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Abstract
The cosine representation of the support function of a centrally symmetric convex body
plays a fundamental role in integral geometry. In this article, one new so-called flag
representation for the support function of an origin symmetric n-dimensional convex
body in terms of surface curvature functions of the convex body is found.Using the rep-
resentation, we propose a sufficient condition for an origin symmetric n-dimensional
convex body to be a zonoid. The condition has a local equatorial description.
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1 Introduction

The cosine representation of the support function of a centrally symmetric convex
body plays a fundamental role in integral geometry and a number of related areas
(see, e.g., [7–11,16,18,21]). In this article, one new so-called flag representation for
the support function of an origin symmetric n-dimensional convex body in terms of
surface curvature functions of the convex body is found.

We denote by Rn (n ≥ 3) the Euclidean n dimensional space. Let Sn−1 be the
unit sphere in Rn with the center at the origin of Rn , λn−1 be the spherical Lebesgue
measure on Sn−1 (λ1 ≡ λ) and let σk be the total measure of Sk (λk(Sk) = σk). Denote
by Sω ⊂ Sn−1 the great n − 2 dimensional sphere with pole at ω ∈ Sn−1.

The most useful analytic description of compact convex sets is given by the support
function (see [12]). The support function H : Rn → (−∞,∞] of a convex body B is
defined as

H(x) = sup
y∈B

〈y, x〉, x ∈ Rn . (1.1)
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Throughout this article , 〈·, ·〉 denotes the scalar product inRn . The support function of
B is positively homogeneous and convex. Hereafer, we consider the support function
H of a convex body as a function defined on the unit sphere Sn−1 (because of the
positive homogeneity of H , the values on Sn−1 determine H completely).

It is well known that any convex body B is uniquely determined by its support
function [12]. A convex body B is k-smooth if its support function H ∈ Ck(Sn−1),
where Ck(Sn−1) denotes the space of k times continuously differentiable functions
defined on Sn−1.

We denote the class of origin symmetric convex bodies (nonempty compact convex
sets) B in Rn by Bn

o (the so-called the cenetred bodies).
Zonotopes are convex bodies that are composed (in the sense of Minkowski addi-

tion) of line segments in Rn . Zonoids are limits of zonotopes in the Hausdorff metric.
Zonoids form an important subclass of centrally symmetric convex bodies (see [9,21]).

It is known that [7,8,18,21] a convex body B ∈ Bn
o is a (centered) zonoid if and

only if the support function H of B admits the following representation:

H(ξ) =
∫
Sn−1

| 〈ξ,�〉 | μ(d�), ξ ∈ Sn−1, (1.2)

where μ is a positive even measure on Sn−1. Note that μ (in (1.2)) is uniquely defined
for H in the class of positive even measures on Sn−1.

Also it is known [8,17,21] that the support function H of a sufficiently smooth
origin symmetric convex body B ∈ Bn

o has the following representation:

H(ξ) =
∫
Sn−1

| 〈ξ,�〉 | h(�) λn−1(d�), ξ ∈ Sn−1 (1.3)

with an even continuous function h (not necessarily positive) defined on Sn−1. Note
that h in (1.3) is uniquely defined in the class of even continuous functions defined
on Sn−1 and is called the generating density of B. Such bodies (support functions
of which have the integral representation (1.2) with a signed even measure μ) are
centered generalized zonoids.

The problem of geometric characterization of zonoids was posed by Blashke (this
problem was posed repeatedly (see [18])). Weil showed [20] that a local characteriza-
tion of zonoids does not exist. Also in [20] Weil proposed the conjecture about local
equatorial characterization of zonoids. Positive answers for even dimensions were
given independently in [15] and in [9]. Finally, it was showed in [13] that the answer
to the conjecture in odd dimensions is negative. In [6] was described a subclass of
zonoids in R3 admitting a local equatorial characterization.

