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The paper studies convergence acceleration for Fourier series based on Pade approximants. An
application to expansions by eigenfunctions of a boundary value problem for a first order model
differential equation with discontinuous coefficient is considered and numerical results discussed.

§1. INTRODUCTION

It is well known that approximation of a 2-periodic f ∈ C∞(R) function by truncated Fourier series

(partial sum)

SN (f) :=
N∑

n=−N
fne

iπnx, fn =
1
2

∫ 1

−1

f(x)e−iπnxdx (1)

is highly effective. When the approximated function has a discontinuity point, this truncation

procedure leads to the Gibbs phenomena. To counter them, different solutions have been suggested

in the literature (see [2], [12, 13] and the references therein). Thus A. Krylov in 1906 [14] and in

1966 by Lanczos [15] suggested subtracting a polynomial representing the discontinuities of the

function and some of its derivatives. In [15] the correction polynomial was a linear combination of

Bernoulli polynomials. In a series of papers [3, 5 – 8, 10, 11] Gottlieb and Eckhoff developed this

method for practical realizations. Further we refer to this as Polynomial (or P-) method. Another

way suggested in a general form by Cheney [4], is Fourier-Pade approximation which uses Pade

approximants [1]. Other trigonometric–rational investigations were carried out in [9], [16].

In [17, 19] and [20] Pade approximants were applied to asymptotic expansion of Fourier coefficients.

This approach leads to quasipolynomial approximation (QP-method) and actually generalizes the
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P-method.

The present paper applies Fourier-Pade approximants to P and QP approximations for additional

acceleration of convergence and applies that approach to expansions by the eigenfunctions of a

model problem for some differential equation (see [21]) with a non-smooth coefficients.

§2. POLYNOMIAL-PADE (PP-) APPROXIMATIONS

First we describe P-approximation. Suppose f ∈ Cq[−1, 1], q ≥ 0 and denote

Ak(f) = f (k)(1)− f (k)(−1), k = 0, · · · , q.

According to asymptotic expansion of Fourier coefficients

fn =
(−1)n+1

2

q−1∑
k=0

Ak(f)
(iπn)k+1

+
1

2(iπn)q

∫ 1

−1

f (q)(x)e−iπnxdx (2)

the function f can be split into two parts

f(x) = F (x) +
q−1∑
k=0

Ak(f)Bk(x), (3)

where F is a relatively smooth function with Fourier coefficients Fn = o(n−q), n→∞ and Bk(x) are

2-periodic Bernoulli polynomials with Fourier coefficients

Bk,n =


0, n = 0
(−1)n+1

2(iπn)k+1
, n = ±1,±2, . . .

Approximation of F by SN (F ) leads to Polynomial (P-) approximation

Sq,N (f) = SN (F ) +
q−1∑
k=0

Ak(f)Bk(x), (4)

where the Fourier coefficients of F can be found from (3)

Fn = fn −
q−1∑
k=0

Ak(f)Bk,n.

We will write S0,N (f) ≡ SN (f).

Now we apply Fourier-Pade approximation for additional acceleration of SN (F ). Following [16] we

consider a finite sequence of complex numbers θ := {θk}p|k|=1, p ≥ 1 and denote

∆0
n(θ, F ) = Fn,

∆k
n(θ, F ) = ∆k−1

n (θ, F ) + θk sgn(n)∆k−1
(|n|−1)sqn(n)(θ, F ), k ≥ 1,

40



where sgn(n) = 1 if n ≥ 0 and sgn(n) = −1 if n < 0.

From (3), (4), we get

Rq,N (f) := f(x)− Sq,N (f) = F (x)− SN (F ) = R+
N (F ) +R−N (F ),

R+
N (F ) :=

∞∑
n=N+1

Fne
iπnx, R−N (F ) :=

−N−1∑
n=−∞

Fne
iπnx. (5)

It is easy to check that

R+
N (F ) = −θ1FN e

iπ(N+1)x

1 + θ1eiπx
+

1
1 + θ1eiπx

∞∑
n=N+1

∆1
n(θ, F )eiπnx.

