Asymptotic Error of Polynomial-Periodic Interpolation

A.B.Nersessian, A.V.Poghosyan

July 24, 2005

Abstract

In this paper we continue investigations started in [6] and consider parametric interpolation of smooth but non periodic function defined on the finite interval. We analyze L_{2}-convergence of such interpolations and obtain exact formulae for the principal term of L_{2}-error. An optimization problem is solved. Numerical results are presented.

Mathematics subject classification 2000: 42A15.
Key words and phrases: Interpolation, Bernoulli polynomials, $L_{2^{-}}$ error.

1 Introduction

Further, we use conventions: the prime on the summation indicates that the zero term is omitted; $[x]$ stands for the integer part of $x ; \mathbf{Z}$ is the set of integers; then we put

$$
\sum_{n}^{N}=\sum_{n=-[N / 2]}^{-[N / 2]+N-1} \cdot, \quad \sum_{n \neq 0}^{N} \cdot=\sum_{n=-[N / 2]}^{-[N / 2]+N-1} \cdot
$$

where $N \geq 1$ is an integer.
Consider the following parametric interpolation (see [4],[5]) for $f \in$ $C[-1,1]$

$$
\begin{equation*}
I_{N}(f, \delta)=\sum_{n}^{N} \frac{\check{f}_{n}}{d\left(\frac{n}{N}\right)} \sum_{s \in \mathbf{Z}} \theta\left(\frac{n}{N}+s\right) e^{i \pi(n+s N) x} e^{-i \pi s \delta} \tag{1}
\end{equation*}
$$

where θ is such that $\sum_{s \in Z}|\theta(x+s)|<\infty, d(x)=\sum_{s \in Z} \theta(x+s) \neq 0$ and

$$
\check{f}_{n}=\frac{1}{N} \sum_{k}^{N} f\left(x_{k}\right) e^{-i \pi n x_{k}}, x_{k}=\frac{2 k+\delta}{N}
$$

with $0 \leq \delta \leq 2$ if N is even and $-1 \leq \delta \leq 1$ if N is odd.
Acceleration problem arises if approximated function $f^{q} \in C[-1,1], q \geq$ 0 has no smooth periodic continuation. One way to solve this problem is based on application of Bernoulli polynomials (see [1]-[3]). Denote

$$
A_{k}(f)=f^{(k)}(1)-f^{(k)}(-1), \quad k=0, \cdots, q
$$

and consider the following polynomial-periodic interpolation

$$
\begin{equation*}
I_{q, N}(f, \delta)=I_{N}\left(f(x)-\sum_{k=0}^{q} A_{k}(f) B_{k}(x), \delta\right)+\sum_{k=0}^{q} A_{k}(f) B_{k}(x) \tag{2}
\end{equation*}
$$

where the Bernoulli polynomials B_{k} are defined by the recurrent relations

$$
B_{0}(x)=x / 2, B_{k}(x)=\int B_{k-1}(x) d x, \int_{-1}^{1} B_{k}(x) d x=0, x \in[-1,1]
$$

Our aim is to investigate the convergence of $I_{q, N}(f, \delta)$ in the framework of L_{2}-convergence. Some relevant results concerning splines can be found in [7].

2 Asymptotic L_{2}-estimates

We put

$$
f_{n}=\frac{1}{2} \int_{-1}^{1} f(x) e^{-i \pi n x} d x
$$

Lemma 1 If $f \in \mathbf{C}^{\mathbf{q + 1}}[-1,1], f^{(q+2)} \in L_{2}(-1,1), A_{s}(f)=0, s=0, \cdots, q+$ $1, q \geq 0$, then

$$
\begin{equation*}
\sum_{r \in \mathbf{Z}}^{\prime} f_{n+r N} e^{i \pi r \delta}=o\left(N^{-q-2}\right), N \rightarrow \infty,-[N / 2] \leq n \leq-[N / 2]+N-1 \tag{3}
\end{equation*}
$$

