
Ranking and Updating Beliefs based on User Feedback
Industrial Use Cases

Mazda A. Marvasti, Arnak V. Poghosyan, Ashot N. Harutyunyan, and Naira M. Grigoryan
VMware

{mazda;apoghosyan;aharutyunyan;ngrigoryan}@vmware.com

Abstract—Incorporation of user feedback in enterprise manage-
ment products can greatly enhance our understanding of mo-
dern technology challenges and amplify the ability for those
products to home in to user environments. In this paper we pre-
sent an entropy-based confidence determination approach to
process user feedback data (direct or indirect) to automatically
rank and update the beliefs of any recommender system. Several
examples of application of this method are discussed in the
context of VMware products. Moreover, an optimization algo-
rithm is demonstrated for adaptive thresholding of monitoring
flows based on user ratings of generated alerts effectiveness.

Keywords —Feedback computing, recommendation systems,
belief ranking, entropy, adaptive thresholds.

I. INTRODUCTION
With emerging challenges in automated system manage-

ment for the cloud computing age, there is an unprecedented
motivation in new smart software solutions with data-agnostic
instrumentation. Such an approach, in particular, is adopted by
virtualization and hybrid cloud leader VMware within a series
of products [1], as in vRealize Operations Manager (vR Ops),
Log Insight, vSphere Dynamic Resource Scheduler (DRS).
Those products and their features that are mostly delivered by
means of data learning methods with minimum involvement
of user or expert/administrator knowledge provide a high level
universality in problem solutions at the customers indepen-
dently of their environment. (In this paper the words user or
customer refers to both the human user of the products and
also the beneficiary of actions taken by the products. For
example, a host can be the customer of DRS actions). These
are indispensable technologies in modern large-scale and
heterogeneous cloud systems. However, these technologies
have inevitable drawbacks that can be overcome with employ-
ment of new algorithmic solutions based on the feedbacks that
user or expert provides during exploitation of those intelligent
software systems. Statistical processing of feedback data can
enhance the original data-driven analytics by enabling a
closed-loop self-tuning product. Deployed products or
features that either take or recommend an action to the user for
automatic management purposes (based on prior beliefs in
best practices or learned from its ecosystem) or whose output
invokes an action from the user fall into this category. User
feedback can be obtained directly, via asking the user
questions (can be as simple as a “like” button), or indirectly,
by following user behavior. More importantly, incorporation
of a closed-loop feedback mechanism can dramatically boost
the enterprise solutions by tuning themselves to the
customer’s usage patterns.

In general, we can think of the feedback computing as an
umbrella domain for vast variety of research and application

areas ranging from modern recommender systems to systems
design for peta-scale compute and storage environments [2]
and clouds [3]. In all cases, the feedback incorporation aims at
maximizing systems throughputs. In particular, [2] discusses
a feedback computing framework that can alleviate system
bottlenecks for better utilization of system resources, and [3]
elaborates an optimal resource allocation scheme for IaaS.
While recommender systems represent a well-developed
computer science area, the feedback compute in system
design issues remains fragmentary and lacking a systematic
treatment. To the best of our knowledge, there is no simple
and unified data science framework for processing of
feedback information in improvement of the above
mentioned cognitive technologies that concern system and
product design. Therefore, an idea arises to interpret the
feedback compute in terms of validation of systems main
cognitive convictions/beliefs that they operate on, employing
a formalism of statistical inference with the concepts of
confidence, information uncertainty, and ranking.

A data-agnostic analysis of an environment results in
certain “beliefs”. Beliefs can be computed or gained through
prior knowledge of certain systems (e.g. when to move a
virtual machine (VM) to another host within a virtualized
infrastructure). These beliefs are applied as tools for systems
management, in particular, in recommending the user (or
many distributed users) to take actions or indicating certain
status of the system such as anomalous states. Sometimes
those beliefs, or equivalently, the recommendations gene-
rated based on those beliefs can be evaluated by the user or
expert feedback. Moreover, the assessment feedback by the
same user about the same belief can vary from one time
instant to another based on many factors, such as evolution of
the underlying environment, re-comprehension of the belief’s
influence over time, and situation-based specifics. Collecting
this feedback and comprehending it by means of a second
layer data-agnostic processing, we are able to come up with
more reliable recommendations to the user by modifying the
original beliefs. In case of multiple users of the system
beliefs, those updated recommendations need to be
generalized, a trade-off for all parties satisfaction. This means
that those products and their features will be adequately self-
tuned at the user environment in terms of smarter belief
retrieval. The term “recommendation systems/engines”
applied here primarily covers any recommendation gene-
ration apparatus in the sense above. This means that our
research can sit on top of any recommender system.

