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Abstract

We consider convergence acceleration of the truncated Fourier series by sequential appli-

cation of polynomial and rational corrections. Polynomial corrections are performed along

the ideas of the Krylov-Lanczos approximation. Rational corrections contain unknown pa-

rameters which determination is a crucial problem for realization of the rational approx-

imations. We consider approach connected with the Fourier-Pade approximations. This

rational-trigonometric-polynomial approximation we continue calling the Fourier-Pade ap-

proximation. We investigate its convergence for smooth functions in different frameworks

and derive the exact constants of asymptotic errors. Detailed analysis and comparisons of

different rational-trigonometric-polynomial approximations are performed and the conver-

gence properties of the Fourier-Pade approximation are outlined. In particular, fast conver-

gence of the Fourier-Pade approximation is observed in the regions away from the endpoints.

Key Words: Convergence Acceleration, Fourier-Pade Approximation, Rational Approxima-

tion, Krylov-Lanczos Approximation
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Introduction

It is well known that approximation of a 2-periodic and smooth function by the truncated

Fourier series

SN(f ;x) =
N∑

n=−N

fne
iπnx,

fn =
1

2

∫ 1

−1
f(x)e−iπnxdx
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50 A. POGHOSYAN

is highly effective. When the approximated function has a point of discontinuity, approxi-

mation by the partial sum SN(f) is noneffective.

In this paper we consider convergence acceleration of the truncated Fourier series by

sequential application of polynomial and rational corrections. Method of polynomial cor-

rections is known as the Krylov-Lanczos approximation (see [1], [3]-[5], [13] with references

therein). The approach was suggested by Krylov ([8]) and later (see also [16] and [19])

independently by Lanczos ([9]).

Additional convergence acceleration of the KL-approximation is achieved by application

of rational functions (in terms of eiπx) as corrections of the error along the ideas of the

rational approximations ([2], [6], [7]). Rational approximations considered in this paper

depend on parameter θ which determination is the principal problem for realization of the

accelerating convergence.

Different approaches are known for parameter determination. One approach leads to

the L2-minimal approximation ([12], [15]), the other leads to the limit function minimal

approximation ([11]) and the third approach is connected with the roots of the associated

Laguerre polynomials ([14]). In this paper we investigate parameter determination according

to the main stream which is considered in [2], [6] and [7] and which is known as the Fourier-

Pade approximation.

In our approach we have additional acceleration of convergence of the Fourier-Pade ap-

proximation due to application of the polynomial corrections. We consider smooth functions

and investigate convergence of the resultant rational-trigonometric-polynomial (RTP-) ap-

proximation deriving exact constants of the asymptotic errors in different frameworks: L2-

norm, and pointwise convergence in the regions away from the endpoints x = ±1. Compar-

ison with other RTP-approximations reveals the convergence properties of the Fourier-Pade

approximation. In particular, we observe the fast pointwise convergence in the regions away

from the endpoints.

The paper is organized as follows:

Section 1 displays the idea of polynomial correction and with some numerical results

outlines its properties.

Section 2 describes additional acceleration of convergence by the rational corrections.

Different approaches for parameter determination are discussed. Theoretical and numerical

results perform comparison of different RTP-approximations with each other and with the

Krylov-Lanczos approximation.

Section 3.1 introduces RTP-approximation with parameter θ determined along the ideas

of the Fourier-Pade approximation and investigates the pointwise convergence in the regions

away from the endpoints. Comparison with other RTP-approximations reveals the fast

pointwise convergence of the Fourier-Pade approximation.

Section 3.2 explores the convergence of the Fourier-Pade approximation in the frameworks

of L2 and uniform convergence.
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1 The Krylov-Lanczos Approximation

We recap the main ideas of the Krylov-Lanczos approximation from [13]. Let f ∈ Cq−1[−1, 1].

Denote

Ak(f) = f (k)(1)− f (k)(−1), k = 0, . . . , q − 1.

We limit our discussion to functions which are smooth on [−1, 1] with discontinuities only

at the endpoints of the interval. Throughout the paper we suppose that the exact values of

the jumps are known.

The KL-approximation is based on the following representation of the approximated

function

f(x) = F (x) +

q−1∑
k=0

Ak(f)Bk(x), (1)

where Bk are 2-periodic extensions of the Bernoulli polynomials with the Fourier coefficients

Bk,n =


0, n = 0

(−1)n+1

2(iπn)k+1
, n 6= 0

and F is a 2-periodic and smooth function on the real line (F ∈ Cq−1(R)) with the Fourier

coefficients

Fn = fn −
q−1∑
k=0

Ak(f)Bk,n.

Approximation of F by the truncated Fourier series leads to the Krylov-Lanczos (KL-)

approximation

SN,q(f ;x) =
N∑

n=−N

Fne
iπnx +

q−1∑
k=0

Ak(f)Bk(x)

with the error

RN,q(f ;x) = f(x)− SN,q(f ;x).

Next results are for further comparisons. Theorem 1 describes the asymptotic behavior

of RN,q(f) on the segment [−1, 1] in the L2-norm.

Theorem 1. [13] Suppose f ∈ Cq[−1, 1] and f (q) ∈ AC[−1, 1] for some q ≥ 1. Then the

following estimate holds

lim
N→∞

N q+ 1
2‖RN,q(f)‖L2 = |Aq(f)|c(q),

where

c(q) =
1

πq+1
√

2q + 1
.

Table 1 shows the values of c(q).

Theorem 2 describes the pointwise convergence of the KL-approximation in the regions

away from the endpoints x = ±1.
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q 1 2 3 4 5 6 7 8

c(q) 0.058 0.014 0.0039 0.0011 0.00031 0.000091 0.000027 8.1 · 10−6

Table 1: The values of c(q) from Theorem 1.

Theorem 2. [13] Suppose f ∈ Cq+1[−1, 1] and f (q+1) ∈ AC[−1, 1] for some q ≥ 1. Then

the following estimates hold for |x| < 1

RN,q(f ;x) = Aq(f)
(−1)N+ q

2

2πq+1N q+1

sin π
2
(2N + 1)x

cos πx
2

+ o(N−q−1), N →∞

for even values of q, and

RN,q(f ;x) = Aq(f)
(−1)N+ q+1

2

2πq+1N q+1

cos π
2
(2N + 1)x

cos πx
2

+ o(N−q−1), N →∞

for odd values of q.

Theorem 3 outlines the behavior of the error at the endpoints of the interval in terms of

the limit function.

Theorem 3. [11] Let f ∈ Cq[−1, 1] and f (q) ∈ AC[−1, 1] for some q ≥ 1. Then the following

estimate holds for h ≥ 0

lim
N→∞

N qRN,q

(
f ; 1− h

N

)
= Aq(f)`q(h),

where

`q(h) =
(−1)q

πq+1

∫ ∞
1

sin
(
πhx− πq

2

)
xq+1

dx.

The value of
1

N q
max
h≥0
|`q(h)| describes (asymptotically) the uniform error at the endpoints

of the interval. Taking into account that according to Theorem 2 the rate of convergence

in the regions away from the endpoints is higher than at the endpoints then the value
1

N q
max
h≥0
|`q(h)| is the uniform error of approximation on the entire interval. Table 2 presents

the values of max
h≥0
|`q(h)| for different values of q.

q 1 2 3 4 5 6 7 8

max
h≥0
|`q(h)| 0.10 0.012 0.0034 0.00074 0.00021 0.000053 0.000015 4.1 · 10−6

Table 2: The values of max
h≥0
|`q(h)| from Theorem 3.

Now consider the following simple testing function that we use for further comparisons

f(x) = sin(x− 1). (2)
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Figure 1: Graphs of |R1024,2(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for the

function (2).

Figure 1 shows the behavior of |RN,q(f ;x)| on the interval [−0.7, 0.7] (left figure) and at

the point x = 1 (right figure) for q = 2 and N = 1024.

Also we calculated the L2-norm of the error

‖R1024,2(f)‖L2 = 3.9 · 10−10 (3)

and the uniform error

max
x∈[−1,1]

|R1024,2(f ;x)| = 1.1 · 10−8. (4)

Let us show how the actual errors in equations (3) and (4) coincide with the theoretical

estimates of Tables 1 and 2. According to Theorem 1 and Table 1

‖R1024,2(f)‖L2 ≈ |A2(f)| c(2)

10242.5
= 3.79 · 10−10

which almost equals to the value of (3) and according to Theorem 3 and Table 2

max
x∈[−1,1]

|R1024,2(f ;x)| ≈ |A2(f)|maxh |`2(h)|
10242

= 1.04 · 10−8

which coincides with (4).

