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NORMAL WEIGHTED BERGMAN TYPE OPERATORS ON

MIXED NORM SPACES OVER THE BALL IN Cn

Karen L. Avetisyan and Albert I. Petrosyan

Abstract. The paper studies some new Cn-generalizations of Bergman

type operators introduced by Shields and Williams depending on a normal
pair of weight functions. We find the values of parameter β for which these

operators are bounded on mixed norm spaces L(p, q, β) over the unit ball
in Cn. Moreover, these operators are bounded projections as well, and

the images of L(p, q, β) under the projections are found.

1. Introduction and notation

Let B = Bn := {z = (z1, . . . , zn) ∈ Cn : |z| < 1} be the open unit ball in
Cn, and S := ∂B its boundary, the unit sphere. The inner product in Cn will
be denoted as 〈z, w〉 := z1w1 + · · ·+znwn, z, w ∈ Cn. Throughout the paper, it

is assumed that z = rζ, w = ρη ∈ B, 0 ≤ r, ρ < 1, ζ, η ∈ S, r = |z| =
√
〈z, z〉.

Denote by H(B) the set of all holomorphic functions in the ball B. The pth
integral mean of a function f(z) = f(rζ) given in B is denoted as usual by

Mp(f ; r) =
∥∥f(r·)

∥∥
Lp(S;dσ)

, 0 ≤ r < 1, 0 < p ≤ ∞,

where dσ is the (2n − 1)-dimensional Lebesgue measure on the sphere S nor-
malized so that σ(S) = 1. The class of holomorphic functions f ∈ H(B), for
which ‖f‖Hp = sup

0<r<1
Mp(f ; r) < +∞, is the usual Hardy space Hp(B).

The Banach space L(p, q, β)
(
1 ≤ p, q ≤ ∞, β ∈ R

)
is the set of those

functions f(z) = f(rζ) given in B, for which the norm

‖f‖L(p,q,β) :=


(∫ 1

0

(1− r)βq−1Mq
p (f ; r) dr

)1/q

, 1 ≤ q <∞,

ess sup
0<r<1

(1− r)βMp(f ; r), q =∞,
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is finite. For the subspaces consisting of holomorphic functions let H(p, q, β) :=
H(B) ∩ L(p, q, β), β > 0. For p = q < ∞, the spaces H(p, p, β) = Apβp−1

coincide with the well-known weighted Bergman spaces, while for q =∞ they
are known as weighted Hardy spaces.

The mixed norm spaces of holomorphic functions in the unit disc D were
introduced by Hardy and Littlewood [9, 10] and developed later by Flett [8].
For more information about weighted Bergman spaces Apα = H

(
p, p, α+1

p

)
on

the unit disc, we refer to monographs [6, 7, 11]. A lot of works are devoted
to the mixed norm and Bergman spaces of holomorphic functions in the ball
B, and Bergman operators on them, see, e.g., [12, 18–20, 24]. Bergman type
operators on mixed norm spaces of n-harmonic functions on the polydisc can
be found in [2].

Throughout the paper, the letters C(α, β, . . . ), Cα etc. stand for positive
different constants depending only on the parameters indicated. Let dV de-
note the Lebesgue measure on B normalized so that V (B) = 1. In the polar
coordinates, we have dV (z) = 2n r2n−1drdσ(ζ).

Instead of standard power weight functions, Shields and Williams [21] sug-
gested to use more general normal weight functions. Actually, such weights are
those having power majorants and minorants with positive exponents.

Definition 1.1 (Normal weight function [21]). A positive continuous function
ϕ(r), 0 ≤ r < 1, is called normal if there are constants 0 < a < b and 0 ≤ r0 < 1
such that

(1)
ϕ(r)

(1− r)a
↘ 0 and

ϕ(r)

(1− r)b
↗ +∞ as r → 1−, r0 ≤ r < 1.

Note that indices a and b for a normal function ϕ are not uniquely deter-
mined. Here and throughout this paper, the monotonicity is assumed in the
essential sense. Recall that a function ω(r) > 0 is essentially (or almost) in-
creasing on [0, 1) if there exists a constant C > 0 such that ω(r1) ≤ Cω(r2) for
all 0 ≤ r1 < r2 < 1. Essentially decreasing functions are defined similarly.