In this article, we find one new so-called flag representation for the support function
of an origin symmetric n-dimensional convex body in terms of surface curvature func-
tions of the convex body. Using the representation, we propose a sufficient condition
for an origin symmetric n-dimensional convex body to be a zonoid. The condition
written in terms of surface curvature functions of the convex body and has a local
equatorial description.
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3000 R. Aramyan

The concept of a flag in Rn which naturally emerges in Combinatorial integral
geometry will be of importance below. A detailed account of this concept in R3 is in
[1,2]. By definition: a flag is an ordered pair orthogonal unit vectors in Rn , say a1, a2.
There are two equivalent representations of a flag:

(ω, ϕ) and (�,�), (1.4)

where ω ∈ Sn−1 is the spatial direction of the first vector a1, and ϕ is the direction in
Sω coincides with the direction of a2, while � ∈ Sn−1 is the spatial direction of the
second vector a2, and � is the direction in S� coincides with the direction of a1. The
second representation we will write by capital letters.

Our main results are the following. Let B ∈ Bn
o be an origin symmetric convex

body in Rn with sufficiently smooth boundary. For � ∈ Sn−1, we denote by s(�) the
point on ∂B the outer normal of which is �. By ki (�), i = 1, . . . , n − 1, we denote
the principal normal curvatures of ∂B at s(�) and let k(�,�) be the normal curvature
of ∂B at s(�) in direction � ∈ S�. By

K (�) =
n−1∏
i=1

ki (�),

we denote the Gauss–Kronecker curvature at s(�). For � ∈ Sn−1 by e�, we denote
the hyperplane containing the origin and orthogonal to � and for ξ ∈ Sn−1 (which
does not collinear to �) by ξ� ∈ S�, we denote the direction of orthogonal projection
of ξ onto the plane e�. In this article, we consider a convex body B ∈ Bn

o with positive

Gaussian curvature at every point of ∂B. By (̂ξ,�), we denote the angle between two
unit vectors �, ξ ∈ Sn−1.

Theorem 1 The support function of an origin symmetric 2-smooth convex body
B ∈ Bn

o has the following representation. For ξ ∈ Sn−1,

H(ξ) = (n − 1)

2 σ 2
n−2

∫
Sn−1

∫
S�

〈ξ,�〉2
sinn−1(̂ξ,�)

√
K (�)

(k(�,�))
n+1
2

λn−2(d�)λn−1(d�).

(1.5)

Note that the inner improper integral (for ξ ∈ S�) in (1.5) converges (see Lemma3).
The function

ρ(�,�, ξ) = 〈ξ,�〉2
sinn−1(̂ξ,�)

(1.6)

defined for �, ξ ∈ Sn−1, � ∈ S� (ξ �= �) is called the flag density function (for
ξ = �, we assume that ρ = 0). In R3 the notion of a flag density was introduced and
effectively used in the works of R. V. Ambartzumian [1,2] (see also [3,14]).

The following identity is proved (see Lemma 3). For �, ξ ∈ Sn−1, n ≥ 3, we have

∫
S�

ρ(�,�, ξ) λn−2(d�) = σn−1 (n − 2)!!
2 (n − 3)!! | 〈ξ,�〉 | . (1.7)
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A Flag Representation for a n-Dimensional Convex Body 3001

Thus, the flag density function is a disintegration of the cosine function.
As a consequence of Theorem 1, we propose the following sufficient condition for

an origin symmetric convex body to be a zonoid.

Theorem 2 Let B be an origin symmetric 2-smooth convex body in Rn (B ∈ Bn
o ). If

for any � ∈ Sn−1 and ξ ∈ Sn−1 the expression

F(�, ξ) =
∫
S�

| 〈ξ,�〉 |
sinn−1(̂ξ,�)

√
K (�)

(k(�,�))
n+1
2

λn−2(d�) (1.8)

does not depend on ξ ∈ Sn−1 then B is a zonoid.

It was proved in [6] that in R3 a convex body boundary of which is an ellipsoid
satisfy the condition (1.8). Let B ∈ B3

o be a convex body boundary of which is an
ellipsoid with the semi-principal axes of length a, b, c. For� = (n1, n2, n3) ∈ S2 and
ξ ∈ S2, we have (see [6]),

F(�, ξ) = 2π

(abc)

(
n21
a2

+ n22
b2

+ n23
c2

)−2

.

It follows from Theorem 1 that, there is not a convex body which are not zonoids
for which F(�, ξ) is independent of ξ . The following problem is open: describe the
subclass of zonoids satisfying the condition (1.8).

Also we have the following consequence of Theorem 2.

Theorem 3 Let B be an origin symmetric 2-smooth convex body in Rn. If for any
� ∈ Sn−1 and � ∈ S� the expression

G(�,�) =
√
K (�)

(k(�,�))
n+1
2

(1.9)

does not depend on � ∈ S� then B is a zonoid.