Reiteration of this transformation p times leads to the expansion

R+
N (F ) =− eiπ(N+1)x

p∑
k=1

θk∆k−1
N (θ, F )∏k

s=1(1 + θseiπx)
+

+
1∏p

k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, F )eiπnx. (6)

Similar expansion of R−N (F ) reduces to the following Polynomial-Pade (PP-) approximation [16]

Sp,q,N (f) :=SN (F )− eiπ(N+1)x

p∑
k=1

θk∆k−1
N (θ, F )∏k

s=1(1 + θseiπx)
−

− e−iπ(N+1)x

p∑
k=1

θ−k∆k−1
−N (θ, F )∏k

s=1(1 + θ−se−iπx)
+
q−1∑
k=0

Ak(f)Bk(x).

It is natural to put S0,q,N (f) ≡ Sq,N (f).

There are different ways for determination of the vector θ. One option is Fourier-Pade method

where the vector θ is found as a solution of the system

∆p
n(θ, F ) = 0, n = −N − p, · · · ,−N − 1, N + 1, · · · , N + p.

Another option is connected with the following theorem, where ‖f‖ =
(∫ 1

−1
|f(x)|2dx

)1/2

denotes the

L2-norm.

Theorem 1 [16]. Suppose f ∈ Cq+p[−1, 1], for some q ≥ 0, p ≥ 1, and f (q+p) is absolutely continuous on

[−1, 1]. If

θk = θ−k = 1− τk
N
, k = 1, · · · , p, τk > 0, τj 6= τi, j 6= i;
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then

lim
N→∞

Nq+ 1
2 ‖f(x)− Sp,q,N (f)‖ = |Aq(f)|cp(q),

where

cp(q) =
1

πq+1

(∫ ∞
1

|φp,q(t)|2 dt
)1/2

,

φp,q(t) :=
(−1)p

tq+1
− 1
q!

p∑
j=1

e−τj(t−1)∏p
i=1
i6=j

(τi − τj)

p∑
k=0

γk(p)(−1)k+1

p−k−1∑
m=0

(q + p− k −m− 1)!τmj

and γk(p) are defined by the identity

p∏
k=1

(1 + τkx) ≡
p∑
k=0

γk(p)xk. (7)

It can be easily shown that for p = 0 and f ∈ Cq[−1, 1], for some q ≥ 0, with absolutely continuous

q-th derivative

lim
N→∞

Nq+ 1
2 ‖f(x)− Sq,N (f)‖ = |Aq(f)|c0(q), c0(q) =

1
πq+1

√
2q + 1

.

In Table 1 we represent some results from [16] on the choice of parameters τk that minimize the

L2-error for p = 3. The ratio c0(q)/c3(q) describes effectiveness of L2-optimal rational approximation

Sp,q,N (f) compared to Sq,N (f) for N >> 1.

q 1 2 3 4 5 6
c3(q) 0.00095 0.00007 9 · 10−6 1 · 10−6 2 · 10−7 4 · 10−8

c0(q)/c3(q) 61.3 185.1 411.6 771.8 1296.7 2017.4
τ1 0.2510 0.6382 1.1230 1.6730 2.2699 2.9023
τ2 1.28553 2.2362 3.2067 4.1868 5.1725 6.1617
τ3 4.2225 5.7813 7.2573 8.6781 10.0589 11.4089

Table 1. Numerical values of c3(q) and c0(q)/c3(q) for 1 ≤ q ≤ 6 using the numerical optimal

values of parameters τk, k = 1, 2, 3.

§3. QUASIPOLYNOMIAL–PADE (QPP-) APPROXIMATIONS

Following [17 – 20] we consider a finite sequence of complex numbers η := {ηk}mk=1, m ≥ 1 and denote

δ0n(η, f) = An(f), δkn(η, f) = δk−1
n (η, f) + ηkδ

k−1
n−1(η, f), 1 ≤ k ≤ q.