The typical and simple examples of normal functions are of type

ϕc,d(r) = (1− r)c
(

log
e

1− r

)d
, c > 0, d ∈ R,

while for c = 0, the function ϕ0,d =
(

log e
1−r

)d
is not normal.

Definition 1.2 (Normal pair [21]). Functions {ϕ,ψ} form a normal pair if
the function ϕ is normal and there exists a number α (the index of the pair),
α > b− 1, such that

(2) ϕ(r)ψ(r) = (1− r2)α, 0 ≤ r < 1.

The second function ψ is integrable on the interval (0, 1) because of the
condition α > b− 1. As shown in [21], a normal function ϕ always has its pair,
moreover under a stronger condition α > b the function ψ itself is also normal
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with indices α− b and α− a. We extend the domain of weight functions up to
the whole ball B by ϕ(z) := ϕ(|z|) = ϕ(r), ψ(z) := ψ(|z|) = ψ(r).

Normal weight functions are closely related to other similar classes of weights
such as Békollé–Bonami weights [4, 5], admissible weights [1, 22], secure and
regular weights [13–15]. A lot of relevant information on nonstandard weight
functions and corresponding Bergman spaces and operators can be found in
the recently published works of Peláez and Rättyä [14, 15]. By means of nor-
mal weights Shields and Williams [21] suggested generalizations for Bergman
operators in the unit disc D = B1. Their higher dimensional extensions to the
unit ball B in Cn are defined in A. I. Petrosyan’s papers [16,17] in the form

Pϕ,ψ(f)(z) :=

∫
B

ϕ(z)ψ(w)

(1− 〈z, w〉)n+1+α
f(w) dV (w), z ∈ B,(3)

P̃ϕ,ψ(f)(z) :=

∫
B

ϕ(z)ψ(w)

|1− 〈z, w〉|n+1+α
f(w) dV (w), z ∈ B,(4)

Qϕ,ψ(f)(z) :=

∫
B

ψ(z)ϕ(w)

(1− 〈z, w〉)n+1+α
f(w) dV (w), z ∈ B,(5)

Q̃ϕ,ψ(f)(z) :=

∫
B

ψ(z)ϕ(w)

|1− 〈z, w〉|n+1+α
f(w) dV (w), z ∈ B.(6)

Although the operators Pϕ,ψ, P̃ϕ,ψ seem to be very similar to Qϕ,ψ, Q̃ϕ,ψ, they
differ in the fact that the second function ψ in general is not normal. Operators
(3) and (4) in the limit case ϕ ≡ 1, ψ(r) = (1− r2)α, as well as operators (5)
and (6) in particular case ϕ(r) = (1 − r2)α, ψ ≡ 1 reduce to the classical
Bergman projection Pα (see [6, 7, 11,12,18–20,24]),

(7) Pα(f)(z) := γα,n

∫
B

(1− |w|2)α

(1− 〈z, w〉)n+1+α
f(w) dV (w), z ∈ B, α > −1,

where γα,n := Γ(n+α+1)
Γ(n+1) Γ(α+1) . For ϕ(r) = (1−r2)λ, ψ(r) = (1−r2)γ , λ+γ = α,

Bergman type operators (3)–(6) are well-known, too, see [2, 12, 18, 20, 24]. For
projections Pα in the ball B, a representation holds,

(8) f(z) = Pα(f)(z), z ∈ B, α > −1,

which is valid for all holomorphic functions f in the class H(1, 1, α+ 1) = A1
α,

see, for example, [6, Thm 6.1] or [24, Thm 2.2].
It is well known that Bergman (type) operators are widely applicable in many

areas such as duality, complex interpolation, Toeplitz and Hankel operators,
weighted Besov, Bloch and other spaces. So, it is natural to ask whether the
general operators (3)–(6) are bounded on mixed norm spaces. In the present
paper, given 1 ≤ p, q ≤ ∞, we find conditions on the parameter β for general
operators (3)–(6) to be bounded on the mixed norm spaces L(p, q, β) in the
ball B.