The form G(�,�) is natural from the geometric viewpoint since for a body from
the subclass of zonoids (satisfying the condition (1.9)) the function G(�,�) = G(�)

is the generating density (multiplied by a constant, see (1.5), (1.7)) of the body in
terms of curvatures of the body with an equatorial description. Also, it was proved in
[6] that in R3 a convex body boundary of which is an ellipsoid satisfy the condition
(1.9) (see (5.8)).

Note that for any � ∈ Sn−1, the expressions F(�, ξ) and G(�,�) depend on
boundary of B which consists of points where the exterior unit vector belongs to a
neighborhood of the equator S�. Hence for any � ∈ Sn−1 the expressions F(�, ξ)

and G(�,�) have a local equatorial description.
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3002 R. Aramyan

2 Preliminary Results

For two unit vectors ω, ξ ∈ Sn−1, ω �= ξ , we denote by B(ω, ξ) the image of B ∈ Bn
o

under orthogonal projection onto the 2-dimensional plane e(ω, ξ) containing the origin
and spanned by ω and ξ ; R(ω, ξ) is defined as the radius of curvature of ∂B(ω, ξ) at
the point outer normal direction of which is ω, and is called the tangential radius of
curvature of the body. Since R(ω, ξ1) = R(ω, ξ2), whereω, ξ1, ξ2 ∈ Sn−1 are linearly
dependent vectors, we assume where necessary that ξ is orthogonal to ω.

We need the following result (see also [4]): The support function of 2-smooth origin
symmetric convex body B ∈ Bn

o has the following representation:

H(ξ) = 1

2σn−2

∫
Sn−1

R(ω, ξ)

sinn−3(̂ω, ξ)
λn−1(dω), ξ ∈ Sn−1. (2.1)

Here we give a short proof of (2.1). Let ν ∈ Sξ be a direction perpendicular to
ξ ∈ Sn−1. We approximate B(ν, ξ) ⊂ e(ν, ξ) from inside by polygons that have all
their vertices on ∂B(ν, ξ). We denote by ai the sides of the approximation polygon, by
ui the direction normal to ai within e(ν, ξ); (also by ui , we denote the angle between
the normals to ai and ξ ). Let HB(ν,ξ) be the support function of B(ν, ξ) in the plane
e(ν, ξ). We have

4H(ξ) = 4HB(ν,ξ)(ξ) = lim
∑
i

|ai | sin(̂ξ, ui )

= lim
∑
i

Rν(ui )|ui+1 − ui | sin(̂ξ, ui ) =
∫
S1

Rν(u) sin(̂ξ, u) λ1(du), (2.2)

where Rν(u) is the radius of curvature of B(ν, ξ) at the point outer normal direction
of which is u. Integrating both sides of (2.2) by λn−2(dν) over Sξ , and taking into
account

λn−1(dω) = sinn−2 u du λn−2(dν),

where ω = (u, ν) (we use the spherical coordinates for ω ∈ Sn−1, where u is the polar
angle measured from ξ ∈ Sn−1), we obtain (2.1) (note that Rν(u) = R(ω, ξ)).

According to Blaschke’s theorem ([8, p. 117], see also [19]), we have (for ω �= ξ )

R(ω, ξ) = R(ω, ξω) =
n−1∑
i=1

Ri (ω) 〈ξω, ϕi 〉2, (2.3)

where ϕi , i = 1, . . . , n − 1 are the unit vectors determining the principal directions
and Ri (ω) is the principal radius of curvature corresponding to ϕi at the point of ∂B
outer normal direction of which is ω.
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A Flag Representation for a n-Dimensional Convex Body 3003

Substituting (2.3) into (2.1), we get

H(ξ) = 1

2σn−2

∫
Sn−1

n−1∑
i=1

Ri (ω) 〈ξω, ϕi 〉2
sinn−3(̂ω, ξ)

λn−1(dω), (2.4)

Note, that the representation (2.4) first was found by Panina [14] using other method.
We need to prove the following theorem.