Proof. Evidently,

$$
\begin{equation*}
f_{n}=\frac{\varepsilon_{n}}{2(i \pi n)^{q+2}}, \varepsilon_{n}=\int_{-1}^{1} f^{(q+2)}(x) e^{-i \pi n x} d x, n \neq 0 \tag{4}
\end{equation*}
$$

Taking into account the convergence of the series $\sum_{n \in \mathbf{Z}}\left|\varepsilon_{n}\right|^{2}$, we obtain

$$
\sum_{n \in \mathbf{Z}}\left|\varepsilon_{n}\right|^{2}=\sum_{n}^{N} \sum_{r \in \mathbf{Z}}\left|\varepsilon_{n+r N}\right|^{2}=\sum_{n}^{N}\left|\varepsilon_{n}\right|^{2}+\sum_{n}^{N} \sum_{r \in \mathbf{Z}}{ }^{\prime}\left|\varepsilon_{n+r N}\right|^{2} .
$$

Hence,

$$
\lim _{N \rightarrow \infty} \sum_{n}{ }^{N} \sum_{r \in \mathbf{Z}}{ }^{\prime}\left|\varepsilon_{n+r N}\right|^{2}=0
$$

and therefore,

$$
\lim _{N \rightarrow \infty} \sum_{r \in \mathbf{Z}}{ }^{\prime}\left|\varepsilon_{n+r N}\right|^{2}=0, \quad N \rightarrow \infty,-[N / 2] \leq n \leq-[N / 2]+N-1 .
$$

From this, we get

$$
\begin{aligned}
& \left|\sum_{r \in \mathbf{Z}}{ }^{\prime} f_{n+r N} e^{i \pi r \delta}\right| \leq \text { const } \sum_{r \in \mathbf{Z}}^{\prime}\left|\frac{\varepsilon_{n+r N}}{(n+r N)^{q+2}}\right| \leq \\
& \leq \frac{\text { const }}{N^{q+2}}\left(\sum_{r \in \mathbf{Z}}{ }^{\prime}\left|\varepsilon_{n+r N}\right|^{2}\right)^{1 / 2}=\frac{o(1)}{N^{q+2}}, N \rightarrow \infty . \bullet
\end{aligned}
$$

By $\|\cdot\|$ denote the standard norm of the space $L_{2}(-1,1)$.
Also denote

$$
d(x)=\sum_{s \in \mathbf{Z}} \theta(x+s), \alpha(x)=\frac{\sum_{s \in \mathbf{Z}}^{\prime} \theta(x+s)}{d(x)}, \beta(x)=\frac{\sum_{s \in \mathbf{Z}}^{\prime}|\theta(x+s)|^{2}}{|d(x)|^{2}} .
$$

Definition. We say that $\theta \in \mathbf{T}$ if the following conditions hold: (i) θ is piecewise continuous in R and to be definite is normalized with $\theta(x)=$ $1 / 2(\theta(x+0)+\theta(x-0))$; (ii) the sum $\sum_{s \in \mathbf{Z}}|\theta(x+s)|$ uniformly converges in $[-1 / 2,1 / 2]$; (iii) $\alpha(x)$ and $\beta(x)$ are bounded in $[-1 / 2,1 / 2]$; (iv) there exists monotone in $(-1 / 2,0)$ as well as in $(0,1 / 2)$ and integrable in $(-1 / 2,1 / 2)$ non-negative function μ such that

$$
|\alpha(x)|^{2} x^{-2 q-4} \leq \mu(x), \beta(x) x^{-2 q-4} \leq \mu(x) .
$$

Lemma 2 Suppose $\theta \in \mathbf{T}$ and the conditions of Lemma 1 hold; then

$$
\left\|f-I_{N}(f, \delta)\right\|=o\left(N^{-q-1.5}\right), N \rightarrow \infty
$$