The main result of the paper is the following theorem of Forelli-Rudin type.
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Theorem 1.3. Suppose 1 ≤ p, q ≤ ∞, β ∈ R, and let {ϕ,ψ} be a normal pair
with indices a and b (0 < a < b), and with the index of the pair α (α > b− 1)
in the sense of Definitions 1.1–1.2.

(i) If −a < β < 1 + α − b, then the operators Pϕ,ψ and P̃ϕ,ψ are bounded
from the space L(p, q, β) into itself, that is,

Pϕ,ψ : L(p, q, β) −→ L(p, q, β),(9)

P̃ϕ,ψ : L(p, q, β) −→ L(p, q, β).(10)

(ii) If b − α < β < 1 + a, then the operators Qϕ,ψ and Q̃ϕ,ψ are bounded
from the space L(p, q, β) into itself, that is,

Qϕ,ψ : L(p, q, β) −→ L(p, q, β),(11)

Q̃ϕ,ψ : L(p, q, β) −→ L(p, q, β).(12)

Remark 1.4. In particular case p = q = ∞, β = 0, that is, for the space
L(∞,∞, 0) = L∞(B) of essentially bounded functions in the ball, the relations
(9) and (10) are proved in [16]. For 1 ≤ p = q = 1/β < ∞, that is, for the
unweighted space L(p, p, 1/p), the relations (11) and (12) are proved in [16,17]
by a different method with the use of so called Schur test ([6,11,19,24]) which
is not applicable in our case. More particular Bergman type operators with
power weights are studied in [2,7,11,12,18–20,24]. Relations (11) and (12) are
essentially proved in the recent paper [3].

Remark 1.5. In fact, in Theorem 1.3, we generalize the main result of [16, 17]
into three directions: first, we suppose all the values 1 ≤ p ≤ ∞, second,
weighted spaces are considered, and third, we consider more general mixed
norm spaces L(p, q, β).

2. Hardy and other integral inequalities

Classical Hardy’s inequalities are well-known, see, for instance, [8, 23],∫ 1

0

x−β−1

(∫ x

0

h(t) dt

)p
dx ≤ C(p, β)

∫ 1

0

xp−β−1 hp(x) dx,(13) ∫ 1

0

(1− r)β−1

(∫ r

0

h(t) dt

)p
dr ≤ C(p, β)

∫ 1

0

(1− r)p+β−1 hp(r) dr,(14) ∫ 1

0

(1− r)−β−1

(∫ 1

r

h(t) dt

)p
dr ≤ C(p, β)

∫ 1

0

(1− r)p−β−1 hp(r) dr,(15)

where 1 ≤ p <∞, β > 0, h(r) ≥ 0.
Note that inequality (15) follows directly from (13) by a linear change of

integration variables. For further proofs we need some generalizations of (14)
and (15).
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Lemma 2.1. Suppose 1 ≤ p <∞, h(r) ≥ 0, and for a positive and continuous
function ϕ(r), 0 ≤ r < 1, there exist constants a, γ ∈ R, γ + pa > 0, and
0 ≤ r0 < 1 such that

(16)
ϕ(r)

(1− r)a
↘ as r0 ≤ r < 1.

Then

(17)

∫ 1

0

(1−r)γ−1 ϕp(r)

(∫ r

0

h(t) dt

)p
dr ≤ C

∫ 1

0

(1−r)p+γ−1 ϕp(r)hp(r) dr,

where the constant C = C(p, γ, a, r0) > 0 depends only on the parameters
indicated.

Proof. Applying Hardy’s inequality (14) to the function ϕ(r)
(1−r)a h(r) and with

the index β = γ + pa > 0, we have∫ 1

0

(1− r)γ+pa−1

(∫ r

0

ϕ(t)

(1− t)a
h(t) dt

)p
dr

≤ C

∫ 1

0

(1− r)p+γ+pa−1

(
ϕ(r)

(1− r)a
h(r)

)p
dr,

where the constant C depends only on p, γ, a.