If n < 0, we put δkn(η, f) = 0, k = 0, 1, ....
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It can easily be checked that

q−1∑
k=0

Ak(f)xk = xq
Aq−1(f)η1

1 + η1x
+

1
1 + η1x

q−1∑
k=0

(Ak(f) + η1Ak−1(f))xk. (8)

Note that for η1 = 0 the sum in the left side of (8) remains unchanged. Reiteration of this

transformation m times (m ≤ q − 1) leads to the formula

q−1∑
k=0

Ak(f)xk = xq
m∑
k=1

ηkδ
k−1
q−1 (η, f)∏k

s=1(1 + ηsx)
+

1∏m
s=1(1 + ηsx)

q−1∑
k=0

δmk (η, f)xk. (9)

Now suppose f ∈ Cq[−1, 1] for some q ≥ 1. Applying transformation (9) to the first term of (2) with

(iπn)−1 instead of x we get

fn = Pn +Qn, n 6= 0, (10)

where

Pn =
(−1)n+1

2(iπn)q+1

m∑
k=1

ηkδ
k−1
q−1 (η, f)(iπn)k∏k
s=1(iπn+ ηs)

+
(−1)n+1(iπn)m

2
∏m
k=1(iπn+ ηk)

q−1∑
k=q−m

δmk (η, f)
(iπn)k+1

+
1

2(iπn)q

∫ 1

−1

f (q)(t) e−iπntdt. (11)

and

Qn =
(−1)n+1(iπn)m

2
∏m
s=1(iπn+ ηs)

q−m−1∑
k=0

δmk (η, f)
(iπn)k+1

.

According to (10) the function f can be split into two parts

f(x) = P (x) +Q(x), (12)

where

P (x) =
∞∑

n=−∞
Pne

iπnx, P0 = f0, Q(x) =
∞∑

n=−∞
n 6=0

Qne
iπnx.

Approximation of P by the truncated Fourier series leads to the following approximation [17 – 20]

Tq,m,N (f) = SN (P ) +Q(x), (13)

where the Fourier coefficients of P can be found from (12)

Pn = fn −Qn.
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The unknown vector η in (13) we determine from the system

δmk (η, f) = 0, k = q −m, · · · , q − 1. (14)

In [17] it was shown that the function Q(x) is a quasipolynomial of the form

Q(x) =
∑
k

akx
pkeiωkx,

where ωk ∈ C and {pk} is a set of nonnegative integers. The approximation (13), (14) we call

QP-method or QP-approximation. It is important to note that for η1 = η2 = · · · = ηm = 0 the

QP-approximation coincides with P-approximation Sq,N (f).

For additional acceleration of QP-method we proceed as in the previous section. From (13) and

(12), we have, see (5)

Rq,m,N (f) := f(x)− Tq,m,N (f) = R+
N (P ) +R−N (P ),

where

R+
N (P ) : =

∞∑
n=N+1

Pne
iπnx

= −eiπ(N+1)x

p∑
k=1

θk∆k−1
N (θ, P )∏k

s=1(1 + θseiπx)
+

1∏p
k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, P )eiπnx.

Similar expansion of R−N (P ) reduces to the following Quasipolynomial-Pade (QPP-) approximation:

Tp,q,m,N (f) = SN (P )− eiπ(N+1)x

p∑
k=1

θk∆k−1
N (θ, P )∏k

s=1(1 + θseiπx)

− e−iπ(N+1)x

p∑
k=1

θ−k∆k−1
−N (θ, P )∏k

s=1(1 + θ−se−iπx)
+Q(x).

Now we prove an analog of Theorem 1 for QPP-approximations.