2 Rational-Trigonometric-Polynomial Approximations

Now we introduce the idea of rational corrections and recap the main ideas from [12], [14],

and [15].

Consider a finite sequence of complex numbers θ = {θk}p|k|=1, p ≥ 1 and by ∆k
n(θ, Fn)

denote generalized finite differences

∆0
n(θ, Fn) = Fn, ∆k

n(θ, Fn) = ∆k−1
n (θ, Fn) + θk sgn(n)∆

k−1
(|n|−1)sqn(n)(θ, Fn), k ≥ 1,

where sgn(n) = 1 if n ≥ 0 and sgn(n) = −1 if n < 0. By ∆k
n(Fn) we denote the classical

finite differences which correspond to generalized differences ∆k
n(θ, Fn) with θ ≡ 1.
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We have

RN,q(f) = R+
N(F ) +R−N(F ),

where

R+
N(F ) =

∞∑
n=N+1

Fne
iπnx, R−N(F ) =

−N−1∑
n=−∞

Fne
iπnx.

The Abel transformation implies

R+
N(F ) = −θ1FN e

iπ(N+1)x

1 + θ1eiπx
+

1

1 + θ1eiπx

∞∑
n=N+1

∆1
n(θ, Fn)eiπnx.

Reiteration of it up to p times leads to the following expansion

R+
N(F ) = −eiπ(N+1)x

p∑
k=1

θk∆
k−1
N (θ, Fn)∏k

s=1(1 + θseiπx)

+
1∏p

k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx,

where the first term can be viewed as correction of the error and the last term is real er-

ror. Similar expansion for R−N(F ) reduces to the following rational-trigonometric-polynomial

approximation

SN,q,p(f ;x) =

q−1∑
k=0

Ak(f)Bk(x) +
N∑

n=−N

Fne
iπnx

− eiπ(N+1)x

p∑
k=1

θk∆
k−1
N (θ, Fn)∏k

s=1(1 + θseiπx)

− e−iπ(N+1)x

p∑
k=1

θ−k∆
k−1
−N (θ, Fn)∏k

s=1(1 + θ−se−iπx)
(5)

with the error

RN,q,p(f ;x) = f(x)− SN,q,p(f ;x) = R+
N,q,p(f ;x) +R−N,q,p(f ;x),

where

R±N,q,p(f ;x) =
1∏p

k=1(1 + θ±ke±iπx)

∞∑
n=N+1

∆p
±n(θ, Fn)e±iπnx. (6)

Approximation (5) is undetermined until the values of θk are undefined. Determination

of parameter θ is crucial for realization of the RTP-approximation and different choices

have been investigated in different frameworks. One approach is investigated for smooth

functions in a series of papers ([11], [12], [14], and [15]) where the following determination

of parameters θk is considered

θk = θ−k = 1− τk
N
, k = 1, · · · , p, (7)
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where τk are independent of N . Determination of new parameters τk will be discussed below.

Now we present different theorems which outline the behavior of the RTP-approximation

in different frameworks for such choice of parameters θk. Theorem 4 shows behavior of the

RTP-approximation in the L2-norm. Let

p∏
k=1

(1 + τkx) =

p∑
k=0

γk(τ)xk. (8)

Theorem 4. [12] Suppose f ∈ Cq+p[−1, 1] and f (q+p) ∈ AC[−1, 1] for some q, p ≥ 1. If

θk = θ−k = 1− τk
N
, k = 1, · · · , p, τk > 0, τj 6= τi, j 6= i;

then the following estimate holds

lim
N→∞

N q+ 1
2 ||RN,q,p(f)||L2 = |Aq(f)|cp(q),

where

cp(q) =
1

πq+1

(∫ ∞
1

|φp,q(t)|2 dt
)1/2

,

and

φp,q(t) =
(−1)p

tq+1
− 1

q!

p∑
j=1

e−τj(t−1)∏p
i=1
i6=j

(τi − τj)

p∑
k=0

γk(τ)(−1)k+1

×
p−k−1∑
m=0

(q + p− k −m− 1)!τmj .

Here γk(τ) are defined by (8).

Next theorem outlines the behavior of the RTP-approximation in the regions away from

the endpoints for choice (7).

Theorem 5. [15] Let f ∈ Cq+p+1[−1, 1] and f (q+p+1) ∈ AC[−1, 1]. If parameters θk are

chosen as in (7) then the following estimates hold for |x| < 1

RN,q,p(f ;x) = Aq(f)
(−1)N+p+ q

2

2p+1πq+1q!N q+p+1

sin πx
2

(2N − p+ 1)

cosp+1 πx
2

p∑
k=0

(−1)k(p− k + q)!γk(τ)

+ o(N−q−p−1), N →∞,

for even values of q and

RN,q,p(f ;x) = Aq(f)
(−1)N+p+ q+1

2

2p+1πq+1q!N q+p+1

cos πx
2

(2N − p+ 1)

cosp+1 πx
2

p∑
k=0

(−1)k(p− k + q)!γk(τ)

+ o(N−q−p−1), N →∞,

for odd values of q. Here γk(τ) are defined by (8).
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56 A. POGHOSYAN

Finally, Theorem 6 describes the behavior of the RTP-approximation at the endpoints

of the interval.

Theorem 6. [11] Let f ∈ Cq+p[−1, 1] and f (q+p) ∈ AC[−1, 1] for some p, q ≥ 1. If parame-

ters θk are chosen as in (7) then the following estimate holds for h ≥ 0

lim
N→∞

N qRN,q,p

(
f ; 1− h

N

)
= Aq(f)`q,p(h)

where

`q,p(h) = `q(h) +
(−1)p+1

q! πq+1

× Re

(
e−iπh

iq+1
∏p

m=1(τm + iπh)

p∑
k=0

γk(τ)

p−k−1∑
s=0

(iπh)s(−1)k+s(q + p− k − s− 1)!

)
,

and `q(h) is defined in Theorem 3. Here γk(τ) are defined by (8).

Theorems 4-6 are valid nonetheless parameters τk are still undefined but an important

convergence property of the RTP-approximations can be seen from comparison of Theorems

2 and 5 without determination of parameters τk: in the regions away from the endpoints

the RTP-approximations are more accurate than the KL-approximation and improvement

in accuracy is O(Np) as N →∞.

Parameters τk can be determined differently and Theorems 4-6 will outline approaches

towards determination of their values.

2.1 L2-minimal and LF-minimal RTP-approximations

Estimate of Theorem 4 leads to the L2-minimal RTP-approximations which are investigated

in [12]. This approach is connected with appropriate choice of parameters τk which minimize

the constant cp(q) and consequently the asymptotic L2-error

lim
N→∞

N q+ 1
2‖RN,q,p(f)‖L2 → min .

Tables 3 and 4 present the optimal values of τk, k = 1, · · · , p that realize the L2-minimal

RTP-approximation. We show also the values of cp(q) and the ratio c(q)/cp(q) that displays

the efficiency of the L2-minimal RTP-approximation compared to the KL-approximation.

Results for 1 ≤ p ≤ 4 can be found in [12].

The tables show that the L2-minimal RTP-approximation is much more accurate by the

L2-norm (however asymptotically) compared to the KL-approximation. As larger are the

values of parameters p and q as more precise is the RTP-approximation.