Theorem 4 Let B be an origin symmetric 2-smooth convex body in Rn (B ∈ Bn
o ). For

ω, ξ ∈ Sn−1, ω �= ξ , we have

n−1∑
i=1

Ri (ω)〈ξω, ϕi 〉2 = (n − 1)

σn−2

∫
Sω

〈ξω, ϕ〉2
√
K (ω)

(k(ω, ϕ))
n+1
2

λn−2(dϕ), (2.5)

here k(ω, ϕ) is the normal curvature of ∂B at s(ω) in direction ϕ ∈ Sω, ϕi is the i th
principal direction and Ri (ω) is the principal radius of curvature corresponding to
ϕi at s(ω) (i = 1, . . . , n − 1).

To prove Theorem 4, we need to calculate the following integrals.

3 Two Integrals Over the n-Dimensional Unit Sphere

Let us consider the following integral over Sn−1, n ≥ 3:

In(k1, . . . , kn) =
∫
Sn−1

1

(
∑n

i=1 ki x
2
i )

n/2
λn−1(dω), (3.1)

here xi is the i th Cartesian coordinate of ω ∈ Sn−1 (ω = (x1, x2, . . . , xn)), ki > 0 ,
i = 1, . . . , n is a positive real number. For ω ∈ Sn−1 we use the spherical coordinates
ω = (ν, ω′), where ν is the polar angle measured from nth Cdirection (the zenith
direction) and ω′ ∈ Sn−2 is the direction of orthogonal projection of ω onto the
hyperplane that passes through the origin and is orthogonal to the zenith direction.
From (3.1) using the spherical coordinates and making the substitution t = tan ν, we
obtain

In(k1, . . . , kn) = 2
∫
Sn−2

∫ π/2

0

sinn−2 ν dν λn−2(dω′)
(kn cos2 ν + sin2 ν(

∑n−1
i=1 ki x ′2

i ))
n/2

= 2
∫
Sn−2

∫ ∞

0

tn−2 dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 ki x ′2

i ))
n/2

, (3.2)

where x ′
i is the i th Cartesian coordinate of ω′ ∈ Sn−2 i = 1, . . . , n − 1.
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3004 R. Aramyan

For the case n = 2k which is an even number, applying integration by parts k − 1
times, we get

In(k1, . . . , kn) =
∫
Sn−2

2(n − 3)!!
(
∑n−1

i=1 ki x ′2
i )

(k−1)(n − 2)!!
∫ ∞

0

dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 ki x ′2

i ))

= π(n − 3)!!
kn1/2(n − 2)!! In−1(k1, . . . , kn−1). (3.3)

For the case n = 2k + 1, which is an odd number, applying integration by parts k − 1
times in (3.2), we get

In(k1, . . . , kn) =
∫
Sn−2

2(n − 3)!!
(
∑n−1

i=1 ki x ′2
i )

(k−1)(n − 2)!!
∫ ∞

0

t dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 ki x ′2

i ))
3/2

= 2(n − 3)!!
kn1/2(n − 2)!! In−1(k1, . . . , kn−1). (3.4)

Finally using the recurrent relations (3.3) and (3.4), we obtain

Lemma 1 Let ki > 0 , i = 1, . . . , n be n positive real numbers, where n ≥ 2. We have

∫
Sn−1

1

(
∑n

i=1 ki x
2
i )

n/2
λn−1(dω) = σn−1√

k1k2 · · · kn , (3.5)

here xi is the i th Cartesian coordinate of ω ∈ Sn−1(ω = (x1, x2, . . . , xn)).

Also we need to consider the following integral:

I In(k1, . . . , kn) =
∫
Sn−1

x2n
(
∑n

i=1 ki x
2
i )

(n+2)/2
λn−1(dω), (3.6)

here xi is the i th Cartesian coordinate ofω ∈ Sn−1 (ω = (x1, x2, . . . , xn)) and ki > 0 ,
i = 1, . . . , n is a positive real number. By the same way (see (3.1)) from (3.6) using
the spherical coordinatesω = (ν, ω′) andmaking the substitution t = tan ν, we obtain

I In(k1, . . . , kn) = 2
∫
Sn−2

∫ π/2

0

cos2 ν sinn−2 ν dν λn−2(dω′)
(kn cos2 ν + sin2 ν(

∑n−1
i=1 ki x ′2

i ))
(n+2)/2

= 2
∫
Sn−2

∫ ∞

0

tn−2 dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 , ki x ′2

i ))
(n+2)/2

, (3.7)

where x ′
i is the i th Cartesian coordinate of ω′ ∈ Sn−2 i = 1, . . . , n − 1.
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For the case n = 2k, which is an even number, applying integration by parts k − 1
times, we obtain (see Lemma 1)

I In(k1, . . . , kn) =
∫
Sn−2

4(n − 3)!!
(
∑n−1

i=1 ki x ′2
i )

(k−1)n!!
∫ ∞

0

dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 ki x ′2

i ))
2

= π(n − 3)!!
kn3/2n!!