II. ENTROPY-BASED CONFIDENCE
Assume we have observed some beliefs from data

representing the system at the user. In a data-agnostic

2015 IEEE 12th International Conference on Autonomic Computing

978-1-4673-6971-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICAC.2015.29

227

management approach of systems we apply those beliefs
directly without measuring user perception of (confidence
on) effectiveness of our recommendations based on those
beliefs. If there is an opportunity to ask the user for some
feedback about the observed beliefs and evaluate its statistical
nature, then we are able to manage the system more
effectively. Let nBBB ,....,, 21 be the initial beliefs (with their
data-agnostic maximum confidences equal to 1), and let

)(),...,(),()(21 iKiii BfBfBfBF � be the feedback statistics
(collected into a uniform array from possibly many
distributed users of the system instances over time) on belief

iB taking value from]1,0[. We assume that any indirect
feedback that can be tracked is also convertible to the same
interval. We also assume that the feedback statistics for
different beliefs are independent of each other. An extension
of this model needs to account for correlated feedback
statistics regarding different beliefs. By processing)(iBF

we want to come up with a confidence)(iBC , ni ,1� , of iB
that tells us the degree of the belief “strength” as a managing
utility. This allows introducing an order among those beliefs
in terms of their confidences converted to ranks)(iBR . The
ranked list of beliefs then can be applied to adjustment of
basic data-agnostic usage of the beliefs.

Let the user be asked to answer a question if he/she is
satisfied (and to what degree) by the recommendation related
to a belief iB . And let the user provide a feedback taking
value from]1,0[(or quantized to l degrees within that
interval) at each time kt when facing the belief iB . So the
feedback for iB is a series of statistics:

� � � �K
kik

K
kiki BfBtfBF 11)(),()(�� ��

where 1 is full satisfaction and 0 is complete dissatisfaction.
The “like”/“dislike” feedback option is the most extreme case
in this model. Based on)(iBF we want to make a
convergence evaluation in user opinion and output a
confidence)(iBC which can be incorporated into the
existing analysis to tune its performance. This confidence
will support the degree of validity of the initial belief iB . Our
main postulates are: 1) the posting of feedback statistics is
assumed to be a process with increasing degree of importance
with respect to time; 2) if there is no convergence in user
feedback statistics then we have to keep our basic belief
system without update; 3) if there is a convergence to some
degree of user feedback then the basic beliefs are updated
according to confidences obtained. Therefore, we want to
have a map that at each time instant rt returns a weighted
statistics of the past feedback series:

��
��

�
k

r
r

k

r
irrik twBftwBfS

11

)(/)()())(((1)

where the weight function)(tw can be, for instance, of linear
or exponential form. In exponential case it can be determined
by

1)(�ktw and)()(rk tt
r etw ��� for .kr � (2)

Let
� �))(()),...,(()(1 iKii BfSBfSBS � (3)

be the obtained data (taking values on]1,0[) after (1) and (2).
Now we estimate the uncertainty in the data (3) in terms of
its distribution/histogram on the l intervals from]1,0[,
applying the entropy measure:

 rl

l

r
ri hhBSH log))((

1
�
�

�� , 1
1

��
�

l

r
rh (4)

where rh is the normalized frequency of values))((ik BfS

within one of the mentioned intervals r , lr ,1� . Note that
.1))((0 		 iBSH Then the confidence in belief iB can be

measured by the characterized uncertainty:
))((1)(ii BSHBC �� (5)

where we set
,0)(�iBC if HBSH i
))(((6)

with a threshold value H . This is the case of high uncertainty
in feedback data (i.e. there is no convergence in user opinion)
and the corresponding confidence should be the minimum.