Table 5 displays the values of max
h≥0
|`q,p(h)|. The values

1

N q
max
h≥0
|`q,p(h)| coincide with

the uniform errors (however asymptotically). We see that by uniform norm L2-minimal

RTP-approximation is also rather accurate compared to the KL-approximation.
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q 1 2 3 4 5 6

c1(q) 0.010 0.0016 0.00031 0.000070 0.000017 4.2 · 10−6

c(q)/c1(q) 5.7 9.0 12.2 15.5 18.7 22.0

τ1 1.3533 2.3194 3.3021 4.2916 5.2846 6.2796

c2(q) 0.0028 0.00031 0.000047 8.5 · 10−6 1.7 · 10−6 3.7 · 10−7

c(q)/c2(q) 21.0 46.7 82.3 128.1 183.8 249.7

τ1 2.7595 4.0837 5.3580 6.6001 7.8190 9.0202

τ2 0.5320 1.1360 1.8177 2.5460 3.3060 4.0890

c3(q) 0.00095 0.000078 9.4 · 10−6 1.4 · 10−6 2.4 · 10−7 4.6 · 10−8

c(q)/c3(q) 61.3 185.1 411.6 771.8 1296.7 2017.4

τ1 0.2511 0.6382 1.1230 1.6731 2.2700 2.9023

τ2 1.2855 2.2363 3.2067 4.1869 5.1725 6.1617

τ3 4.2225 5.7813 7.2573 8.6782 10.0589 11.4090

c4(q) 0.00037 0.000022 2.3 · 10−6 2.9 · 10−7 4.3 · 10−8 7.0 · 10−9

c(q)/c4(q) 156.5 621.3 1704.4 3794.9 7377.9 13034.6

τ1 0.6663 0.3861 0.7379 1.1602 1.6358 2.1534

τ2 0.1305 1.3459 2.0908 2.8748 3.6852 4.5147

τ3 2.2056 3.4131 4.5976 5.7649 6.9188 8.0620

τ4 5.7355 7.4661 9.0951 10.6547 12.1630 13.6315

c5(q) 0.00016 7.8 · 10−6 6.3 · 10−7 6.8 · 10−8 8.7 · 10−9 1.3 · 10−9

c(q)/c5(q) 363.2 1852.0 6166.3 16110.9 35915.4 71530.5

τ1 0.0727 0.2459 3.1216 4.0912 14.1902 6.0515

τ2 0.3709 0.8560 10.9048 12.5769 8.6157 3.4312

τ3 3.2540 4.6573 0.5057 2.0598 2.7304 1.6450

τ4 7.2925 9.1544 1.4294 0.8341 1.2173 15.7573

τ5 1.2353 2.1655 6.0097 7.3263 5.0688 9.8837

Table 3: Numerical values of cp(q) and c(q)/cp(q) with optimal values of τk that correspond

to the L2-minimal RTP-approximation.

Then, in the regions away from the endpoints the L2-minimal RTP-approximation is

O(N−q−p−1) and we have improvement in convergence by factor O(Np) compared to the

KL-approximation (compare also Figures 1 and 2).

Figure 2 confirms these observations for testing function (2). The left figure presents the

behavior of the error on the interval [−0.7, 0.7] and the right one at the point x = 1.

Also, we derived the following values for the L2 and uniform norms

‖R1024,2,2(f)‖L2 = 8.4 · 10−12, (9)

max
x∈[−1,1]

|R1024,2,2(f ;x)| = 4.3 · 10−10. (10)

Both values are smaller than their counterparts (3) and (4).

Let us show, as above for the KL-approximation, that (9) and (10) almost coincide with
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q 1 2 3 4 5 6

c6(q) 0.000074 2.9 · 10−6 5.8 · 10−7 1.8 · 10−8 2.0 · 10−9 2.7 · 10−10

c(q)/c6(q) 785.7 5047.3 6680.3 61110.1 155008.3 345876.7

τ1 0.2172 10.8514 1.3972 14.4673 10.2897 11.6629

τ2 0.7246 5.9586 50.0000 8.8870 16.1694 17.8206

τ3 8.8848 1.4319 3.0504 3.0073 6.4538 4.6873

τ4 4.4008 0.1627 0.4943 0.6160 2.0768 1.2839

τ5 0.0426 3.0843 10.6365 5.3377 3.8383 2.6717

τ6 1.9466 0.5661 5.8693 1.5192 0.9276 7.5637

c7(q) 0.000036 1.1 · 10−6 2.9 · 10−7 5.1 · 10−9 5.2 · 10−10 6.1 · 10−11

c(q)/c7(q) 1607.5 12813.5 13276.0 211823.9 607353.7 2 · 106

τ1 1.1979 12.5591 12.6330 10.4540 11.9533 13.4172

τ2 0.4419 7.3084 15.9240 16.3382 18.1168 19.8412

τ3 5.6258 0.9763 2.4915 2.2642 4.9757 3.7070

τ4 0.0259 0.3858 1.1504 0.4646 0.7201 2.1181

τ5 0.1323 4.0881 8.0502 6.6165 2.9717 9.0691

τ6 2.7805 0.1109 0.4081 1.1452 1.6109 1.0190

τ7 10.5071 2.1082 4.6940 4.0073 7.8504 5.9512

c8(q) 0.000034 1.0 · 10−6 2.3 · 10−8 1.6 · 10−9 1.4 · 10−10 1.5 · 10−11

c(q)/c8(q) 1699.1 14035.0 170322.7 681710.0 2.2 · 106 6.1 · 106

τ1 5.4076 11.2354 6.5631 18.1970 6.1456 4.7688

τ2 10.0609 6.7837 16.2819 7.9265 0.5676 0.8199

τ3 0.0250 0.9453 0.5408 1.7362 13.6136 10.5758

τ4 0.1276 0.3754 2.2544 3.0701 9.2623 15.1568

τ5 0.4259 3.8836 3.9676 5.0576 20.0424 21.8313

τ6 1.1544 0.1096 0.1915 0.3565 3.9105 7.2311

τ7 2.6774 2.0321 1.1780 0.8786 1.2693 1.7033

τ8 32.5859 19.2307 10.3970 12.0302 2.3396 2.9776

Table 4: Numerical values of cp(q) and c(q)/cp(q) with optimal values of τk that correspond

to the L2-minimal RTP-approximation.

the theoretical estimates of Tables 3, 4 and 5. From Theorem 4 and Table 3 we have

‖R1024,2,2(f)‖L2 ≈ |A2(f)| c2(2)

10242.5
= 8.13 · 10−12

and according to Theorem 6 and Table 5 we calculate

max
x∈[−1,1]

|R1024,2,2(f ;x)| ≈ |A2(f)|maxh |`2,2(h)|
10242

= 4.34 · 10−10.

Both results coincide with (9) and (10) rather precisely.

One thing that worth noting is that all theorems concerning the RTP-approximations

put additional smoothness requirements on the approximated functions so it is supposed

that parameters p and q are chosen such (for infinitely differentiable functions no matter

how they are chosen) that all theorems are valid and thus comparisons are reasonable.
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p\q q=1 q=2 q=3 q=4 q=5 q=6

p = 1 0.026 0.0018 0.00031 0.000054 0.000011 2.5 · 10−6

p = 2 0.012 0.00050 0.000074 9.0 · 10−6 1.8 · 10−6 3.1 · 10−7

p = 3 0.0052 0.00015 0.000014 1.6 · 10−6 2.2 · 10−7 3.6 · 10−8

p = 4 0.0029 0.000030 5.0 · 10−6 4.0 · 10−7 5.7 · 10−8 7.1 · 10−9

p = 5 0.0015 0.000013 1.4 · 10−6 1.0 · 10−7 1.0 · 10−8 1.3 · 10−9

p = 6 0.00094 5.5 · 10−6 1.3 · 10−6 2.1 · 10−8 3.3 · 10−9 3.1 · 10−10

p = 7 0.00055 1.4 · 10−6 7.1 · 10−7 7.4 · 10−9 7.7 · 10−10 7.4 · 10−11

p = 8 0.00053 1.5 · 10−6 8.4 · 10−8 2.4 · 10−9 2.8 · 10−10 2.1 · 10−11

Table 5: The values of max
h≥0
|`q,p(h)| with parameters τk corresponding to the L2-minimal

RTP-approximation.
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Figure 2: Graphs of |R1024,2,2(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) that

correspond to the L2-minimal RTP-approximation.

Paper [15] performs another approach for comparison of the KL- and the L2-minimal

RTP-approximations. Suppose that approximated function has finite smoothness f ∈
CM+1[−1, 1] and f (M+1) ∈ AC[−1, 1] and all available jumps Ak(f), k = 0, · · · ,M + 1

are exactly known. If parameters p and q are chosen such that p+ q = M then Theorem 4 is

valid for all values of p for p = 0, . . . ,M−q and comparison of different RTP-approximations

is valid. Note that p = 0 coincides with the KL-approximation. The paper concluded that

not always utilization of all available jumps by the KL-approximation leads to the best ap-

proximation. When the values of jumps are rapidly increasing then better accuracy can

be achieved by utilization of smaller number of jumps (consequently with smaller Aq(f)

in the estimates of the corresponding theorems) and appropriately chosen rational correc-

tions based on the smoothness of the approximated function. Comparisons showed that for

functions with rapidly increasing jumps the choice q = 1 and p = M − 1 gave much more

accuracy than the choice p = 0 and q = M which coincided with the KL-approximation. In

practice, which choice of q and p is the best in such cases can be concluded from compar-

ison of the corresponding estimates. Similar investigations can be carried out for different
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RTP-approximations in different frameworks.