In [16] the following lemma was proved:

Lemma 1 [16]. Suppose that the sequence Pn has the following asymptotic expansion for q ≥ 0, p ≥ 1:

Pn =
(−1)n+1

2

p+q∑
s=q

αs
(iπn)s+1

+ o(n−p−q−1), n→∞,

where {αs}p+qs=q are some constants. If

θk = θ−k = 1− τk
N
, k = 1, · · · , p,
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then the asymptotic expansion

∆p
n(θ, P ) = αq

(−1)n+p+1

2(iπ)q+1q!

p∑
k=0

(q + p− k)!(−1)kγk(p)
Nk(n− k)q+1|n− k|p−k

+ o(n−q−p−1),

holds as N →∞, |n| ≥ N + 1, where the numbers γk(p) are defined by (7).

By µk(m), k = 0, · · · ,m, we denote the coefficients of the polynomial

m∏
k=1

(1 + ηkx) ≡
m∑
k=0

µk(m)xk.

Note that the system (14) can be written in the following form:

m∑
s=1

µs(m)Ak−s+q−m−1(f) = −Ak+q−m−1(f), k = 1, · · · ,m, (15)

and denote

Umr = [Ak−s+r(f)], k, s = 1, · · · ,m.

Theorem 2. Suppose f ∈ Cq+p[−1, 1] for some q ≥ 1, p ≥ 0 and f (q+p) is absolutely continuous on [−1, 1].

If det Umq−m−1 6= 0, then with η found from (14) and θk = θ−k = 1− τk
N , k = 1, · · · , p, τk > 0, τj 6= τi, j 6= i,

lim
N→∞

Nq+ 1
2 ‖f − Tp,q,m,N (f)‖ =

∣∣∣∣∣ det Um+1
q−m

det Umq−m−1

∣∣∣∣∣ cp(q),
where cp(q) is defined in theorem 1.

Proof: From (12), (13) and (6) we have

f(x)− Tp,q,m,N (f) := R+
p,q,m,N (P ) +R−p,q,m,N (P ),

where

R±p,q,m,N (P ) =
1∏p

k=1(1 + θ±ke±iπx)

∞∑
n=N+1

∆p
±n(θ, P )e±iπnx.

After simple calculations we obtain from (11)

Pn =
(−1)n+1

2

p+q∑
`=q

α`
(iπn)`+1

+ o(n−p−q−1), n→∞,

where

α` = A`(f) +
m∑
k=1

ηkδ
k−1
q−1 (η, f)

k∑
s=1

ηk−1
s (−1)`−qη`−qs∏k

j=1
j 6=s

(ηs − ηj)
.
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Now we can apply Lemma 1 to the sequence Pn taking into account that

αq = Aq(f) +
m∑
k=1

ηkδ
k−1
q−1 (η, f) = δmq (η, f),

which follows from the relation

δmq (η, f) = δm−1
q (η, f) + ηmδ

m−1
q−1 (η, f) = δm−2

q (η, f) + ηm−1δ
m−2
q−1 (η, f) + ηmδ

m−1
q−1 (η, f)

= δ0q (η, f) +
m∑
k=1

ηkδ
k−1
q−1 (η, f) = Aq(f) +

m∑
k=1

ηkδ
k−1
q−1 (η, f).

By Cramer’s rule, from (15) we get

µs(m) =
Ms

det Umq−m−1

, s = 1, · · · ,m,

where {Ms} are the corresponding minors. Consequently,

δmq (η, f) = Aq(f) +
m∑
s=1

µs(m)Aq−s(f) = Aq(f) +
1

det Umq−m−1

m∑
s=1

MsAq−s(f)

= (−1)m
det Um+1

q−m

det Umq−m−1

.

To get the proof it remains to proceed as in the proof of Theorem 1 with Aq(f) replaced by

(−1)m
det Um+1

q−m

det Um
q−m−1

.

Note that for p = 0 Theorem 2 was proved in [20].