Now let)(maxhm be the average of the values))((ik BfS
from the mode maxh : � �.,...,,max 21max lhhhh � This will take
into account the degree of importance in time for the values
that fall into the modal column in the histogram. If entropy is
within H , we determine the needed confidence)(iBC by
identifying the interval of the bias in uncertainty, hence, by
the mode maxh . Now we can rank the equal-weighted original
beliefs by their confidences. Alternatively, based on the
computed confidences, new beliefs can be designed as
combination of the original and respective feedback-based
beliefs within specific applications.

The rank for iB is computed by
)()1()(maxhmBR i �� ��� (7)

where 1�� , if ;0)(�iBC)(iBC�� , if .0)(
iBC Thus,
given (7) we have a list of beliefs ranked according to their
feedback-based confidences. Further and specific usage of

)(iBC depends on the application as shown in Section 4.

III. APPLICATION USE CASES
Several domains of potential applications of the frame-

work of Section 2 are discussed below on VMware’s cloud
management solutions.
 Root cause detection (vR Ops). Problem root cause
determination is a crucial element in infrastructure
management products. The recommendations for root cause
localization with anomaly impact ranking are generated
purely based on beliefs (say correlations of anomalies)
learned from the infrastructure [4]. With the introduced
feedback compute framework on user satisfaction this
domain gains an additional capability for re-ranking of the
initial beliefs to produce more effective recommendations.
 Dimension reduction (vR Ops). Monitoring and
surveillance of modern IT infrastructures is a complex task.
Currently vR Ops has a strategy to apply dimensionality
reduction methods, such as “principal feature analysis”, to

228

substantially lower the complexity of computations for
measured data center processes (metrics). This reduction can
be pushed further with user feedback ratings against impacts
of different metrics or group of metrics on the whole system.
To state simply, it will result in elimination of low weight
metrics from the product’s analytics engine thus mitigating
the high computational burden for anomaly detection through
dynamic thresholds [5].
 False positive alarm reduction (vR Ops). Generation of
alarms and alerts of different severity is the cornerstone
recommendation instrument that vR Ops applies. Sometimes
the level of false positive alarms is high at specific user
environments. Moreover, the alerts generated by vR Ops can
indicate not only system performance issues but also change
indications that may not be of interest to the user. On the way
of reducing this kind of noise for the users, the feedback
compute can be of immense help. The corresponding alarm
and alert recommendations ranked appropriately will
converge to an optimal product usage pattern at a particular
IT ecosystem.
 Log analysis (Log Insight). An application of feedback
compute might be related to anomaly detection in logs by
fundamental structure extraction in terms of Dynamic
Normalcy Graphs [6]. In particular, we are able to enhance
the efficiency of the DNG as a causation tool via processing
of user feedback statistics on correlation breakage alarms.
That can be performed if we evaluate the confidences of each
correlation (belief) in DNG from that statistics and apply it in
computation of abnormality degree of data stream. Another
problem in log analysis is the optimized task execution by
users. In particular, facing an error type event the user
executes some tasks to remedy the system. This information
on relations of various error events and tasks can optimize the
execution of those tasks now ranked appropriately as the best
priority recommendations.
 Automatic execution of VM migration (DRS). If the
cluster is fully automated, vCenter places VM’s that join the
cluster on appropriate hosts and migrates running VM’s
between hosts, as needed, to ensure the best possible use of
cluster resources. The migration threshold varying from
Conservative to Aggressive controls this automatic move
based on some best practices or beliefs. Tracking the hosts’
behavior (which is the end recipient of the actions) in terms
of their responses in migration we are then able to rank those
prior beliefs and make the migration threshold dynamic,
suited to the deployment environment. One such response
maybe the rate of vMotion actions performed per host which
can be an indication of incorrect prior belief about the
suitability of the host. Another source of feedback infor-
mation might be employed to revise the DRS affinity rules.
Namely, the statistics from performance issues at the cluster
associated with certain VMs will allow ranking the prior
affinity rules for VMs. In that way, the original affinity rules
would be effective in trade-off with performance of the
infrastructure, thus enabling dynamic rules.
 Social-media platform for virtualization management.
This is an application for the proposed feedback mechanism
related to the work [7] on organizing a virtual environment
into a social network of its own. This kind of social inter-
action between humans, hosts, VM’s, and servers, is a unique

repository of feedback information that can be turned into
valuable knowledge improving the social network tools and
efficiency of such platforms. Consider the canonical design
in [7], where an administrator follows the vCenter server, the
latter in turn follows hosts, and the hosts follow VMs.
Processing the like/dislike interaction within this hierarchy
by our method we can highlight the most unbalanced social
links in the network by ranking them in terms of confidences
among users. That will imply recommendations towards
improvement of social health with indication of relevant
network sectors to better virtualization management.