Since the function ϕ(r)
(1−r)a is continuous on [0, 1) and, by (16), essentially

decreasing on (r0, 1),∫ 1

0

(1−r)γ+pa−1 ϕp(r)

(1− r)pa

(∫ r

0

h(t) dt

)p
dr ≤ C

∫ 1

0

(1−r)p+γ−1 ϕp(r)hp(r) dr,

that coincides with (17). �

Remark 2.2. An inequality of Hardy type for normal functions can be found
in [20].

We also need another version of inequality (17).

Lemma 2.3. Suppose 1 ≤ p <∞, h(r) ≥ 0, and for a positive and continuous
function ϕ(r), 0 ≤ r < 1, there exist the constants b, γ ∈ R, γ + pb < 0, and
0 ≤ r0 < 1 such that

(18)
ϕ(r)

(1− r)b
↗ r0 ≤ r < 1.

Then there exists a constant C = C(p, γ, b, r0) > 0 such that

(19)

∫ 1

0

(1−r)γ−1 ϕp(r)

(∫ 1

r

h(t) dt

)p
dr ≤ C

∫ 1

0

(1−r)p+γ−1 ϕp(r)hp(r) dr.
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Proof. Applying Hardy’s inequality (15) to the function ϕ(r)
(1−r)b h(r) and with

the index −β = γ + pb < 0, we have∫ 1

0

(1− r)γ+pb−1

(∫ 1

r

ϕ(t)

(1− t)b
h(t) dt

)p
dr

≤ C

∫ 1

0

(1− r)p+γ+pb−1

(
ϕ(r)

(1− r)b
h(r)

)p
dr,

where the constant C depends only on p, γ, b. Since the function ϕ(r)
(1−r)b is

continuous on [0, 1) and, by (18), essentially increasing on the interval (r0, 1),∫ 1

0

(1−r)γ+pb−1 ϕp(r)

(1− r)pb

(∫ 1

r

h(t) dt

)p
dr ≤ C

∫ 1

0

(1−r)p+γ−1 ϕp(r)hp(r) dr,

that coincides with (19). �

Lemma 2.4 ([19,24]). For α > 0, there holds the inequality∫
S

dσ(ξ)

|1− 〈z, ξ〉|n+α
≤ C(α, n)

(1− |z|)α
, z ∈ B.

Lemma 2.5 ([21]). For m > β > 0, there holds the inequality∫ 1

0

(1− ρ)β−1

(1− rρ)m
dρ ≤ C(β,m)

(1− r)m−β
, 0 ≤ r < 1.

Various variants of the next lemma can be found in [16–18,21].

Lemma 2.6. Let {ϕ,ψ} be a normal pair with indices a and b (0 < a < b) and
the index of the pair α (α > b− 1) in the sense of Definitions 1.1–1.2.

If −a < β < 1 + α− b, then

(20)

∫ 1

0

ψ(ρ)

(1− rρ)1+α(1− ρ)β
dρ ≤ C(α, β, a, b, r0)

ψ(r)

(1− r)α+β
, 0 ≤ r < 1.

Proof. The condition β < 1 +α− b guarantees the convergence of the integral
in (20). It suffices to prove inequality (20) for r close to 1. Observe that the
normality condition (1) for ϕ implies that the second function ψ satisfies similar
conditions, namely there exists a constant 0 ≤ r0 < 1 such that

(21)
ψ(r)

(1− r)α−b
↘ 0 and

ψ(r)

(1− r)α−a
↗ +∞ as r → 1−, r0 ≤ r < 1.

Despite conditions (21), the function ψ in general is not normal since the ex-
ponent α− b > −1 can be non-positive.