§4. NUMERICAL RESULTS

For any given f , q and m we put

aq,m(f) =

∣∣∣∣∣Aq(f)
det (Umq−m−1)

det (Um+1
q−m )

∣∣∣∣∣ .
The constant aq,m(f) describes the effectiveness of QPP-approximation compared to PP-approxim-

ation (with the same value of parameter p), assuming N >> 1 and Theorems 1,2 valid. Calculations

show that this constant in fact describes the convergence acceleration in broader situations. Note

that aq,m is independent of the parameter p.

Let us investigate the example

f(x) =
sin(5x− 0.2)

1.1− x
. (16)
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Figure 1 represents the graphs of aq,m(f) for (16) for q = 5, 6, 7 and 1 ≤ m ≤ q − 1. For this function

the QPP-method proves to be more precise than PP-method (for the same value of parameter p)

almost 15 times for q = 5;m = 3 and 50 times when q = 7;m = 3.

13cm3cmpic1.bmp

Figure 1: Graphics of aq,m(f) for (16) for q = 5, 6, 7 and 1 ≤ m ≤ q − 1.

The relative effectiveness of QPP-method against PP-method can be described by the fraction

aN,q,m,p(f) =
max
|x|≤1

|f − Sp,q,N (f)|

max
|x|≤1

|f − Tp,q,m,N (f)|
.

Table 1 shows approximate values of aN,7,3,3 for (16). Calculations are carried out with 64 digits

of precision by MATHEMATICA package.

N 32 64 128 256 512
aN,7,3,3 101.17 64.36 50.91 48.58 48.57

Table 1: Approximate values of aN,7,3,3 for different N .

Comparison with theoretical value a7,3 = 49.4408 shows that experimental and theoretical estimates

are rather close for N ≥ 64.

S0,q,N S1,q,N S2,q,N S3,q,N

128 1.8 × 10−9 2.1× 10−10 4.5× 10−11 1.3× 10−11

256 7.3× 10−12 8.3× 10−13 1.7× 10−13 4.7× 10−14

T0,q,m,N T1,q,m,N T2,q,m,N T3,q,m,N

128 3.5 × 10−11 4.1× 10−12 8.8× 10−13 2.5× 10−13

256 1.52× 10−13 1.7× 10−14 3.5× 10−15 9.7× 10−16

Table 2: Uniform errors by QPP and PP methods for different values of N, p and q = 7,m = 3.

Figure 1 shows also the optimal values of m when parameter q is fixed. Thus we see that for q = 7

the optimal is m = 3. Table 2 presents uniform errors in approximation of (16) by QPP and PP

methods for different values of N, p and q = 7,m = 3. Comparison shows that S2,7,N has the same

precision as T0,7,3,N while T1,7,3,N is 3 times more precise than S3,7,N .

All calculations are carried out by the package MATHEMATICA with 64 digits of precision.

§ 5. A MODEL PROBLEM
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The approach of previous sections was generalized in [18] for expansions by eigenfunctions for one-

dimensional boundary problems in the case where the coefficients of the equations are smooth.

Here we consider a simple first order model differential equation with non-smooth coefficient. Some

preliminary results were obtained in [21].

We pose the eigenvalue problem

i
du

dx
= λ ε(x)u(x), x ∈ (−1, 1), (17)

u(−1) = u(1), (18)

where ε(x) > δ > 0, ε(q+1) is a piecewise-continuous function in [−1, 1] with potential points of

discontinuity among α = {αk}µk=0, −1 = α0 < α1 < α2 < . . . < αµ−1 < αµ = 1. We denote this class of

functions by Cq+1
α [−1, 1].

It is easy to calculate the eigenvalues {λn} and eigenfunctions {φn} of the problem (17), (18)

φn(x) = e
−iηn

∫ x
−1

ε(t)dt
, λn = −πηn, n ∈ Z,

where

η =
2π∫ 1

−1
ε(t)dt

.

The system {φn(x))}∞n=−∞ is orthogonal in the weighted space L2[(−1, 1), ε].