Proof. Taking into account that $\check{f}_{n}=\sum_{r \in \mathbf{Z}} f_{n+r N} e^{i \pi r \delta}$, we obtain

$$
\begin{gather*}
\left\|f-I_{N}(f, \delta)\right\|= \\
=\left(2 \sum_{n}^{N} \sum_{r \in \mathbf{Z}}\left|f_{n+r N} e^{i \pi r \delta}-\frac{\theta\left(\frac{n}{N}+r\right)}{d\left(\frac{n}{N}\right)} \sum_{s \in \mathbf{Z}} f_{n+s N} e^{i \pi s \delta}\right|^{2}\right)^{1 / 2} . \tag{5}
\end{gather*}
$$

We apply the triangle inequality to (5), by breaking the sums into four parts, assuming: $\{r=0, s=0\},\{r \neq 0, s=0\},\{r=0, s \neq 0\},\{r \neq 0, s \neq$ $0\}$. In the case $\{r=0, s=0\}$ by Lemma 1 , it follows ($t_{n}=\frac{n}{N}$)

$$
\begin{aligned}
& \left(2 \sum_{n}^{N}\left|f_{n} \alpha\left(t_{n}\right)\right|^{2}\right)^{1 / 2}=\frac{\text { const }}{N^{q+2}}\left(\sum_{n}{ }^{N}\left|\varepsilon_{n}\right|^{2}\left|\frac{\alpha\left(t_{n}\right)}{t_{n}^{q+2}}\right|^{2}\right)^{1 / 2} \leq \\
& \frac{\text { const }}{N^{q+1.5}}\left(\int_{-\frac{[\sqrt{N}]}{N}}^{\frac{[\sqrt{N}]}{N}} \mu(x) d x\right)^{1 / 2}+ \\
& \frac{\text { const }}{N^{q+1.5}}\left(\int_{-1 / 2}^{1 / 2} \mu(x) d x\right)^{1 / 2} \sup _{\sqrt{N}<|n| \leq[N / 2]}\left|\varepsilon_{n}\right|=o\left(N^{-q-1.5}\right), N \rightarrow \infty .
\end{aligned}
$$

Application of similar arguments in other cases lead to the required estimate. \bullet

Using Lemmas 1,2 the following theorem holds.
Theorem 1 Suppose $\theta \in \mathbf{T} f \in \mathbf{C}^{\mathbf{q + 1}}[-1,1], f^{(q+2)} \in L_{2}(-1,1), q \geq 0$; then

$$
\begin{gather*}
N^{2 q+3}\left\|f-I_{q, N}(f, \delta)\right\|^{2} \rightarrow \\
\frac{\left|A_{q+1}(f)\right|^{2}}{2 \pi^{2 q+4}} \int_{-1 / 2}^{1 / 2} \sum_{r \in \mathbf{Z}}\left|\frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}-\frac{\theta(x+r)}{d(x)} \sum_{s \in \mathbf{Z}} \frac{(-1)^{s \sigma} e^{i \pi s \delta}}{(x+s)^{q+2}}\right|^{2} d x \tag{6}
\end{gather*}
$$

while $N \rightarrow \infty$ remains odd or even and $\sigma=0$ if N is even and $\sigma=1$ if N is odd.

Proof. We use the inequality

$$
\begin{align*}
& \left\|f-I_{q, N}(f, \delta)\right\|=\left\|F-I_{N}(F, \delta)\right\| \leq \\
\leq & \left\|F_{1}-I_{N}\left(F_{1}, \delta\right)\right\|+\left\|F_{2}-I_{N}\left(F_{2}, \delta\right)\right\| \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
F=F_{1}+F_{2}, \tag{8}
\end{equation*}
$$

and

$$
\begin{gathered}
F_{1}(x)=\sum_{n \in \mathbf{Z}}{ }^{\prime} F_{1, n} e^{i \pi n x}, F_{1, n}=\frac{(-1)^{n+1}}{2} \frac{A_{q+1}(f)}{(i \pi n)^{q+2}}, n \neq 0, \\
F_{2}(x)=\sum_{n \in \mathbf{Z}}{ }^{\prime} F_{2, n} e^{i \pi n x}, F_{2, n}=\frac{1}{2(i \pi n)^{q+2}} \int_{-1}^{1} f^{(q+2)}(x) e^{-i \pi n x} d x, n \neq 0 .
\end{gathered}
$$