Estimate of Theorem 6 leads to another approach of parameter determination and hence

to another type of RTP-approximations. In particular, parameters τk minimize the values

of maxh |`q,p(h)| getting more accurate RTP-approximations in the framework of the uni-

form norm. Such approximations are considered in [11] and are known as the limit function

minimal (LF-minimal) RTP-approximations. We are not giving detailed analysis of this ap-

proximations as, in general, they mimic the behavior of the L2-minimal RTP-approximations.

2.2 RTP-approximations by the roots of the Laguerre polynomials

Another approach for determination of parameters τk is connected with Theorem 5. Efforts

towards minimization of the pointwise error in the regions away from the endpoints drive

us to the RTP-approximations where parameters τk are the roots of the associated Laguerre

polynomials Lqp(x)

Lqp(τk) = 0, k = 1, . . . , p.

It is well-known that the roots of the associated Laguerre polynomials are distinct and

positive. Associated Laguerre polynomials have the well-known representation

Lqp(x) =

p∑
k=0

(−1)k
(p+ q)!

k!(p− k)!(q + k)!
xk. (11)

This representation allows calculation of parameters τk explicitly for p = 1, 2, 3. For p = 1

we have

Lq1(x) = −x+ (q + 1), τ1 = q + 1.

For p = 2

Lq2(x) =
x2

2
− x(q + 2) +

(q + 3)(q + 2)

2
and hence

τ1 = 2 + q +
√

2 + q, τ2 = 2 + q −
√

2 + q.

For p = 3

Lq3(x) = −x
3

6
+ x2

q + 3

2
− x(q + 3)(q + 2)

2
+

(q + 3)(q + 2)(q + 1)

6

and by the Cardano formula, after some manipulations, we obtain

τ1 = 3 + q + 2
√

3 + q cos

(
1

3
arctg

√
q + 2)

)
,

τ2 = 3 + q − 2
√

3 + q cos

(
1

3
arctg

√
q + 2)

)
,

and

τ3 = 3 + q −
√
q + 3

(
cos

(
1

3
arctg

√
q + 2

)
+
√

3 sin

(
1

3
arctg

√
q + 2

))
.
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q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

τ1 0.7433 1.2268 1.7555 2.3192 2.9108 3.5256 4.1599

τ2 2.5716 3.4125 4.2656 5.1287 6.0000 6.8783 7.7626

τ3 5.7312 6.9027 8.0579 9.2009 10.3341 11.4594 12.5780

τ4 10.9539 12.4580 13.9209 15.3513 16.7551 18.1368 19.4996

Table 6: The roots of the associated Laguerre polynomial Lq4(x) for different values of q.

For other values of p the values of τk can be calculated numerically with any required

precision. Table 6 shows that values for p = 4.

Rtp-approximations by the roots of the associated Laguerre polynomials was investigated

in [14]. We recap the main results of this paper. Next theorems present the pointwise

convergence in the regions away from the endpoints. Theorem 7 investigates even values of

p and Theorem 8 odd values.

Theorem 7. [14] Let p be even, f ∈ Cq+p+ p
2
+1[−1, 1] and f (q+p+ p

2
+1) ∈ AC[−1, 1] for some

q, p ≥ 1. If parameter θ is chosen as in (7) where τk are the roots of the associated Laguerre

polynomial Lqp(x) then the following estimates hold for |x| < 1

RN,q,p(f ;x) = Aq(f)
(−1)N+ q

2

2p+1πq+1N q+p+ p
2
+1

sin πx
2

(2N − p+ 1)

cosp+1 πx
2

δp,q

(
0,
p

2
,
p

2

)
+ o(N−q−p−

p
2
−1), N →∞,

for even values of q, and

RN,q,p(f ;x) = Aq(f)
(−1)N+ q+1

2

2p+1πq+1N q+p+ p
2
+1

cos πx
2

(2N − p+ 1)

cosp+1 πx
2

δp,q

(
0,
p

2
,
p

2

)
+ o(N−q−p−

p
2
−1), N →∞,

for odd values of q, where

δp,q(w, s, t) =

p∑
k=0

γk(τ)

(
t+ p− k + q

p− k + s

)
αk,s+p−k(w)

and αk,s(w) is defined by (24).

Theorem 8. [14] Let p be odd, f ∈ Cq+p+ p+1
2

+1[−1, 1] and f (q+p+ p+1
2

+1) ∈ AC[−1, 1] for

some q, p ≥ 1. If parameter θ is chosen as in (7) where τk are the roots of the associated
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Laguerre polynomial Lqp(x) then the following estimates hold for |x| < 1

RN,q,p(f ;x) = Aq(f)
(−1)N+ q

2

πq+1

sin πx
2

(2N − p+ 1)

2p+1 cosp+1 πx
2

δp,q

(
0,
p+ 1

2
,
p+ 1

2

)
+ Aq+1(f)

(−1)N+ q
2
+1

πq+2

cos πx
2

(2N − p+ 1)

2p+1 cosp+1 πx
2

δp,q

(
0,
p− 1

2
,
p+ 1

2

)
+ Aq(f)

(−1)N+ q
2

πq+1

sin πx
2

(2N − p)
2p+2 cosp+2 πx

2

δp,q

(
1,
p+ 1

2
,
p+ 1

2

)
+ o(N−p−q−

p+1
2
−1), N →∞

for even values of q, and

RN,q,p(f ;x) = Aq(f)
(−1)N+ q+1

2

πq+1

cos πx
2

(2N − p+ 1)

2p+1 cosp+1 πx
2

δp,q

(
0,
p+ 1

2
,
p+ 1

2

)
+ Aq+1(f)

(−1)N+ q+1
2

πq+2

sin πx
2

(2N − p+ 1)

2p+1 cosp+1 πx
2

δp,q

(
0,
p− 1

2
,
p+ 1

2

)
+ Aq(f)

(−1)N+ q+1
2

πq+1

cos πx
2

(2N − p)
2p+2 cosp+2 πx

2

δp,q

(
1,
p+ 1

2
,
p+ 1

2

)
+ o(N−p−q−

p+1
2
−1), N →∞

for odd values of q.

Comparison with Theorem 5 shows that RTP-approximation by the roots of the associ-

ated Laguerre polynomial has extra accuracy by factors O(N
p
2 ) and O(N

p+1
2 ) for even and

odd values of p, respectively, in the regions away from the endpoints compared to the L2-

minimal RTP-approximation. Compared to the KL-approximation it has improvement in

accuracy by factors O(Np+ p
2 ) and O(Np+ p+1

2 ).

Let us compare approximations by the L2 and uniform norms.

p\q q=1 q=2 q=3 q=4 q=5 q=6

p = 1 0.017 0.0029 0.00058 0.00058 0.00013 0.000032

p = 2 0.0092 0.0012 0.00019 0.000036 7.5 · 10−6 1.7 · 10−6

p = 3 0.0059 0.00061 0.000084 0.000014 2.5 · 10−6 4.9 · 10−7

p = 4 0.0042 0.00037 0.000043 6.2 · 10−6 1.0 · 10−6 1.8 · 10−7

p = 5 0.0032 0.00024 0.000025 3.2 · 10−6 4.7 · 10−7 7.6 · 10−8

p = 6 0.0025 0.00017 0.000016 1.8 · 10−6 2.4 · 10−7 3.5 · 10−8

Table 7: The values of cp(q) corresponding to the RTP-approximations by the roots of the

associated Laguerre polynomials.

Table 7 displays the values of cp(q) and Table 8 the values of max
h≥0
|`q,p(h)| in this case.

Comparison with the results of Tables 3, 4 and 5 shows worse L2 and uniform convergence of
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p\q q=1 q=2 q=3 q=4 q=5 q=6

p = 1 0.051 0.0039 0.00086 0.00014 0.000035 7.3 · 10−6

p = 2 0.034 0.0019 0.00034 0.000047 9.9 · 10−6 1.8 · 10−6

p = 3 0.025 0.0012 0.00017 0.000020 3.7 · 10−6 6.0 · 10−7

p = 4 0.020 0.00077 0.000098 9.9 · 10−6 1.7 · 10−6 2.4 · 10−7

p = 5 0.017 0.00055 0.000061 5.5 · 10−6 8.3 · 10−7 1.1 · 10−7

p = 6 0.014 0.00041 0.000041 3.3 · 10−6 4.5 · 10−7 5.4 · 10−8

Table 8: The values of max
h≥0
|`q,p(h)| corresponding to the RTP-approximations by the roots

of the associated Laguerre polynomials.

the RTP-approximation by the Laguerre polynomials compared to the L2-minimal approxi-

mations.

