � error term. 
II. If 1 − �(ℎ��	) − � > �, then it means that the noise 
level is higher than it is tolerable and the HT needs to be 
increased. In this case, a natural optimization task arises. 
Specifically, the hypothetical jump in HT should be as much 
as is possible to minimize the difference between � and the 
resulting error term while processing the feedback statistics. 
The steps of the procedure are: 
   a. Hypothetically moving � up to its nearest neighbor data 
point, calculate the corresponding confidence and �(ℎ��	) 
based on that line (with the same alert generation rule or wait 
cycle value) and rest of alert ratings. If there is no 
convergence (confidence=0), jump to the next nearest data 
point above. Stop the procedure when 1 − �(ℎ��	) − � <
 � or 1 − �(ℎ��	) − � is the minimum achievable positive 
difference by the iteration. 
   b. If in moving up we lose enough statistics (in terms of 
confidence calculation) for further iterations, we stop the pro-
cedure;  
   c. Let the procedure stop at a HT value ����. Set  

� = (1 − �)� + �����. 
So the general concept behind the HT increase is that of 

constructing the distribution of error terms of hypothetical 
beliefs (as HT’s) and choosing the one with an error term 
closest to tolerable noise level. Lower HT case is symmetric. 

Fig. 1 illustrates a customer data of 18 months with 
initially low HT (82% for CPU load) and noise generating 
alerts (because of change in data behavior). Negatively rated 

alerts by the user cause the algorithm to learn much higher 
and indicative position (94%). The confidence in user opinion 
for this experiment was 0.86, with actual noise 0.77 before 
the HT adjustment. Fig. 2 stands for a pictorial projection of 
user ratings on the corresponding HT alerts onto the time 
series data in another adjustment scenario.   

 
Fig. 1. Data with manual HT and its adjustment. 

 

 
Fig. 2. User ratings of alerts. 
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