We consider now the formal series

f(x) =
∞∑

n=−∞
fnφn(x), fn =

η

2π

∫ 1

−1

ε(x)f(x)φn(x)dx (19)

and the approximation formula:

WN (f) =
N∑

n=−N
fnφn(x). (20)

Lemma 2. If f ∈ Cq+1
α [−1, 1] then the following asymptotic expansion holds

fn = Hn +Gn, (21)

Hn =
η

2π

µ−1∑
`=0

q∑
k=0

(−1)kAk(f, α`)
(iηn)k+1

e
iηn
∫ αl
−1

ε(t)dt
, Gn =

η

2π
(−1)q+1

(iηn)q+1

∫ 1

−1

ε(x)gq+1(x)φn(x)dx,
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where

g0(x) = f(x), gk(x) =
g′k−1(x)
ε(x)

,

Ak(f,−1) = gk(1)− gk(−1), Ak(f, x) = gk(x− 0)− gk(x+ 0).

Proof: We divide the integral in (19) into parts by the jump points

fn =
η

2π

∫ 1

−1

ε(x)f(x)φn(x)dt =
η

2π

µ−1∑
`=0

∫ αl+1

α`

ε(x)f(x)φn(x)dx.

Integration by parts yields

η

2π

∫ αl+1

αl

ε(x)f(x)φn(x)dx =
η

2π

∫ αl+1

αl

f(x)ε(x)e
iηn
∫ x
−1

ε(t)dt
dx =

=
g0(x)e

iηn
∫ x
−1

ε(t)dt

2iπn

∣∣∣αl+1

αl
− 1

2iπn

∫ αl+1

αl

g1(x)ε(x)e
iηn
∫ x
−1

ε(t)dt
dx. (22)

From (22) we get

η

2π

∫ 1

−1

ε(x)f(x)φn(x)dt =
µ−1∑
l=0

A0(f, αl)
2iπn

e
iηn
∫ αl
−1

ε(t)dt − 1
2iπn

∫ 1

−1

ε(x)g1(x)φn(x)dx.

Integration by parts q − 1 times leads to (21). The proof is complete.

For convergence acceleration of (20) we use the idea of P-approximation. According to Lemma 2

we split the function f into two parts

f(x) = H(x) +G(x)

where G(x) is smooth as compared with H(x), and consider the following analog of P-method:

Wq,N (f) = H(x) +
N∑

n=−N
Gnφn(x).

Theorem 3. If f ∈ Cq+1
α [−1, 1], then

f −Wq,N (f) = o(N−q), N →∞.

Proof: immediately follows from the formulas

f −Wq,N (f) = G−WN (G) =
∑
|n|>N

Gnφn(x),

Gn =
(−1)qη

2π(iηn)q+1

∫ 1

−1

gq+1(x)ε(x)e
iηn
∫ x
−1

ε(t)dt
dx, (23)

49



and from the fact that integral in the right hand side of (23) is o(1), n → ∞, according to the

Riemann–Lebesgue Theorem.

The analogs of PP and QPP approximations can be constructed similarly. By Wq,p,N (f) and

Wq,p,m,N (f) we denote the analogs of PP and correspondingly QPP approximations for (20).

Consider the function

f(x) =
1

1.1− x
. (24)

12cm5.5cmpic2.bmp

Figure 2: Uniform errors in logarithm scale while approximating (24) by Wq,p,N (f) and

Wq,p,m,N (f) for q = 7, m = 3, p = 0, 2 and ε as in (25).

In Figure 2, the uniform errors in logarithm scale are shown while approximating (24) by Wq,p,N (f)

and Wq,p,m,N (f) for q = 7, m = 3, p = 0, 2 and

ε(x) =
{

1, x < 1/3
4, x ≥ 1/3.

(25)

We see that W7,2,N (f) and W7,2,3,N (f) are 4 to 10 times more precise (the difference is higher for

greater values of the parameter N) compared to approximations W7,0,N (f) and W7,0,3,N (f) corre-

spondingly. Approximations W7,0,3,N (f) and W7,2,N (f) show the same precision (see also remarks to

Table 2).
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