We now split the integral in (20) into three parts,

J :=

∫ 1

0

ψ(ρ)

(1− rρ)1+α(1− ρ)β
dρ

=

(∫ r0

0

+

∫ r

r0

+

∫ 1

r

)
ψ(ρ)

(1− rρ)1+α(1− ρ)β
dρ =: J1 + J2 + J3.
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Integral J1 is bounded by a constant C(α, β, r0). Conditions (21) combined
with Lemma 2.5 lead to estimations for the integrals J2 and J3,

J2 =

∫ r

r0

ψ(ρ)

(1− ρ)α−a
(1− ρ)α−a

(1− rρ)1+α(1− ρ)β
dρ

≤ C ψ(r)

(1− r)α−a

∫ r

r0

(1− ρ)α−a−β

(1− rρ)1+α
dρ

≤ C(α, β, a)
ψ(r)

(1− r)α+β
,

since −a < β < 1+α−b < 1+α−a. By analogy with the above, an estimation
of the integral J3 gives

J3 =

∫ 1

r

ψ(ρ)

(1− ρ)α−b
(1− ρ)α−b

(1− rρ)1+α(1− ρ)β
dρ

≤ C ψ(r)

(1− r)α−b

∫ 1

r

(1− ρ)α−b−β

(1− rρ)1+α
dρ

≤ C(α, β, b)
ψ(r)

(1− r)α+β
,

and this completes the proof of Lemma 2.6. �

The proofs of the following three lemmas below are similar to those of Lem-
mas 2.1, 2.3 and 2.6, and therefore they will be omitted.

Lemma 2.7. Suppose 1 ≤ p <∞, h(r) ≥ 0, and for a positive and continuous
function ϕ(r), 0 ≤ r < 1, there exist constants b, γ ∈ R, γ − pb > 0, and
0 ≤ r0 < 1 such that

ϕ(r)

(1− r)b
↗ as r0 ≤ r < 1.

Then∫ 1

0

(1− r)γ−1

ϕp(r)

(∫ r

0

h(t) dt

)p
dr ≤ C(p, γ, b, r0)

∫ 1

0

(1− r)p+γ−1

ϕp(r)
hp(r) dr.

Lemma 2.8. Suppose 1 ≤ p <∞, h(r) ≥ 0, and for a positive and continuous
function ϕ(r), 0 ≤ r < 1, there exist constants a, γ ∈ R, γ − pa < 0, and
0 ≤ r0 < 1 such that

ϕ(r)

(1− r)a
↘ as r0 ≤ r < 1.

Then∫ 1

0

(1− r)γ−1

ϕp(r)

(∫ 1

r

h(t) dt

)p
dr ≤ C(p, γ, a, r0)

∫ 1

0

(1− r)p+γ−1

ϕp(r)
hp(r) dr.
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Lemma 2.9. Let ϕ be a normal function with indices a and b (0 < a < b) and
the index of the pair α (α > b− 1) in the sense of Definitions 1.1–1.2.

If b− α < β < 1 + a, then∫ 1

0

ϕ(ρ)

(1− rρ)1+α(1− ρ)β
dρ ≤ C(α, β, a, b, r0)

ϕ(r)

(1− r)α+β
, 0 ≤ r < 1.

3. Boundedness of Bergman type operators on mixed norm spaces

We proceed to the proof of the main theorem of this paper.

Lemma 3.1. Let 1 ≤ p ≤ ∞, α > −1, and {ϕ,ψ} be a couple of positive
weight functions. Then there exists a constant C = C(p, n, α) > 0 such that

Mp

(
P̃ϕ,ψ(f); r

)
≤ C ϕ(r)

∫ 1

0

ψ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ, 0 ≤ r < 1,(22)

Mp

(
Q̃ϕ,ψ(f); r

)
≤ C ψ(r)

∫ 1

0

ϕ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ, 0 ≤ r < 1.(23)

Proof. A passage to the polar coordinates in the integral representation of

P̃ϕ,ψ(f)(z) yields∣∣P̃ϕ,ψ(f)(rζ)
∣∣ ≤ ϕ(z)

∫
B

ψ(w)

|1− 〈rζ, w〉|n+1+α
|f(w)| dV (w)

= 2nϕ(r)

∫ 1

0

[∫
S

|f(ρη)|
|1− 〈rζ, ρη〉|n+1+α

dσ(η)

]
ψ(ρ) ρ2n−1 dρ

= 2nϕ(r)

∫ 1

0

g(r, ρ, ζ)ψ(ρ) ρ2n−1 dρ,(24)

with the temporary notation

g(r, ρ, ζ) :=

∫
S

|f(ρη)|
|1− 〈rζ, ρη〉|n+1+α

dσ(η).