By Lemma 2,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N^{q+1.5}| | F_{2}-I_{N}\left(F_{2}, \delta\right) \|=0 \tag{9}
\end{equation*}
$$

On the other hand $\left(t_{n}=n / N\right)$,

$$
\left\|F_{1}-I_{N}\left(F_{1}, \delta\right)\right\|^{2}=\frac{\left|A_{q+1}(f)\right|^{2}}{2(\pi N)^{2 q+4}} \sum_{n}{ }^{N} G\left(t_{n}\right)
$$

where

$$
G(x)=\sum_{r \in \mathbf{Z}}\left|\frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}-\frac{\theta(x+r)}{d(x)} \sum_{s \in \mathbf{Z}} \frac{(-1)^{s \sigma} e^{i \pi s \delta}}{(x+s)^{q+2}}\right|^{2} .
$$

The assumptions of the theorem imply integrability of the function $G(x)$ in the interval $(-1 / 2,1 / 2)$ and the existence of the limit (N remains odd or even)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n}{ }^{N} G\left(t_{n}\right)=\int_{-1 / 2}^{1 / 2} G(x) d x
$$

With (9) this proves the theorem. \bullet

3 Detail investigation of special cases

In this item we consider three examples. All calculations are executed by the MATHEMATICA package [8].

Example 1. Consider the simplest case

$$
\theta(x)= \begin{cases}1, & |x|<1 / 2 \\ 1 / 2, & x= \pm 1 / 2 \\ 0, & |x|>1 / 2\end{cases}
$$

Here $I_{q, N}(f, \delta)$ coincides with Bernoulli method (see [1]-[3]).
The reader will easily prove that

$$
\begin{gathered}
d(x) \equiv 1, x \in[-1 / 2,1 / 2], \\
\alpha(x)= \begin{cases}0, & |x|<1 / 2, \\
1 / 2, & x= \pm 1 / 2\end{cases} \\
\beta(x)= \begin{cases}0, & |x|<1 / 2, \\
1 / 4, & x= \pm 1 / 2 .\end{cases}
\end{gathered}
$$

Using Theorem 1, we get

$$
N^{q+1.5}\left\|f-I_{q, N}(f, \delta)\right\| \rightarrow\left|A_{q+1}(f)\right| a_{q}(\sigma, \delta)
$$

where

$$
a_{q}(\sigma, \delta)=\frac{1}{\pi^{q+2}}\left[\frac{2^{2 q+3}}{2 q+3}+\int_{-1 / 2}^{1 / 2}\left|\sum_{s \in \mathbf{Z}} \frac{(-1)^{s \sigma} e^{i \pi s \delta}}{(x+s)^{q+2}}\right|^{2} d x\right]^{1 / 2}
$$

The following relations

$$
\begin{gathered}
a_{q}(0,1-\delta)=a_{q}(0,1+\delta), \quad a_{q}(1,-\delta)=a_{q}(1, \delta), \quad 0 \leq \delta \leq 1 \\
a_{q}(0, \delta)=a_{q}(1, \delta-1), \quad a_{q}(1, \delta)=a_{q}(0, \delta-1), \quad 0 \leq \delta \leq 1
\end{gathered}
$$

simplify the analysis of $a_{q}(\sigma, \delta)$. Hence, for the same q, the behavior of the functions $a_{q}(0, \delta)$ and $a_{q}(1, \delta)$ are the same. On Fig. 1 the graphics of the functions $a_{0}(0, \delta)$ and $a_{1}(1, \delta)$ are represented. These two graphics are enough for complete analysis of $a_{q}(\sigma, \delta)$ as for even q the behavior of $a_{q}(\sigma, \delta)$
for $\sigma=0,1$ is similar to the left diagram on Fig. 1 otherwise to the right.