Figure 3 shows the behavior of the error of the RTP-approximation |R1024,2,2(f ;x)| by the

roots of the associated Laguerre polynomials in the regions away from the endpoints and at

the point x = 1. We see the higher accuracy inside the interval of approximation and lower

accuracy at the endpoint compared to the L2-minimal RTP-approximation |R1024,2,2(f ;x)|.
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Figure 3: Graphs of |RN,q,p(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for q = 2,

p = 2 and N = 1024 that correspond to the RTP-approximation by the roots of the associated Laguerre

polynomial.

We also calculated L2 and uniform norms of the errors

‖R1024,2(f)‖L2 = 3.2 · 10−11, (12)

max
x∈[−1,1]

|R1024,2(f)| = 1.7 · 10−9 (13)

which confirm the above statements. Low accuracy by L2 and uniform norms is connected

with low accuracy of the RTP-approximation by the roots of the associated Laguerre poly-

nomials at the endpoints of the interval.
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64 A. POGHOSYAN

3 The Fourier-Pade approximations

Now we consider RTP-approximations where parameters θk are determined along the ideas

of the Fourier-Pade approximation. More specifically we consider the following system

∆p
n(θ, Fn) = 0, n = N,N − 1, . . . , N − p+ 1 (14)

for determination of θk, k = 1, . . . , p, and

∆p
n(θ, Fn) = 0, n = −N,−N + 1, . . . ,−N + p− 1 (15)

for determination of θ−k, k = 1, . . . , p.

By γ+k (θ) and γ−k (θ) we denote the coefficients of the polynomials

p∏
k=1

(1 + θkx) =

p∑
k=0

γ+k (θ)xk. (16)

and
p∏

k=1

(1 + θ−kx) =

p∑
k=0

γ−k (θ)xk, (17)

respectively. It is well known (see [2]) that knowledge of γ±k (θ) is sufficient for construction

of the Fourier-Pade approximation SN,q,p(f). We rewrite (14) and (15) in the form

∆p
n(θ, Fn) = Fn−k +

p∑
s=1

γ+s (θ)Fn−k−s = 0, n = N,N − 1, . . . , N − p+ 1 (18)

and

∆p
n(θ, Fn) = Fn+k +

p∑
s=1

γ−s (θ)Fn+k+s, n = −N,−N + 1, . . . ,−N + p− 1 (19)

which give us systems of linear equations for determination of γ+k and γ−k , respectively.

Such RTP-approximations we continue calling as the Fourier-Pade approximations. We

investigate convergence of the Fourier-Pade approximation in different frameworks, de-

rive exact constants of the asymptotic errors and perform comparisons with other RTP-

approximations.

In subsection 3.1 we explore pointwise convergence of the Fourier-Pade approximation in

the regions away from the endpoints and in subsection 3.2 the L2 and uniform errors on the

entire interval.

3.1 Pointwise convergence of the Fourier-Pade approximation in

the regions away from the endpoints

First we need some lemmas revealing the behavior of the generalized finite differences when

γ+k (θ) and γ−k (θ) are solutions of systems (18) and (19), respectively.
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Lemma 1. Let f ∈ Cq+2p+1[−1, 1] and f (q+2p+1) ∈ AC[−1, 1]. Let systems (18) and (19)

have unique solutions. Then the following estimate holds

∆w
n (∆p

n(θ, Fn)) = O(n−q−w−1) + o(n−q−2p−2), |n| ≥ N + 1, N →∞.

Proof. According to definitions of the classical and generalized finite differences, we have

∆w
n (∆p

n(θ, Fn)) =

p∑
s=0

γ±s (θ)∆w
n (Fn∓s),

where the upper signs correspond to positive n.

In view of the smoothness of f and expansion (1), by means of integration by parts, we

derive

Fn =
(−1)n+1

2

q+2p+1∑
k=q

Ak(f)Bk,n + o(n−q−2p−2). (20)

Thus

∆w
n (∆p

n(θ, Fn)) =
(−1)n+1

2

p∑
s=0

γ±s (θ)

q+2p+1∑
k=q

Ak(f)∆w
n (Bk,n∓s) + o(n−q−2p−2).

This completes the proof as

∆w
n (Bk,n) = ∆w

n

(
(−1)n+1

2(iπn)k+1

)
= O(n−k−w−1)

and

γ±s (θ) = O(1), N →∞.

The last estimate follows from

lim
N→∞

γ±s (θ) =

(
p

s

)
(21)

which can be proved in view of asymptotic expansion (20) and systems (18), (19).

Lemma 2. Let f ∈ Cq+2p+1[−1, 1] with f (q+2p+1) ∈ AC[−1, 1] and Aq(f) 6= 0. Let sys-

tems (18) and (19) have unique solution γ+s (θ) and γ−s (θ), respectively. Then the following

estimate holds for w ≥ 0, p > 0

∆w
±N(∆p

n(θ, Fn)) = Aq(f)
(−1)N+w+1(w + q)!

2Nw+p(±iπN)q+1q!

p∑
t=0

β±t (p− t)
(
t+ w + q

w + q

)
+ O(N−w−p−q−2) + o(N−2p−q−2), N →∞

where

β±u (t) =

p∑
s=0

(−1)sγ
(t)
s,±s

u

and γ
(t)
s,± are the coefficients of the asymptotic expansion of γ±s (θ)

γ±s (θ) =

2p+1∑
t=0

γ
(t)
s,±

N t
+ o(N−2p−1), N →∞. (22)
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Proof. We will prove for ”+” sign. The case of ”-” sign can be handled similarly. Existence

of the asymptotic expansion (22) follows from the smoothness of f , systems (18), (19) and

from the Crammer rule for solution of system of linear equations.

Then, definition of the classical and generalized finite differences leads to the following

representation

∆w
N(∆p

n(θ, Fn)) =

p∑
s=0

γ+s (θ)∆w
N(Fn−s) =

w∑
k=0

(
w

k

) p∑
s=0

γ+s (θ)FN−k−s, (23)

where γ+s are the solutions of system (18).

From (20) we derive

FN−k−s =
(−1)N+k+s+1

2

q+2p+1∑
`=q

A`(f)

(iπ(N − k − s))`+1
+ o(N−q−2p−2)

=
(−1)N+k+s+1

2

q+2p+1∑
`=q

A`(f)

(iπ)`+1

∞∑
j=`

(
j

`

)
(k + s)j−`

N j+1
+ o(N−q−2p−2)

=
(−1)N+k+s+1

2(iπN)q+1

2p+1∑
j=0

1

N j

j∑
`=0

A`+q(f)

(iπ)`

(
j + q

`+ q

)
(k + s)j−` + o(N−q−2p−2).

Substituting this and (22) into (23) we obtain

∆w
N(∆p

n(θ, Fn)) =
(−1)N+1

2(iπN)q+1

w∑
k=0

(−1)k
(
w

k

) p∑
s=0

(−1)s

(
2p+1∑
t=0

γ
(t)
s,+

N t
+ o(N−2p−1)

)

×

(
2p+1∑
j=0

1

N j

j∑
`=0

A`+q(f)

(iπ)`

(
j + q

`+ q

)
(k + s)j−` + o(N−q−2p−2)

)

=
(−1)N+1

2(iπN)q+1

2p+1∑
j=0

1

N j

j∑
t=0

j−t∑
`=0

Aj−t−`+q(f)

(iπ)j−t−`

(
j − t+ q

`

)

×
∑̀
u=0

(
`

u

)
αw,uβ

+
`−u(t) + o(N−q−2p−2),

where

αr,s =
r∑
`=0

(−1)`
(
r

`

)
`s. (24)

Taking into account that (see [17] )

αr,s = 0, s ≤ r − 1
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we get

∆w
N(∆p

n(θ, fn)) =
(−1)N+1

2(iπN)q+1

2p+1∑
j=w

1

N j

j−w∑
t=0

j−t∑
`=w

Aj−t−`+q(f)

(iπ)j−t−`

(
j − t+ q

`

)

×
∑̀
u=w

(
`

u

)
αw,uβ

+
`−u(t) + o(N−q−2p−2)

=
(−1)N+1

2Nw(iπN)q+1

2p−w+1∑
j=0

1

N j

j∑
t=0

j−t∑
`=0

Aj−t−`+q(f)

(iπ)j−t−`

(
j + w − t+ q

`+ w

)

×
∑̀
u=0

(
`+ w

u+ w

)
αw,u+wβ

+
`−u(t) + o(N−q−2p−2).