For p =∞, by (24) and Lemma 2.4, we immediately obtain

M∞
(
P̃ϕ,ψ(f); r

)
≤ 2nϕ(r)

∫ 1

0

M∞(f ; ρ) sup
ζ∈S

[∫
S

dσ(η)

|1− 〈rζ, ρη〉|n+1+α

]
ψ(ρ) ρ2n−1 dρ

≤ C(n, α)ϕ(r)

∫ 1

0

ψ(ρ)

(1− rρ)1+α
M∞(f ; ρ) dρ.

For p = 1, by integrating (24) with the use of Fubini’s theorem and Lemma
2.4, we get the desired inequality (22).

For 1 < p <∞, an application of Hölder’s inequality and Lemma 2.4 implies

g(r, ρ, ζ) ≤
(∫

S

|f(ρη)|p dσ(η)

|1− 〈rζ, ρη〉|n+1+α

)1/p(∫
S

dσ(η)

|1− 〈rζ, ρη〉|n+1+α

)1/p′
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≤ C(p, n, α)

(1− rρ)(1+α)/p′

(∫
S

|f(ρη)|p dσ(η)

|1− 〈rζ, ρη〉|n+1+α

)1/p

,

where p′ is the exponent conjugate to p, 1/p+ 1/p′ = 1. Next, we integrate in
ζ over the sphere S and again apply Lemma 2.4,∥∥g(r, ρ, ·)

∥∥p
Lp(S;dσ)

≤ C(p, n, α)

(1− rρ)(1+α)p/p′

∫
S

(∫
S

dσ(ζ)

|1− 〈rζ, ρη〉|n+1+α

)
|f(ρη)|p dσ(η)

≤ C(p, n, α)

(1− rρ)(1+α)p/p′(1− rρ)1+α

∫
S

|f(ρη)|p dσ(η)

=
C(p, n, α)

(1− rρ)(1+α)p
Mp
p (f ; ρ).(25)

Now we can return to inequality (24) and apply to it Minkowski’s inequality
and estimate (25) to get

Mp

(
P̃ϕ,ψ(f); r

)
≤ 2nϕ(r)

∫ 1

0

∥∥g(r, ρ, ·)
∥∥
Lp(S;dσ)

ψ(ρ) ρ2n−1 dρ

≤ C(p, n, α)ϕ(r)

∫ 1

0

ψ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ.

This completes the proof of (22). Inequality (23) can be proved in the same
manner. �

3.1. Proof of Theorem 1.3

Since
∣∣Pϕ,ψ(f)(z)

∣∣ ≤ P̃ϕ,ψ(|f |)(z), it suffices to prove the boundedness of

the operator P̃ϕ,ψ(|f |), that is, the relation (10).
First, suppose 1 ≤ q < ∞. Having proved the estimate (22) in Lemma 3.1,

we can integrate (22) in the radial variable to obtain the mixed norm∥∥P̃ϕ,ψ(f)
∥∥q
L(p,q,β)

=

∫ 1

0

(1− r)βq−1Mq
p

(
P̃ϕ,ψ(f); r

)
dr

≤ C
∫ 1

0

(1− r)βq−1 ϕq(r)

[∫ 1

0

ψ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ

]q
dr.

We now break up the integral into its two components∥∥P̃ϕ,ψ(f)
∥∥q
L(p,q,β)

≤ C

∫ 1

0

(1− r)βq−1 ϕq(r)

[(∫ r

0

+

∫ 1

r

)
ψ(ρ)Mp(f ; ρ)

(1− rρ)1+α
dρ

]q
dr

≤ C

∫ 1

0

(1− r)βq−1 ϕq(r)

[∫ r

0

ψ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ

]q
dr

+ C

∫ 1

0

(1− r)βq−1 ϕq(r)

[∫ 1

r

ψ(ρ)

(1− rρ)1+α
Mp(f ; ρ) dρ

]q
dr
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=: I1 + I2.(26)