Fig.1. Functions $a_{0}(0, \delta)$ and $a_{1}(1, \delta)$.

Such behavior of $a_{q}(\sigma, \delta)$ allows to find an optimal value $\delta_{\text {opt }}$ of the parameter δ for fixed values of q. Table 1 contains the values of $\delta_{o p t}$ and $a_{q}\left(0, \delta_{\text {opt }}\right)$.

q	0	1	2	3
$\delta_{\text {opt }}$	0.442400	1	0.505015	1
$a_{q}\left(0, \delta_{\text {opt }}\right)$	0.202665	0.107417	0.060729	0.034503
q	4	5	6	7
$\delta_{\text {opt }}$	0.521790	1	0.527234	1
$a_{q}\left(0, \delta_{\text {opt }}\right)$	0.020017	0.011739	0.006964	0.00416521

Table 1. The optimal values $\delta_{\text {opt }}$ of the parameter δ and the values of $a_{q}\left(0, \delta_{o p t}\right)$.

Example 2. Consider the following

$$
\theta(x)=\left\{\begin{array}{ll}
\cos ^{s} \frac{\pi}{2} x, & |x| \leq 1, \\
0, & |x|>1,
\end{array} \quad s>q+1.5\right.
$$

We have

$$
\begin{gathered}
d(x)=\cos ^{s} \frac{\pi}{2} x+\sin ^{s} \frac{\pi}{2}|x| \\
\alpha(x)=\frac{\sin ^{s} \frac{\pi}{2}|x|}{\cos ^{s} \frac{\pi}{2} x+\sin ^{s} \frac{\pi}{2}|x|}, \beta(x)=\frac{\sin ^{2 s} \frac{\pi}{2}|x|}{\left(\cos ^{s} \frac{\pi}{2} x+\sin ^{s} \frac{\pi}{2}|x|\right)^{2}} .
\end{gathered}
$$

By Theorem 1

$$
N^{q+1.5}| | f-I_{q, N}(f, \delta) \| \rightarrow\left|A_{q+1}(f)\right| b_{q}(\sigma, \delta, s), N \rightarrow \infty
$$

where
$b_{q}(\sigma, \delta, s)=\frac{1}{\pi^{q+2}}\left[\int_{0}^{1}\left|\frac{\alpha(x)}{x^{q+2}}-(1-\alpha(x)) \sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}\right|^{2} d x+\frac{1}{2 q+3}\right]^{1 / 2}$.
On Fig. 2 the contour plots of the graphics (projection of the graphics on $s \times \delta$ plane) of the functions $b_{0}(1, \delta, s)$ and $b_{1}(1, \delta, s)$ are represented, where the lower values of b_{q} are marked by dark colors. It is easy to check that for fixed q, the graphics of the functions $b_{q}(\sigma, \delta, s), \sigma=0,1$ are the same. If q is even then the behavior of the $b_{q}(\sigma, \delta, s), \sigma=0,1$ is similar to the left diagram on Fig. 2 otherwise to the right.

Fig.2. Contour plots of the graphics of the functions $b_{0}(1, \delta, s)$ and $b_{1}(1, \delta, s)$.
Table 2 contains the optimal values $s_{o p t}, \delta_{o p t}$ of parameters s, δ and the values of $b\left(q, 0, \delta_{o p t}, s_{o p t}\right)$.

q	$s_{\text {opt }}$	$\delta_{\text {opt }}$	$b_{q}\left(0, \delta_{\text {opt }}, s_{\text {opt }}\right)$	a_{q} / b_{q}
0	2.166471	0.097154	0.095751	2.1
1	3.842676	1	0.018596	5.8
2	4.809502	0	0.007590	8
3	6.295909	1	0.001700	20
4	7.503024	0	0.000941	21
5	8.835812	1	0.000252	46
6	10.106305	0	0.000137	51
7	11.397712	1	0.000049	85

