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Abstract. In this paper we consider and investigate a parallel
algorithm for numerical solution of the second kind Fredholm in-
tegral equation with prescribed accuracy. Numerical experiments
are carried down on ArmCluster. The results of numerical experi-
ments are presented and discussed.

1. Introduction

Numerical solution of integral equations attracted the interest of
many investigators, so a number of different methods have been pro-
posed (see, for example, [1]-[7] with references). The most powerful
of them are based on a discretization of the integrals by means of an
appropriate quadrature rule. This leads to a system of linear alge-
braic equations after applying it to appropriately selected collocation
points. From the above system of linear equations the values of the
unknown function at the integration points are obtained. In this work
we use similar approach with quadrature rule that was suggested in
[1]. For numerical solution of corresponding system of linear equations
we apply the parallel algorithms available on ArmCluster (the package
ScaLAPACK).

2. Description of the method

Consider the following integral

(2.1) I =

∫ b

a

f(x)dx, a, b ∈ [−1, 1].

By the change of variable x = sin2 πt
2

we obtain

(2.2) I =

∫ b∗

a∗
F (t)dt,

where

a∗ =
1

π
arccos(1− 2a), b∗ =

1

π
arccos(1− 2b),

F (x) =
π

2
f(sin2 πx

2
) sin πx.

(2.3)
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By the use of classical trigonometric interpolation

F (x) ≈
N∑

n=−N

F̌ne
iπnx,

F̌n =
1

2N + 1

N∑

k=−N

F (xk)e
−iπnxk , xk =

2k

2N + 1

(2.4)

we obtain the following quadrature formula

(2.5) I ≈ 4

2N + 1

N∑

k=1

F (xk)
N∑

n=1

sin πnxk

πn
(cos πna∗ − cos πnb∗).

For f ∈ C∞[a, b] the accuracy of the quadrature formula (2.5) is ”infi-
nite”.

Now consider the second kind Fredholm integral equation

(2.6) z(x) +

∫ b

a

K(x, t)z(t)dt = f(x),

where K(x, t), f(x) are smooth functions. By the change of variables
x = a + (b− a)u, and t = a + (b− a)v we derive

(2.7) z̃(u) +

∫ 1

0

K̃(u, v)z̃(v)dv = f̃(u),

with

z̃(u) = z(a + (b− a)u), f̃(u) = f(a + (b− a)u)

K̃(u, v) = (b− a)K(a + (b− a)u, a + (b− a)v).
(2.8)

By application of (2.5) to (2.8) we obtain

(2.9) z̃(u) +
N∑

k=1

PkK̃
(
u, sin2 πxk

2

)
z̃

(
sin2 πxk

2

)
= f(u),

where

(2.10) Pk =
2π sin πxk

2N + 1

N∑
n=1

sin πnxk

πn
(1− (−1)n).

By the change of variable u = sin2 πw
2

we get

(2.11) ˜̃z(w) +
N∑

k=1

Pk
˜̃K(w, xk)˜̃z(xk) = ˜̃f(w),

where

˜̃z(u) = z̃
(
sin2 πu

2

)
, ˜̃f(u) = f̃

(
sin2 πu

2

)

˜̃K(u, v) = K̃
(
sin2 πu

2
, sin2 πv

2

)
.

(2.12)
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Now we put w = xs and derive the following system of linear equations

(2.13)
N∑

k=1

msk
˜̃z(xk) = ˜̃f(xs), s = 1, · · · , N

with

(2.14) msk = δsk + ˜̃K(xs, xk)Pk,

where δss = 1 and δsk = 0 for s 6= k. Hence

(2.15) ˜̃z(xk) =
N∑

s=1

m−1
sk

˜̃f(xs), k = 1, · · · , N,

where by m−1
sk we denote the elements of the inverse matrix. Now note

that from (2.6) we have

(2.16) z(x) = f(x)−(b−a)

∫ 1

0

K (x, a + (b− a)v) z (a + (b− a)v) dv.

Application of (2.5) to (2.16) leads to the following representation

(2.17) z(x) ≈ f(x)− (b−a)
N∑

k=1

Pk K
(
x, a + (b− a) sin2 πxk

2

)
˜̃z(xk).

Substituting (2.15) into (2.17) we derive the symbolic approximate so-
lution of (2.6) in the form of a functional sum.

This approach can be applied also for the numerical solution of in-
tegral equations of the type

(2.18) z(x) +
m∑

s=1

∫ βs(x)

αs(x)

Ks(x, t)z(t)dt = f(x), x ∈ [−1, 1],

where αs(x), βs(x), f(x), Ks(x, t) are smooth functions, and |αs(x)|,
|βs(x)| ≤ 1. System of integral equations can also be considered simi-
larly.

3. Example

Consider the following integral equation

(3.1) z(x) = ex +

∫ 1

0

K(x, t)z(t), x ∈ [0, 1],

where

(3.2) K(x, t) =

{
1

sh1
sh x sh(t− 1), 0 ≤ x ≤ t

1
sh1

sh t sh(x− 1), t ≤ x ≤ 1

The exact solution of (3.1) is 1
sh
√

2
sh(

√
2(1−x))+e sh(

√
2x). The pro-

gram is working with automatic precision check scheme (with required
accuracy) when the system (2.13) must be repeatedly solved for differ-
ent values of N and therefore parallelization of this part of algorithm is
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Figure 1. The left: speedup of parallelization for 4
computers. The right: full line is the working time of
the algorithm for 4 computers and the dashed line for 1
computer.

extremely efficient. For example, we have obtained the numerical solu-
tion with absolute error 9× 10−7 for 91 seconds on one computer and
58 seconds for 4 computers (N = 700). Comparison results are shown
on the diagram. The left diagram shows the speedup of parallelization
in dependence on N for 4 computers. As we see, for N > 5000 we have
acceleration almost 3 times. On the right diagram the working time of
the program is presented: the full line for 4 computers and the dashed
line for 1 computer.
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