Integrals I1 and I2 will be estimated separately by using Hardy’s type inequal-
ities in Lemmas 2.3 and 2.1. Since the assumption βq+ aq > 0 is equivalent to
β > −a, we may apply (17) to the integral I1,

I1 ≤ C
∫ 1

0

(1− r)βq−1+q ϕq(r)

[
ψ(r)

(1− r2)1+α
Mp(f ; r)

]q
dr

≤ C
∫ 1

0

(1− r)βq−1Mq
p (f ; r) dr

= C(n, p, q, β, α, a, r0) ‖f‖qL(p,q,β).(27)

Since the assumption βq − αq − q + bq < 0 is equivalent to β < 1 + α − b, we
may apply (19) to the integral I2 to get

I2 ≤ C
∫ 1

0

(1− r)βq−αq−q−1 ϕq(r)

[∫ 1

r

ψ(ρ)Mp(f ; ρ) dρ

]q
dr

≤ C
∫ 1

0

(1− r)βq−αq−q−1+q ϕq(r)
[
ψ(r)Mp(f ; r)

]q
dr

≤ C
∫ 1

0

(1− r)βq−1Mq
p (f ; r) dr

= C(n, p, q, β, α, b, r0) ‖f‖qL(p,q,β).(28)

Inequalities (26), (27) and (28) together yield∥∥P̃ϕ,ψ(f)
∥∥
L(p,q,β)

≤ C ‖f‖L(p,q,β),

where the constant C = C(n, p, q, β, α, a, b, r0) > 0 depends only on the param-
eters indicated.

Suppose now q = ∞. From inequality (22) with the use of Lemma 2.9, we
conclude

Mp

(
P̃ϕ,ψ(f); r

)
≤ C(p, n, α)ϕ(r)

∫ 1

0

ψ(ρ)

(1− rρ)1+α(1− ρ)β
(1− ρ)βMp(f ; ρ) dρ

≤ C ϕ(r) ‖f‖L(p,∞,β)

∫ 1

0

ψ(ρ)

(1− rρ)1+α(1− ρ)β
dρ

≤ C ϕ(r) ‖f‖L(p,∞,β)
ψ(r)

(1− r)α+β

≤ C(p, n, α, β, a, b, r0) ‖f‖L(p,∞,β)
1

(1− r)β
.

Therefore ∥∥P̃ϕ,ψ(f)
∥∥
L(p,∞,β)

≤ C ‖f‖L(p,∞,β),

where the constant C = C(p, n, α, β, a, b, r0) > 0 depends only on the parame-
ters indicated.
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This completes the proof of (9) and (10). The last two relations (11) and
(12) can be proved in the same manner and so omitted. �

4. Bounded projections

In this section, we show that Pϕ,ψ and Qϕ,ψ are not only bounded operators
in L(p, q, β), but bounded projections as well. We also find the images of
L(p, q, β) under the projections Pϕ,ψ and Qϕ,ψ.

To this end, define more general mixed norm spaces

Hp,q
β (ϕ) :=

{
f ∈H(B) : ‖f‖qp,q,β,ϕ :=

∫ 1

0

(1− r)βq−1 ϕq(r)Mq
p (f ; r)dr < +∞

}
,

where 1 ≤ p, q ≤ ∞, β ∈ R and ϕ is a (normal) weight function. In the case
q =∞, as usual, the integral norm is to be interpreted as a supremum

‖f‖p,∞,β,ϕ := sup
0<r<1

(1− r)β ϕ(r)Mp(f ; r), 1 ≤ p ≤ ∞, q =∞, β ∈ R.

For ϕ ≡ 1, evidently we have Hp,q
β (1) = H(p, q, β).

Introduce a multiplication operator Πϕ on Hp,q
β (ϕ) with symbol ϕ and con-

sider the resulting class,

Πϕ(g) := ϕg for g ∈ Hp,q
β (ϕ), ΠϕH

p,q
β (ϕ) = ϕ ·Hp,q

β (ϕ).

It is not hard to see that

ΠϕH
p,q
β (ϕ) ⊂ L(p, q, β).