Table 2. The optimal values of $s_{o p t}, \delta_{o p t}$ and the values of $b\left(q, 0, \delta_{o p t}, s_{o p t}\right)$.
The last column in Table 2 describes the efficiency of optimal interpolation relatively to Example 1.
Example 3. Finally consider the following

$$
\begin{equation*}
\frac{\theta(x)}{d(x)}=\frac{1}{x^{q+2}}\left[\sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}\right]^{-1} \tag{10}
\end{equation*}
$$

where $\sigma=0,0 \leq \delta \leq 2$ if N is even and $\sigma=1,-1 \leq \delta \leq 1$ if is odd.
Evidently,

$$
\begin{aligned}
& \theta(0) / d(0)=1, \theta(s) / d(0)=0 \text { if } s \in \mathbf{Z} /\{0\} \\
& \alpha(x)=\left(\sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}\right)^{-1} \sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}, \\
& \beta(x)=\left|\sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{(x+r)^{q+2}}\right|^{-2} \sum_{r \in \mathbf{Z}}^{\prime} \frac{1}{(x+r)^{2 q+4}} .
\end{aligned}
$$

Here the integral in (6) vanishes and we have more rapid convergence

$$
\left\|f-I_{q, N}(f, \delta)\right\|=o\left(N^{-q-1.5}\right), \quad N \rightarrow \infty
$$

Now we represent a more exact estimate, displaying the principal term of asymptotic of $\left\|f-I_{q, N}(f, \delta)\right\|$.

Theorem 2 Let $\theta(x) / d(x)$ is defined by (10) and $f \in \operatorname{Lip}(q+2.5), q \geq 0$; then

$$
\begin{gather*}
N^{2 q+4}| | f-I_{N}^{q}(f, \delta) \|^{2} \rightarrow \frac{1}{2 \pi^{2 q+4}}\left(2 \zeta(2 q+4)+\left|\sum_{s \in \mathbf{Z}} \frac{(-1)^{s \sigma} e^{i \pi s \delta}}{s^{q+2}}\right|^{2}\right) \times \\
\left(\left|A_{q+1}\right|^{2}+2 \int_{-1}^{1}\left|f^{(q+2)}(z)\right|^{2} d z-\left|\int_{-1}^{1} f^{(q+2)}(z) d z\right|^{2}\right) \tag{11}
\end{gather*}
$$

while $N \rightarrow \infty$ remains odd or even; $\zeta(s)=\sum_{r=1}^{\infty} r^{-s}$ is the Riemann function; σ, δ are the same as in Theorem 1.

Proof. We start as in Theorem 1. It is easy to check that (see (8))

$$
\begin{equation*}
F_{1, n+r N} e^{i \pi r \delta}-\frac{\theta_{n+r N}}{d_{n}} \sum_{s \in \mathbf{Z}} F_{1, n+s N} e^{i \pi s \delta}=0, s \in \mathbf{Z}, n \neq 0 \tag{12}
\end{equation*}
$$

Now for $\left\|F_{2}-I_{N}\left(F_{2}, \delta\right)\right\|$ we note that $\sum_{r \in z}{ }^{\prime} F_{2, n+r N}=o\left(N^{-q-2}\right), N \rightarrow \infty$ and proceed as in the proof of Lemma 1. In the case $\{r=0, s=0\}$ we have $\left(t_{n}=n / N\right)$