∫
Sn−2

λn−2(dω′)
(
∑n−1

i=1 ki x ′2
i )

(n−1)/2
= (2π)n/2

kn3/2n!!√k1k2 · · · kn−1
.

(3.8)

For the case n = 2k + 1, whih is an odd number, applying integration by parts k − 1
times, we obtain (see Lemma 1)

I In(k1, . . . , kn) =
∫
Sn−2

6(n − 3)!!
(
∑n−1

i=1 ki x ′2
i )

(k−1)n!!
∫ ∞

0

t dt λn−2(dω′)
(kn + t2(

∑n−1
i=1 ki x ′2

i ))
5/2

= 2(n − 3)!!
kn3/2n!!

∫
Sn−2

λn−2(dω′)
(
∑n−1

i=1 ki x ′2
i )

(n−1)/2
= 2(2π)[n/2]

kn3/2n!!√k1k2 · · · kn−1
.

(3.9)

Finally, we using (3.8) and (3.9), we get the following lemma:

Lemma 2 Let ki > 0 , i = 1, . . . , n be n positive real numbers, where n ≥ 2. We have

∫
Sn−1

x2n( ∑n
i=1 ki x

2
i

)(n+2)/2
λn−1(dω) = σn−1

n kn3/2
√
k1k2 · · · kn−1

, (3.10)

here xi is the i th Cartesian coordinate of ω ∈ Sn−1(ω = (x1, x2, . . . , xn)).

4 Proof of Theorem 4

For ω, ξ ∈ Sn−1, ω �= ξ , we have

〈ξω, ϕ〉 =
n−1∑
i=1

〈ϕ, ϕi 〉 〈ξω, ϕi 〉, (4.1)

here ϕ ∈ Sω, ϕi is the unit vector at i th principal direction (i = 1, . . . , n − 1), ξω

is the unit vector of the projection ξ onto the plane eω. Substituting (4.1) into the left
side of (2.5), we get

(n − 1)

σn−2

∫
Sω

〈ξω, ϕ〉2
√
K (ω)

(k(ω, ϕ))
n+1
2

λn−2(dϕ)

= (n − 1)

σn−2

n−1∑
i=1

〈ξω, ϕi 〉2
∫
Sω

〈ϕi , ϕ〉2
√
K (ω)

(k(ω, ϕ))
n+1
2

λn−2(dϕ), (4.2)
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3006 R. Aramyan

note that the other summands equal 0. It follows from Lemma 2 that

(n − 1)

σn−2

∫
Sω

〈ϕi , ϕ〉2
√
K (ω)(∑n−1

i=1 ki 〈ϕi , ϕ〉2) n+1
2

λn−2(dϕ) = 1

ki
. (4.3)

Substituting (4.3) into (4.2), we get (2.5). Theorem 4 is proved.
Substituting (2.5) into (2.1)and taking into account Blaschke’s theorem, we get the

following theorem.

Theorem 5 The support function of 2-smooth origin symmetric convex body B ∈ Bn
o

has the following representation. For ξ ∈ Sn−1

H(ξ) = (n − 1)

2 σ 2
n−2

∫
Sn−1

∫
Sω

〈ξω, ϕ〉2
sinn−3(̂ω, ξ)

√
K (ω)

(k(ω, ϕ))
n+1
2

λn−2(dϕ) λn−1(dω). (4.4)

Note that inR3 the representation (4.4) first was found by stochastic approximation
of B ∈ B3

o (see [5]).
Nowwe are going to use the dual representation for a flag.We consider the following

transform:

(ω, ϕ) −→ (�,�)

(we write the flag (ω, ϕ) in dual coordinates (�,�)). It is known that the Jacobian of
the transform equals 1 (see [2]):

λn−2(dϕ) λn−1(dω) = λn−2(d�)λn−1(d�). (4.5)

After change of variables in (4.4) using (4.5) for ξ ∈ Sn−1, we obtain

H(ξ) = (n − 1)

2 σ 2
n−2

∫
Sn−1

∫
S�

〈ξ�,�〉2
sinn−3(̂ξ,�)

√
K (�)

(k(�,�))
n+1
2

λn−2(d�)λn−1(d�).