IV. ADJUSTMENT OF THRESHOLDS
Hard thresholding is an effective monitoring and anomaly

detection tool in management solutions [8] along with time-
dependent dynamic thresholding [5],[9]. We apply the
principles of Section 2 to develop a method for self-
modifying hard thresholds (HT). The primary goal is to make
the common expert knowledge on different processes in
terms of these time-independent thresholds adaptively
optimized to the user environment. Processing utility ratings
of alerts that user inserts into the rating system upon violation
of a manually set HT (belief), our method automatically leads
to the optimal HT of the monitoring flow as the best fit for
the users’ experience and application. This allows generating
alerts with maximum accuracy, or, alternatively, optimizing
the trade-off between false positive and negative alerts.
Collecting user ratings for an HT (denoted by � in upper
case) alerts via appropriately asking questions about their
effectiveness, we aim at adjusting the threshold. However,
this adjustment is controlled by a user-defined tolerance to
noise degree � (false positive level from [0,1]). Our proto-
type UI within vR Ops allows the distributed users to rate (1
to 5 stars) active alerts as how indicative they are (or per-
ceived to be). The ratings are converted to quantitative
options as non-indicative (0), somewhat (0.25), rather (0.5),
highly (0.75), perfectly (1). As soon as sufficient statistic
defined by both volume of ratings and users participation in
feedback generation is available, we execute the algorithm
below to compute the compromise HT based on relevant
confidence � in user opinion. According to this system the
weighted ratings fall into one of four buckets: the first one is
[0,0.25] and the last one is [0.75,1]. The basic assumption
behind this adaptive thresholding is that the indicative power
of alerts increases with their constituent data point distances
from related HT’s.

Algorithm (upper HT). If � > 0, calculate �(ℎ��). If
|1 − �(ℎ��) − �| ≤ �, no need to update the threshold,
where � is a closeness, interpreting 1 − �(ℎ��) as the
actual “error term” or noise degree. Two possible cases arise:
I. If 1 − �(ℎ��) − � < −�, then this means that the
acceptable noise level is low and we can add more data points
under the threshold line by moving the threshold down to
capture more issues. Since in this case we have no feedback
below the HT to work with, we need an extrapolation of
existing statistics above the HT with the worst case scenario,
and thus optimizing the noise within one rating interval (up
to 25%). The steps of the procedure are:
 a. Calculate the average feedback count �(
) per alert;

229

 b. Sequentially move down the HT to its nearest data
neighbor to hypothetically involve more alerts and estimate
the noise expectation:
 b1. Form new alerts (if any) with hypothetical feedbacks
equal to the winning histogram bucket minimum (denote it
by �(����)). Take this minimum rating (for a particular new
alert) �(
) times;
 b2. Add the hypothetical statistics from b1 to the existing
feedback statistics;
 c. In each iterative “nearest neighbor” move down, cal-
culate the hypothetical error term of the statistics from b2. If
the latter is close to � within �-accuracy, the iteration stops.
Otherwise it stops at hypothetical HT with closest to � error
term smaller than �;
 d. The procedure stops with the hypothetical HT ���� . Then
the adjustment of HT is performed by the formula:

� = (1 − �)� + �����;
Further optimization, if � is still far away of the actual error
term, is undertaken after the next round of rating collection.
Moreover, if the optimization is not possible within one
bucket, the following partial modification of the above
mentioned procedure is foreseen only for steps c and d, the
rest of computations are identical:
 c. If �(ℎ��) − �(����) ≤ �, then the minimum rating
assignment in b1 is modified to take the minimum rating of
the left neighbor interval of the winning bucket.
 d. In each iterative “nearest neighbor” move down, cal-
culate the hypothetical confidence for the statistics of new
and rated alerts. If it is not positive, jump to the next nearest
neighbor point, otherwise, calculate the error term. If the
latter is close to � within �-accuracy, the iteration stops.
Otherwise it stops at hypothetical HT with closest to and
smaller than � error term.
II. If 1 − �(ℎ��) − � > �, then it means that the noise
level is higher than it is tolerable and the HT needs to be
increased. In this case, a natural optimization task arises.
Specifically, the hypothetical jump in HT should be as much
as is possible to minimize the difference between � and the
resulting error term while processing the feedback statistics.
The steps of the procedure are:
 a. Hypothetically moving � up to its nearest neighbor data
point, calculate the corresponding confidence and �(ℎ��)
based on that line (with the same alert generation rule or wait
cycle value) and rest of alert ratings. If there is no
convergence (confidence=0), jump to the next nearest data
point above. Stop the procedure when 1 − �(ℎ��) − � <
 � or 1 − �(ℎ��) − � is the minimum achievable positive
difference by the iteration.
 b. If in moving up we lose enough statistics (in terms of
confidence calculation) for further iterations, we stop the pro-
cedure;
 c. Let the procedure stop at a HT value ����. Set

� = (1 − �)� + �����.
So the general concept behind the HT increase is that of

constructing the distribution of error terms of hypothetical
beliefs (as HT’s) and choosing the one with an error term
closest to tolerable noise level. Lower HT case is symmetric.

Fig. 1 illustrates a customer data of 18 months with
initially low HT (82% for CPU load) and noise generating
alerts (because of change in data behavior). Negatively rated

alerts by the user cause the algorithm to learn much higher
and indicative position (94%). The confidence in user opinion
for this experiment was 0.86, with actual noise 0.77 before
the HT adjustment. Fig. 2 stands for a pictorial projection of
user ratings on the corresponding HT alerts onto the time
series data in another adjustment scenario.

Fig. 1. Data with manual HT and its adjustment.

Fig. 2. User ratings of alerts.

REFERENCES
[1] VMware products. http://www.vmware.com/products.
[2] R. Gunasekaran and Y. Kim, “Feedback computing in

leadership compute systems,” Proc. 9th Int. Workshop on
Feedback Computing, Philadelphia, US, June 17, 2014.

[3] R. Srikant, “Resource allocation and networking in
clouds and data centers,” Proc. 9th Int. Workshop on
Feedback Computing, Philadelphia, US, June 17, 2014.

[4] M.A. Marvasti, A.V. Poghosyan, A.N. Harutyunyan, and
N.M. Grigoryan, “An anomaly event correlation engine:
Identifying root causes, bottlenecks, and black swans in
IT environments,” VMware T. J. 2(1), pp. 35-45, 2013.

[5] M.A. Marvasti, A.V. Poghosyan, A.N. Harutyunyan, and
N.M. Grigoryan, “An enterprise dynamic thresholding
system,” Proc. USENIX 11th ICAC, June 18-20,
Philadelhia, US, pp. 129-135, 2014.

[6] A.N. Harutyunyan, A.V. Poghosyan, N.M. Grigoryan,
and M.A. Marvasti, “Abnormality analysis of streamed
log data,”Proc. IFIP/IEEE NOMS, May 5-9, Krakow,
Poland, pp. 1-7, 2014.

[7] R. Soundararajan, E. Celebi, L Spracklen, H. Muppalla,
and V. Makhija, “A social-media approach to virtualiza-
tion management”, VMware T. J. 1(2), pp. 59-68, 2012.

[8] Y. Wang and Y. Mei, “Online parallel monitoring via
hard-thresholding post-change estimation,”Proc. IEEE
Int. Symp. Inform. Theory, Honolulu, HI, USA, June 29–
July 4, pp. 3190-3195, 2014.

[9] D. Breitgand, M. Goldstein, E. Henis, and O. Shehory,
“Efficient control of false negatives and false positive
errors with separate adaptive thresholds,” IEEE Trans.
Net. & Serv. Manage. 8(2), pp. 128-140, June 2011.

0

20

40

60

80

100

1.26E+12 1.26E+12 1.26E+12

CP
U

(%
)

Time (milliseconds)

data manual HT adjusted HT

230