$$
\begin{gathered}
\lim _{N \rightarrow \infty} 2 \sum_{n \neq 0}^{N}\left|F_{2, n} \alpha\left(t_{n}\right)\right|^{2}= \\
=\lim _{N \rightarrow \infty} \frac{1}{2 \pi^{2 q+4}} \sum_{n \neq 0}{ }^{N} \frac{\left|\alpha\left(t_{n}\right)\right|^{2}}{t_{n}^{2 q+4}}\left|\int_{-1}^{1} f^{(q+2)}(x) e^{-i \pi n x} d x\right|^{2}= \\
\frac{1}{2 \pi^{2 q+4}}\left|\sum_{r \in \mathbf{Z}} \frac{(-1)^{r \sigma} e^{i \pi r \delta}}{r^{q+2}}\right|_{n \in \mathbf{Z}}^{2} \sum_{-1}^{\prime}\left|\int_{-1}^{1} f^{(q+2)}(x) e^{-i \pi n x} d x\right|^{2} .
\end{gathered}
$$

Arguing as above, we see that

$$
\begin{gathered}
N^{2 q+4}\left\|f-I_{N}^{q}(f, \delta)\right\|^{2} \rightarrow \frac{1}{2 \pi^{2 q+4}}\left(2 \zeta(2 q+4)+\left|\sum_{s \in \mathbf{Z}} \frac{(-1)^{s \sigma} e^{i \pi s \delta}}{s^{q+2}}\right|^{2}\right) \times \\
\left(\left|A_{q+1}\right|^{2}+\sum_{n \in \mathbf{Z}}{ }^{\prime}\left|\int_{-1}^{1} f^{(q+2)} e^{-i \pi n z}(z) d z\right|^{2}\right)
\end{gathered}
$$

This completes the proof by Parseval equality.•
As an application of Theorem 2 consider the well known case of the shifted B-splines

$$
\begin{equation*}
\theta(x)=\left(\frac{\sin \pi x}{\pi x}\right)^{q+2} e^{i \pi \delta x} \tag{13}
\end{equation*}
$$

It is easy to check that the function (13) generates a sequence satisfying (10). Hence, we can apply Theorem 2.

4 Conclusion

Approximation of smooth in the finite interval but non periodic function by classical trigonometric interpolation $\left(I_{N}(f, \delta)\right.$ with θ as in Example 1$)$ is non
efficient due to slow L_{2}-convergence. Acceleration problem can be solved by Bernoulli method that corresponds to approximation $I_{q, N}(f, \delta)$ with θ as in Example 1.

Our investigations show that parametric interpolation $I_{N}(f, \delta)$ in combination with Bernoulli method (in our notation $I_{q, N}(f, \delta)$) provides more efficient approximation. In Example 2 we get 20 times more precise approximation for $q=3$ compared with Bernoulli method. Moreover, Example 3 gives \sqrt{N} times more rapid rate of convergence compared with Examples 1,2.

References

[1] K.S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions, Math. Comp., 64, 1995, no. 210, pp. 671-690.
[2] K.S. Eckhoff and C.E.Wasberg, On the numerical approximation of derivatives by a modified Fourier collocation method, Thesis of Carl Erik Wasberg, Department of Mathematics, University of Bergen, Norway, 1996.
[3] Krylov, A. Lectures on approximate calculations (in Russian), Izdatelstvo Academii Nauk USSR. Leningrad, 1933.
[4] A.B.Nersessian, Parametric Approximation and Some Applications. DNAN Armenii (in Russian), vol. 98, 1998, N 1, pp. 23-30.
[5] A.B. Nersessian, A family of approximation formulas and some applications, Numer. Functional Anal. and Optimization, 2000, vol. 21, no. 1-2
[6] A.B.Nersessian, A.V.Poghosyan, L_{2}-estimates for convergence rate of polynomial-periodic approximations by translates, Izvestiya Natsionalnoi Akademii Nauk Armenii, Matematika, vol.36, No. 3. 2001, pp 59-77.
[7] M.Golomb, Approximation by periodic spline interpolants on uniform meshes, Journal of approximation theory 1, 26-65, 1968.
[8] S. Wolfram, The MATHEMATICA book, Fourth Edition, Wolfram Media, Cambridge University Press, 1999.