From here we derive

∆w
N(∆p

n(θ, Fn)) =
(−1)N+1

2Nw(iπN)q+1

2p−w+1∑
j=0

1

N j

j∑
t=0

t∑
u=0

β+
u (j − t)

×
t∑

`=u

At−`+q
(iπ)t−`

(
t+ w + q

`+ w

)(
`+ w

u

)
αw,`−u+w + o(N−2p−q−2). (25)

This will complete the proof if we show that

β+
u (j − t) = 0, j = 0, . . . , p− 1, 0 ≤ t ≤ j, 0 ≤ u ≤ t. (26)

System (14) can be rewritten in the form

∆w
N(∆p

n(θ, Fn)) = 0, w = 0, . . . , p− 1

and from (25) we get

j∑
t=0

t∑
u=0

β+
u (j − t)

t∑
`=u

At−`+q(f)

(iπ)t−`

(
t+ w + q

`+ w

)(
`+ w

u

)
αw,`−u+w = 0, (27)

0 ≤ j ≤ 2p− w + 1, w = 0, . . . , p− 1.

We prove (26) from (27) by means of the mathematical induction. Let j = 0 in (27).

Thus

β+
0 (0)Aq(f)

(
w + q

w

)
αw,w = 0

and therefore β+
0 (0) = 0 as Aq(f) 6= 0. Suppose that identity (26) is true for j = j0 − 1,

j0 ≤ p− 1

β+
u (j0 − 1− t) = 0, 0 ≤ u ≤ t, 0 ≤ t ≤ j0 − 1. (28)

Let us prove that

β+
u (j0 − t) = 0.
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For j = j0 from (27) we have

j0∑
t=0

t∑
u=0

β+
u (j0 − t)Xu,t(w) = 0, (29)

where

Xu,t(w) =
t∑

`=u

At−`+q(f)

(iπ)t−`

(
t+ w + q

`+ w

)(
`+ w

u

)
αw,`−u+w.

Then (29) can be rewritten in the form

j0∑
t=0

t∑
u=0

β+
u (j0 − t)Xu,t(w) =

j0∑
t=1

t−1∑
u=0

β+
u (j0 − t)Xu,t(w)

+

j0∑
t=0

β+
t (j0 − t)Xt,t(w) = 0,

where the first term vanishes according to (28). Hence

j0∑
t=0

β+
t (j0 − t)Xt,t(w) = 0,

where

Xt,t(w) = Aq(f)

(
t+ w + q

t+ w

)(
t+ w

t

)
w!(−1)w.

Taking into account that Aq(f) 6= 0 we get the following system of linear equations for

determination of β+
t (j0 − t)

j0∑
t=0

β+
t (j0 − t)

(
t+ w + q

t+ w

)(
t+ w

t

)
= 0, w = 0, . . . , j0

which can be rewritten in the form

j0∑
t=0

β+
t (j0 − t)

(
t+ w + q

t

)
= 0, w = 0, . . . , j0. (30)

In the Appendix we show (see (42)) that matrix
(
t+w+q

t

)
has nonzero determinant and as a

consequence system (30) has unique zero-vector solution βt(j0−t) = 0, t = 0, . . . , j0 ≤ p−1.

Thus, from (25) we obtain

∆w
N(∆p

n(θ, Fn)) =
(−1)N+1

2Nw+p(iπN)q+1

p∑
t=0

t∑
u=0

β+
u (p− t)

t∑
`=u

At−`+q(f)

(iπ)t−`

(
t+ w + q

`+ w

)
×

(
`+ w

u

)
αw,`−u+w +O(N−w−p−q−2) + o(N−2p−q−2), N →∞

It remains to notice that only term u = t is nonzero and αw,w = (−1)ww!.
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Now we prove one of the main results of this paper that reveals the pointwise convergence

of the Fourier-Pade approximations in the regions away from the endpoints.

Theorem 9. Let f ∈ Cq+2p+1[−1, 1] with f (q+2p+1) ∈ AC[−1, 1] and Aq(f) 6= 0. Let systems

(18) and (19) have unique solutions. Then the following estimate holds

RN,q,p(f ;x) = Aq(f)
(−1)N+ q

2

22p+1πq+1N q+2p+1

(p+ q)!p!

q!

sin πx
2

(2N − 2p+ 1)

cos2p+1 πx
2

+o(N−q−2p−1), N →∞

for even values of q and

RN,q,p(f ;x) = Aq(f)
(−1)N+ q+1

2

22p+1πq+1N q+2p+1

(p+ q)!p!

q!

cos πx
2

(2N − 2p+ 1)

cos2p+1 πx
2

+o(N−q−2p−1), N →∞

for odd values of q.

Proof. Let us start with estimation of R+
N,q,p(f ;x) (see (6))

R+
N,q,p(f ;x) =

1∏p
k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx. (31)

Recall (see (21)) that γ+s (θ)→
(
p
s

)
as N →∞ and therefore

p∏
k=1

(1 + θke
iπx)→ (1 + eiπx)p, N →∞.

Hence we need to estimate only the sum in the right hand side of (31). By application of

the Abel transformation we derive

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx = −eiπ(N+1)x

2p+1∑
w=0

∆w
N(∆p

n(θ, Fn))

(1 + eiπx)w+1

+
1

(1 + eiπx)2p+2

∞∑
n=N+1

∆2p+2
n (∆p

n(θ, Fn))eiπnx.

Taking into account that

∆k
N(∆p

n(θ, Fn)) =
k∑
s=0

(
k

s

)
∆p
N−s(θ, Fn)

we see from system (14) that

∆k
N(∆p

n(θ, Fn)) = 0, k = 0, . . . , p− 1.

Therefore

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx = −eiπ(N+1)x∆p

N(∆p
n(θ, Fn))

(1 + eiπx)p+1
− eiπ(N+1)x

2p+1∑
w=p+1

∆w
N(∆p

n(θ, Fn))

(1 + eiπx)w+1

+
1

(1 + eiπx)2p+2

∞∑
n=N+1

∆2p+2
n (∆p

n(θ, Fn))eiπnx. (32)
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Lemma 1 shows that

∆2p+2
n (∆p

n(θ, Fn)) = o(n−2p−q−2), n→∞.

Hence the last term in the right hand side of (32) is o(N−2p−q−1) as N →∞.

According to Lemma 2

∆w
N(∆p

n(θ, Fn)) = O(N−w−p−q−1) + o(N−q−2p−1), N →∞.

As in the second term of the right hand side of (32) parameter w is ranging from w = p+ 1

to w = 2p+ 1 then this term is O(N−q−2p−2). Hence

R+
N,q,p(f) = −eiπ(N+1)x∆p

N(∆p
n(θ, Fn))

(1 + eiπx)2p+1
+ o(N−q−2p−1), N →∞. (33)

Now we need to estimate ∆p
N(∆p

n(θ, Fn)). Again by Lemma 2 we have

∆p
N(∆p

n(θ, Fn)) = Aq(f)
(−1)N+p+1

2N2p(iπN)q+1q!

×

(
p−1∑
t=0

β+
t (p− t)(t+ p+ q)!

t!
+ β+

p (0)
(2p+ q)!

p!

)
+ o(N−q−2p−1). (34)

Now we calculate β+
t (p − t) for t = 0, . . . , p − 1. Using (27) for j = p and w = 0, . . . , p − 1

we derive

β+
p (0)

(
p+ w + q

p+ w

)(
p+ w

p

)
+

p−1∑
t=0

β+
t (p− t)

(
t+ w + q

t+ w

)(
t+ w

t

)
= 0, w = 0, . . . , p− 1.

After some simplifications we get

p−1∑
t=0

β+
t (p− t)

(
t+ w + q

w + q

)
= −β+

p (0)

(
p+ w + q

p

)
, w = 0, . . . , p− 1. (35)

We know that determinant of matrix
(
t+w+q
w+q

)
is nonzero, hence it is invertible matrix and its

inverse we calculate in Appendix (see (44)). Now from (35) we get

β+
t (p− t) = −β+

p (0)

p−1∑
w=0

(−1)t+w
p−1∑
s=0

(
s

w

)(
q + s

q + t

)(
p+ w + q

p

)
.