(4.6)
We consider the right spherical triangle with the vertices ξ , � and ξ� (where ξ� is

the unit vector of the projection ξ onto the plane e�) and the angle at ξ� is equal to
π/2. Applying the spherical cosine rule for the right spherical triangle, we get

cos(̂ξ,�) = cos(̂ξ�,�) cos(̂ξ�, ξ) = cos(̂ξ�,�) sin(̂ξ,�). (4.7)

Substituting (4.7) into (4.6), we obtain (1.5). Theorem 1 is proved.

5 A Sufficient Condition to be a Zonoid

Theorem 2 follows immediately from Theorem 1. In this section, we are going to
prove Theorem 3. Let B ∈ Bn

o be an origin symmetric 2-smooth convex body in Rn
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A Flag Representation for a n-Dimensional Convex Body 3007

and for any � ∈ Sn−1 and � ∈ S� the expression

G(�,�) =
√
K (�)

(k(�,�))
n+1
2

= G(�) (5.1)

does not depend on� ∈ S�. Applying Fubini’s theorem for the inner integral of (1.5),
we obtain

H(ξ) = (n − 1)

2 σ 2
n−2

∫
Sn−1

[∫
S�

〈ξ,�〉2
sinn−1(̂ξ,�)

λn−2(d�)

]
G(�) λn−1(d�), ξ ∈ Sn−1.

(5.2)
The following lemma is valid.

Lemma 3 For �, ξ ∈ Sn−1(n ≥ 3), we have

∫
S�

〈ξ,�〉2
sinn−1(̂ξ,�)

λn−2(d�) = σn−1 (n − 2)!!
2 (n − 3)!! | 〈ξ,�〉 | . (5.3)

We consider the right spherical triangle with the vertices ξ , � and ξ� (where ξ� is the
unit vector of the projection ξ onto the plane e�) and the angle at ξ� is equal to π/2.
Applying the spherical cosine rule for the right spherical triangle, we get

cos(̂ξ,�) = cos(̂ξ, ξ�) cos(̂ξ�,�) (5.4)

and from which we have,

sin(̂ξ,�) =
√
1 − sin2(̂ξ,�) cos2(̂ξ�,�)

=
√
sin2(̂ξ�,�) + cos2(̂ξ,�) cos2(̂ξ�,�). (5.5)

Using the spherical coordinates for � ∈ Sn−2 we have � = (ν,�′) where ν =
(̂ξ�,�) is the polar angle measured from ξ� (the zenith direction) and �′ ∈ Sn−3 is
the direction of orthogonal projection of � onto the hyperplane that passes through
the origin and is orthogonal to the zenith.

Substituting (5.5) into (5.3), we obtain

cos2(̂ξ,�)

∫
Sn−3

∫ π

0

sinn−3 ν

(sin2 ν + cos2(̂ξ,�) cos2 ν)(n−1)/2
dν λn−3(d�′)

= σn−1 (n − 2)!!
2 (n − 3)!! | 〈ξ,�〉 | . (5.6)

Lemma 3 is proved.
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Substituting (5.3) into (5.2), we obtain

H(ξ) = (n − 1)σn−1 (n − 2)!!
4 σ 2

n−2 (n − 3)!!
∫
Sn−1

| 〈ξ,�〉 | G(�) λn−1(d�), ξ ∈ Sn−1

(5.7)
Thus the support function of B admits the zonoid representation (1.2) with positive

even measure; hence B is a zonoid. Theorem 3 is proved.
Itwas proved in [6] that inR3 a convexbodyboundary ofwhich is an ellipsoid satisfy

the condition (1.9) (Theorem 3). Let B ∈ B3
o be a convex body boundary of which is

an ellipsoid with the semi-principal axes of length a, b, c. For � = (n1, n2, n3) ∈ S2

and and � ∈ S�, we have (see [6])

G(�,�) = G(�) = 1

(abc)

(
n21
a2

+ n22
b2

+ n23
c2

)−2

. (5.8)

Note that here G(�) is the generating density (multiplied by a constant, see (1.5),
(1.7)) of B.
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