Indeed, by the above definitions, we have
(29)
f ∈ ΠϕH

p,q
β (ϕ) ⇐⇒ f = ϕg, g ∈ Hp,q

β (ϕ) ⇐⇒ f = ϕg ∈ L(p, q, β), g ∈ H(B).

Lemma 4.1. For 1 ≤ p, q ≤ ∞, 0 < δ < α+ 1, the inclusion

H(p, q, δ) ⊂ H(1, 1, α+ 1)

is continuous.

Proof. The widest mixed norm space here appears when p = 1 and q = ∞ so
that H(p, q, δ) ⊂ H(1,∞, δ) with the norm inequality. It remains to note only
that

‖f‖L(1,1,α+1) =

∫ 1

0

(1− r)α−δ(1− r)δM1(f ; r) dr ≤ 1

1 + α− δ
‖f‖L(1,∞,δ).�

Theorem 4.2. Let 1 ≤ p, q ≤ ∞, β ∈ R, and {ϕ,ψ} be a normal pair of
functions with indices a and b (0 < a < b) and with the index of the pair
α (α > b− 1) in the sense of Definitions 1.1–1.2.

(i) If −a < β < 1+α−b, then the operator Pϕ,ψ projects the space L(p, q, β)
boundedly onto ΠϕH

p,q
β (ϕ),

Pϕ,ψ : L(p, q, β)
onto−−−→ ΠϕH

p,q
β (ϕ).
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(ii) If b−α < β < 1+a, then the operator Qϕ,ψ projects the space L(p, q, β)
boundedly onto ΠψH

p,q
β (ψ),

Qϕ,ψ : L(p, q, β)
onto−−−→ ΠψH

p,q
β (ψ).

Proof. (i) According to Theorem 1.3 and (9), Pϕ,ψ
(
L(p, q, β)

)
⊂ L(p, q, β). Let

us show that Pϕ,ψf ∈ ΠϕH
p,q
β (ϕ) for any function f ∈ L(p, q, β). Indeed,

Pϕ,ψ(f)(z) = ϕ(z)

∫
B

ψ(w)

(1− 〈z, w〉)n+1+α
f(w) dV (w) = ϕ(z)P1,ψ(f)(z),

where P1,ψ(f)(z) is a holomorphic function, and Pϕ,ψ(f)(z) ∈ L(p, q, β). In
view of (29), this means that Pϕ,ψf ∈ ΠϕH

p,q
β (ϕ).

Let us now prove the projection is onto, specifically f = Pϕ,ψf ∀ f ∈
ΠϕH

p,q
β (ϕ), that is, Pϕ,ψ is the identity on ΠϕH

p,q
β (ϕ). Indeed, assume that f

is an arbitrary function in the class ΠϕH
p,q
β (ϕ), or, in view of (29), equivalently

f = ϕg g ∈ Hp,q
β (ϕ). Then

Pϕ,ψ(f)(z) = Pϕ,ψ(ϕg)(z)

= ϕ(z)

∫
B

ϕ(w)

(1− 〈z, w〉)n+1+α
ψ(w) g(w) dV (w)

= ϕ(z)

∫
B

(1− |w|2)α

(1− 〈z, w〉)n+1+α
g(w) dV (w)

= ϕ(z)Pα(g)(z) = ϕ(z) g(z) = f(z).

Here Pα is the classical projection (7), while the identity Pα(g) = g, see (8),
follows from Lemma 4.1 and the inclusion

(30) g ∈ Hp,q
β (ϕ) ⊂ Hp,q

β

(
(1− r2)b

)
= H(p, q, β + b) ⊂ H(1, 1, α+ 1)

with the assumption 0 < b− a < β + b < 1 + α. Thus, Part (i) of Theorem 4.2
is proved.

Part (ii) can be proved in the same way, the only difference is that instead
of (30), we apply another inclusion

(31) g ∈ Hp,q
β (ψ) ⊂ Hp,q

β

(
(1− r2)α−a

)
= H(p, q, β + α− a),

with the assumption 0 < b− a < β + α− a < 1 + α. This completes the proof
of Theorem 4.2. �
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