In view of identity ([17])

p−1∑
w=0

(−1)w
(
s

w

)(
p+ w + q

p

)
= (−1)s

(
p+ q

q + s

)
.

we derive

β+
t (p− t) = −β+

p (0)(−1)t
p−1∑
s=0

(−1)s
(
q + s

q + t

)(
p+ q

s+ q

)
. (36)
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Then (see (34))

p−1∑
t=0

β+
t (p− t)(t+ p+ q)!

t!
+ β+

p (0)
(2p+ q)!

p!

= (p+ q)!

p−1∑
t=0

β+
t (p− t)

(
t+ p+ q

p+ q

)
+ β+

p (0)
(2p+ q)!

p!

= β+
p (0)

[
(2p+ q)!

p!
− (p+ q)!

p−1∑
t=0

(−1)t
(
t+ p+ q

p+ q

) p−1∑
s=0

(−1)s
(
q + s

q + t

)(
p+ q

s+ q

)]

= β+
p (0)

[
(2p+ q)!

p!
+ (p+ q)!(−1)p

p−1∑
t=0

(−1)t
(
t+ p+ q

p

)(
p

t

)]
,

where we applied identity ([17])

p∑
s=k

(−1)s
(
p

s

)(
s

k

)
= 0. (37)

Finally, applying

p−1∑
t=0

(−1)t
(
p

t

)(
t+ p+ q

p

)
=

p∑
t=0

(−1)t
(
p

t

)(
t+ p+ q

p

)
− (−1)p

(
2p+ q

p

)
= (−1)p − (−1)p

(
2p+ q

p

)
we get

p−1∑
t=0

β+
t (p− t)(t+ p+ q)!

t!
+ β+

p (0)
(2p+ q)!

p!
= (p+ q)!β+

p (0).

Then

β+
p (0) =

p∑
s=0

(−1)sγ
(0)
s,+s

p =

p∑
s=0

(−1)s
(
p

s

)
sp = (−1)pp! (38)

and from (34) we get

∆p
N(∆p

n(θ, Fn)) = Aq(f)
(−1)N+1

2N2p(iπN)q+1q!
p!(p+ q)! + o(N−q−2p−1).

Substitution this into (33) implies

R+
N,q,p(f ;x) = Aq(f)

(−1)N

2N2p(πN)q+1

p!(p+ q)!

q!

eiπ(N+1)x

iq+1(1 + eiπx)2p+1
+ o(N−q−2p−1).

Similarly

R−N,q,p(f ;x) = Aq(f)
(−1)N

2N2p(πN)q+1

p!(p+ q)!

q!

e−iπ(N+1)x

(−i)q+1(1 + e−iπx)2p+1
+ o(N−q−2p−1).

Thus

RN,q,p(f ;x) = Aq(f)
(−1)N

πq+1N q+2p+1

(p+ q)!p!

q!
Re

[
eiπ(N+1)x

iq+1(1 + eiπx)2p+1

]
+ o(N−q−2p−1)

which completes the proof.

71



72 A. POGHOSYAN

Comparisons show that the Fourier-Pade approximation is much more precise in the

regions away from the endpoints than the KL-approximation and other RTP-approximations

presented here. Comparing with Theorem 2 we see that improvement in accuracy is O(N2p),

compared with Theorem 5 improvement is O(NP ) and compared with Theorems 7 and 8

improvement is almost O(Np/2).

3.2 Convergence of the Fourier-Pade Approximation on the Entire

Interval: L2 and uniform errors.

In this subsection we investigate convergence of the Fourier-Pade approximation in the frame-

works of L2 and uniform errors. For such investigations we need additional information

concerning the behavior of parameters θk as N →∞. As was mentioned above it is easy to

verify that γ±k (θ) →
(
p
k

)
as N → ∞. In view of (16) and (17) this means that θk → 1 as

N → ∞ but this information is not enough for our purposes and we need to estimate the

second term in the asymptotic expansion of θk

θk = 1− τk
N

+ o(N−1), θ−k = 1− τ−k
N

+ o(N−1), k = 1, . . . , p. (39)

For determination of parameters τk we compare two results that outline the behavior of

∆p
n(θ, Fn).

Lemma 3. Let f ∈ Cq+p[−1, 1] with f (q+p) ∈ AC[−1, 1] and Aq(f) 6= 0. Let systems (18)

and (19) have unique solutions γ±s (θ). Then the following estimate holds

∆p
n(θ, Fn) = Aq(f)

(−1)n+1

2(iπn)q+1Np

(p+ q)!

q!

(
1− 1

|n|/N

)p
+ o(N−p)

1

nq+1
, |n| > N, N →∞.

Proof. The proof, in general, mimics the one of Lemma 2, so we omit some details. We

proceed as there and write for positive n

∆p
n(θ, Fn) =

p∑
s=0

γ+s (θ)Fn−s =
(−1)n+1

2(iπn)q+1

p∑
s=0

(−1)s

[
p∑
t=0

γ
(t)
s,+

N t
+ o(N−p)

]

×

[
q+p∑
j=0

1

nj

j∑
`=0

A`+q(f)

(iπ)`

(
j + q

`+ q

)
sj−` + o(n−q−p−1)

]

=
(−1)n+1

2(iπn)q+1

p∑
j=0

1

N j

j∑
t=0

1(
n
N

)t t∑
`=0

β+
` (j − t)At−`+q(f)

(iπ)t−`

(
t+ q

`

)
+ o(N−p)

1

nq+1
.

From the proof of Lemma 2 we know that

β+
` (j − t) = 0, `+ j − t ≤ p− 1.
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Therefore

∆p
n(θ, Fn) =

(−1)n+1

2(iπn)q+1

1

Np

p∑
t=0

1(
n
N

)t t∑
`=0

β+
` (p− t)At−`+q(f)

(iπ)t−`

(
t+ q

`

)
+ o(N−p)

1

nq+1

= Aq(f)
(−1)n+1

2(iπn)q+1Np

p∑
t=0

β+
t (p− t)(

n
N

)t (
t+ q

t

)
+ o(N−p)

1

nq+1
.

Application of (36), (38) and identity (37) implies

∆p
n(θ, Fn) = Aq(f)

(−1)n

2(iπn)q+1Np
β+
p (0)

p∑
t=0

(−1)t(
n
N

)t (t+ q

t

) p−1∑
s=0

(−1)s
(
q + s

q + t

)(
p+ q

q + s

)

+ o(N−p)
1

nq+1
= Aq(f)

(−1)n+p

2(iπn)q+1Np

(p+ q)!

p!

p∑
t=0

(−1)t(
n
N

)t p−1∑
s=0

(−1)s
(
s

t

)(
p

s

)

+ o(N−p)
1

nq+1
= Aq(f)

(−1)n+1

2(iπn)q+1Np

(p+ q)!

p!

p∑
t=0

(−1)t(
n
N

)t (pt
)

+ o(N−p)
1

nq+1
.

This completes the proof for positive n. Negative values can be explored similarly.

Lemma 4. [12] Suppose f ∈ Cq+p[−1, 1] and f (q+p) ∈ AC[−1, 1]. If

θk = 1− τk
N
, θ−k = 1− τ−k

N
, k = 1, . . . , p.

then the following estimate holds for |n| > N as N →∞

∆p
n(θ) = Aq(f)

(−1)n+p+1

2(iπn)q+1q!

p∑
k=0

(q + p− k)!(−1)kγ±k (τ)

Nk|n|p−k
+ o(N−p)

1

nq+1
,

where
p∏

k=1

(1 + τkx) =

p∑
k=0

γ+k (τ)xk,

p∏
k=1

(1 + τ−kx) =

p∑
k=0

γ−k (τ)xk.

Comparison of Lemmas 3 and 4 shows that

(−1)p
p∑

k=0

(−1)k(q + p− k)!

(|n|/N)p−k
γ±k (τ) =

p∑
k=0

(−1)k

(|n|/N)k

(
p

k

)
and hence

γ±k (τ) =
1

(q + k)!

(
p

k

)
.

It means that in the Fourier-Pade approximation parameters τk = τ−k are the roots of the

associated Laguerre polynomials Lqp(x) (see (11))

Lqp(τk) = 0, k = 1, . . . , p.

Now, we are ready to proceed with L2 and uniform convergence investigation. First we

estimate the L2-error.
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Let hk be the complete homogeneous symmetric polynomial (see [10]) of degree k in p

variables θ1, θ2, . . . , θp

hk(θ1, . . . , θp) =
∑

1≤i1≤i2≤···≤ik≤p

θi1 . . . θik .

The complete homogeneous symmetric polynomials are characterized by the following iden-

tity of formal power series

1∏p
k=1(1 + θkx)

=
∞∑
k=0

(−1)khk(θ1, · · · , θp)xk,

where

hk(θ1, · · · , θp) =

p∑
i=1

θp+k−1i
p∏
j=1
j 6=i

(θi − θj)
. (40)

We start with estimation of (31) and write

R+
N,q,p(f) =

1∏p
k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx

=
∞∑
k=0

(−1)khke
iπkx

∞∑
n=N+1

∆p
n(θ, Fn)eiπnx

=
∞∑

s=N+1

(−1)seiπsx
s∑

n=N+1

(−1)n∆p
n(θ, Fn)hs−n.

Performing similar manipulations for R−N,q,p(f) we derive

‖RN,q,p(f)‖2L2
= 4

∞∑
s=N+1

∣∣∣∣∣
s∑

n=N+1

(−1)nhs−n∆p
n(θ, Fn)

∣∣∣∣∣
2

. (41)

Theorem 10. Let f ∈ Cq+p[−1, 1] with f (q+p) ∈ AC[−1, 1] and Aq(f) 6= 0. If systems

(18) and (19) have unique solutions then the following estimate holds for the Fourier-Pade

approximation SN,q,p(f)

lim
N→∞

N q+ 1
2 ||RN,q,p(f)|| = |Aq(f)|dp(q),

where

dp(q) =
1

πq+1

(p+ q)!

q!

∫ ∞
1

dt

∣∣∣∣∣∣
∫ t

1

(1− x)p

xq+p+1

p∑
j=1

e−τj(t−x)∏p
k=1
k 6=j

(τj − τk)
dx

∣∣∣∣∣∣
21/2

and τk are the roots of the associated Laguerre polynomial Lqp(x).
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Proof. We use equation (41). In view of (40) and (39) we have as N →∞

hs−n =

p∑
i=1

θp+s−n−1i
p∏
j=1
j 6=i

(θi − θj)
= Np−1

p∑
i=1

(1− τi
N

+ o(N−1))p+s−n−1

p∏
j=1
j 6=i

(τj − τi + o(1))

.

Substituting this and estimate of Lemma 3 into (41), tending N to infinity and replacing

the integral sums by the corresponding integrals we complete the proof.

Now we calculate the limit function corresponding to the Fourier-Pade approximation.

Theorem 11. Let f ∈ Cq+p[−1, 1] with f (q+p) ∈ AC[−1, 1] and Aq(f) 6= 0. If systems

(18) and (19) have unique solutions then the following estimate holds for the Fourier-Pade

approximation SN,q,p(f ;x) for h ≥ 0

lim
N→∞

N qRN,q,p

(
f ; 1− h

N

)
= Aq(f)℘q,p(h),

where

℘q,p(h) = −Aq(f)
(p+ q)!

πq+1q!
Re

[
1

iq+1
∏p

k=1(τk + iπh)

∫ ∞
1

e−iπhx(1− x)p

xq+p+1
dx

]
and τk are the roots of the associated Laguerre polynomial Lqp(x).

Proof. According to (39) for x = 1− h/N we write

1∏p
k=1(1 + θkeiπx)

=
Np∏p

k=1(τk + iπh)
+ o(Np).

Then in view of Lemma 3 we get

R+
N,q,p

(
f ; 1− h

N

)
=

[
Np∏p

k=1(τk + iπh)
+ o(Np)

]
×

∞∑
n=N+1

[
Aq(f)

(−1)n+1

2(iπn)q+1Np

(p+ q)!

q!

(
1− 1

n/N

)p
+ o(N−p)n−q−1

]
(−1)ne−iπh

n
N

= −Aq(f)
(p+ q)!

q!

1

2N q(iπ)q+1

1∏p
k=1(τk + iπh)

(
1

N

∞∑
n=N+1

e−iπh
n
N

(n/N)q+1

(
1− 1

n/N

)p)
+o(N−q), N →∞.

Similar observations are valid for R−N,q,p
(
f ; 1− h

N

)
. Then we complete the proof by tending

N to infinity and replacing the integral sums by the corresponding integral.

It can be verified that estimates in Theorems 10 and 11 coincide with the ones in Theo-

rems 4 and 5, respectively, if in the latest we put instead of parameters τk the roots of the

associated Laguerre polynomials (see the corresponding values in Tables 7 and 8). From
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here we conclude that on the entire interval of approximation the Fourier-Pade approxima-

tion has the same L2- and uniform errors as the RTP-approximations by the roots of the

associated Laguerre polynomials. As a consequence it has worse accuracy compared with

the L2-minimal RTP-approximation on [−1, 1]. On the other hand as was mentioned above

the Fourier-Pade approximation has the best pointwise convergence in the regions away from

the endpoints.

Figure 4 shows the behavior of the Fourier-Pade approximation for the testing function

(2) in the regions away from the endpoints (left figure) and at the right endpoint of the

interval of approximation (right figure). Compare it with the results in Figures 1, 2, and 3.

-0.6 -0.4 -0.2 0.2 0.4 0.6

2. ´ 10-22

4. ´ 10-22

6. ´ 10-22

8. ´ 10-22

0.9990 0.9995 1.0000

5. ´ 10-10

1. ´ 10-9

1.5 ´ 10-9

Figure 4: Graphs of |RN,q,p(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for q = 2,

p = 2 and N = 1024 that correspond to the Fourier-Pade approximation.

4 Appendix

Consider matrix A = (awt) with

awt =

(
t+ w + q

t

)
, w, t = 0, . . . ,M, M ≥ 0.

Our aim is calculation of det(A) and A−1. We do it based on decomposition of A into three

upper or lower diagonal matrices.

Consider the following identities ([17]) of binomial coefficients

(
w + q + t

t

)
=

M∑
k=0

(
t

k

)(
w + q

k

)
, t, w = 0, . . . ,M

and (
w + q

k

)
=

w∑
s=0

(
w

s

)(
q

k − s

)
, k, w = 0, . . . ,M.

76
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We get by sequential application of these identities(
w + q + t

t

)
=

M∑
k=0

(
t

k

)(
w + q

k

)

=
M∑
s=0

(
w

s

) M∑
k=0

(
q

k − s

)(
t

k

)
, w, t = 0, . . . ,M

which allows decomposition of matrix A in the form

A = BCD

where B = (bws), C = (csk), D = (dkt) and

bws =

(
w

s

)
, csk =

(
q

k − s

)
, dkt =

(
t

k

)
.

Note that B is lower and C, D are upper triangular matrices which simplifies calculation of

det(A) and A−1.

The value of determinant can be obtained immediately

det(A) = det(B) det(C) det(D) = 1 (42)

The inverse of A can be calculated by formula

A−1 = D−1C−1B−1.

We denote by a−1tw , b−1sw , c−1ks and d−1tk the elements of A−1, B−1, C−1 and D−1, respectively.

We have

b−1sw = (−1)s+w
(
w

s

)
, c−1ks = (−1)k+s

(
q − 1 + s− k

q − 1

)
, d−1tk = (−1)k+t

(
k

t

)
. (43)

The first and third formulae in (43) follow from identity (see [18])

w∑
s=k

(−1)s
(
w

s

)(
s

k

)
= (−1)kδk,w.

The second formula in (43) follows from identity (see [17])

n∑
k=0

(−1)k
(
q

k

)(
q − 1 + n− k

q − 1

)
= δ0,n

as

M∑
k=0

cskc
−1
kw = (−1)w

w∑
k=s

(−1)k
(

q

k − s

)(
q − 1 + w − k

q − 1

)

= (−1)w+s
w−s∑
`=0

(−1)`
(
q

`

)(
q − 1 + w − s− k

q − 1

)
= (−1)w+sδ0,w−s = δw,s.
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Hence

a−1tw =

p−1∑
k=0

(−1)k+t
(
k

t

) p−1∑
s=0

(−1)k+s
(
q − 1 + s− k

q − 1

)
(−1)s+w

(
s

w

)

= (−1)t+w
p−1∑
s=0

(
s

w

) p−1∑
k=0

(
k

t

)(
q − 1 + s− k

q − 1

)
.

In view of identity
s∑
k=t

(
k

t

)(
q − 1 + s− k

q − 1

)
=

(
q + s

q + t

)
we rewrite a−1tw as follows

a−1tw = (−1)t+w
M∑
s=0

(
s

w

)(
q + s

q + t

)
. (44)
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