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Abstract

In this paper we continue investigations started in [6] and consider para-

metric interpolation of smooth but non periodic function defined on the finite

interval. We analyze L2−convergence of such interpolations and obtain ex-
act formulae for the principal term of L2−error. An optimization problem is

solved. Numerical results are presented.
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1 Introduction

Further, we use conventions: the prime on the summation indicates that the
zero term is omitted; [x] stands for the integer part of x; Z is the set of
integers; then we put

X
n

N · =
−[N/2]+N−1X
n=−[N/2]

·,
X
n 6=0

N · =
−[N/2]+N−1X
n=−[N/2]

0·,

where N ≥ 1 is an integer.
Consider the following parametric interpolation (see [4],[5]) for f ∈

C[−1, 1]

IN(f, δ) =
X
n

N f̌n
d( n
N
)

X
s∈Z

θ
µ
n

N
+ s

¶
eiπ(n+sN)xe−iπsδ, (1)
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where θ is such that
P
s∈Z |θ(x+ s)| <∞, d(x) =

P
s∈Z θ(x+ s) 6= 0 and

f̌n =
1

N

X
k

Nf(xk)e
−iπnxk , xk =

2k + δ

N

with 0 ≤ δ ≤ 2 if N is even and −1 ≤ δ ≤ 1 if N is odd.
Acceleration problem arises if approximated function f q ∈ C[−1, 1], q ≥

0 has no smooth periodic continuation. One way to solve this problem is
based on application of Bernoulli polynomials (see [1]-[3]). Denote

Ak(f) = f
(k)(1)− f (k)(−1), k = 0, · · · , q

and consider the following polynomial-periodic interpolation

Iq,N (f, δ) = IN

Ã
f(x)−

qX
k=0

Ak(f)Bk(x), δ

!
+

qX
k=0

Ak(f)Bk(x), (2)

where the Bernoulli polynomials Bk are defined by the recurrent relations

B0(x) = x/2, Bk(x) =
Z
Bk−1(x)dx,

Z 1

−1
Bk(x)dx = 0, x ∈ [−1, 1].

Our aim is to investigate the convergence of Iq,N (f, δ) in the framework
of L2-convergence. Some relevant results concerning splines can be found in
[7].

2 Asymptotic L2-estimates

We put

fn =
1

2

Z 1

−1
f(x)e−iπnxdx.

Lemma 1 If f ∈ Cq+1[−1, 1], f (q+2) ∈ L2(−1, 1), As(f) = 0, s = 0, · · · , q+
1, q ≥ 0, thenX
r∈Z

0
fn+rNe

iπrδ = o(N−q−2), N →∞, −[N/2] ≤ n ≤ −[N/2] +N − 1. (3)
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Proof. Evidently,

fn =
εn

2(iπn)q+2
, εn =

Z 1

−1
f (q+2)(x)e−iπnxdx, n 6= 0. (4)

Taking into account the convergence of the series
P
n∈Z |εn|2, we obtainX

n∈Z
|εn|2 =

X
n

N
X
r∈Z
|εn+rN |2 =

X
n

N |εn|2 +
X
n

N
X
r∈Z

0|εn+rN |2.

Hence,
lim
N→∞

X
n

N
X
r∈Z

0|εn+rN |2 = 0

and therefore,

lim
N→∞

X
r∈Z

0|εn+rN |2 = 0, N →∞, −[N/2] ≤ n ≤ −[N/2] +N − 1.

From this, we get¯̄̄̄
¯̄X
r∈Z

0
fn+rNe

iπrδ

¯̄̄̄
¯̄ ≤ constX

r∈Z

0
¯̄̄̄
¯ εn+rN
(n+ rN)q+2

¯̄̄̄
¯ ≤

≤ const
N q+2

⎛⎝X
r∈Z

0|εn+rN |2
⎞⎠1/2 = o(1)

N q+2
, N →∞.•

By || · || denote the standard norm of the space L2(−1, 1).
Also denote

d(x) =
X
s∈Z

θ(x+ s), α(x) =

P0
s∈Z θ(x+ s)

d(x)
, β(x) =

P0
s∈Z |θ(x+ s)|2
|d(x)|2 .

Definition. We say that θ ∈ T if the following conditions hold: (i) θ is
piecewise continuous in R and to be definite is normalized with θ(x) =
1/2(θ(x + 0) + θ(x − 0)); (ii) the sum

X
s∈Z
|θ(x+ s)| uniformly converges in

[−1/2, 1/2]; (iii) α(x) and β(x) are bounded in [−1/2, 1/2]; (iv) there exists
monotone in (−1/2, 0) as well as in (0, 1/2) and integrable in (−1/2, 1/2)
non-negative function µ such that

|α(x)|2x−2q−4 ≤ µ(x), β(x)x−2q−4 ≤ µ(x).
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Lemma 2 Suppose θ ∈ T and the conditions of Lemma 1 hold; then

||f − IN(f, δ)|| = o(N−q−1.5), N →∞.

Proof. Taking into account that f̌n =
X
r∈Z
fn+rNe

iπrδ, we obtain

||f − IN(f, δ)|| =

=

⎛⎜⎝2X
n

N
X
r∈Z

¯̄̄̄
¯̄fn+rNeiπrδ − θ

³
n
N
+ r

´
d( n
N
)

X
s∈Z
fn+sNe

iπsδ

¯̄̄̄
¯̄
2
⎞⎟⎠
1/2

. (5)

We apply the triangle inequality to (5), by breaking the sums into four
parts, assuming: {r = 0, s = 0}, {r 6= 0, s = 0}, {r = 0, s 6= 0}, {r 6= 0, s 6=
0}. In the case {r = 0, s = 0} by Lemma 1, it follows (tn = n

N
)

Ã
2
X
n

N |fnα(tn)|2
!1/2

=
const

N q+2

⎛⎝X
n

N |εn|2
¯̄̄̄
¯α(tn)tq+2n

¯̄̄̄
¯
2
⎞⎠1/2 ≤

const

N q+1.5

⎛⎝Z [
√
N]
N

− [
√
N]
N

µ(x)dx

⎞⎠1/2+
const

N q+1.5

ÃZ 1/2

−1/2
µ(x)dx

!1/2
sup√

N<|n|≤[N/2]
|εn| = o(N−q−1.5), N →∞.

Application of similar arguments in other cases lead to the required
estimate.•
Using Lemmas 1,2 the following theorem holds.

Theorem 1 Suppose θ ∈ T f ∈ Cq+1[−1, 1], f (q+2) ∈ L2(−1, 1), q ≥ 0;
then

N2q+3||f − Iq,N(f, δ)||2 →

|Aq+1(f)|2
2π2q+4

Z 1/2

−1/2

X
r∈Z

¯̄̄̄
¯̄(−1)rσeiπrδ(x+ r)q+2

− θ(x+ r)

d(x)

X
s∈Z

(−1)sσeiπsδ
(x+ s)q+2

¯̄̄̄
¯̄
2

dx, (6)

while N → ∞ remains odd or even and σ = 0 if N is even and σ = 1 if N
is odd.
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Proof. We use the inequality

||f − Iq,N(f, δ)|| = ||F − IN (F, δ)|| ≤

≤ ||F1 − IN (F1, δ)||+ ||F2 − IN (F2, δ)||, (7)

where
F = F1 + F2, (8)

and

F1(x) =
X
n∈Z

0
F1,ne

iπnx, F1,n =
(−1)n+1
2

Aq+1(f)

(iπn)q+2
, n 6= 0,

F2(x) =
X
n∈Z

0
F2,ne

iπnx, F2,n =
1

2(iπn)q+2

Z 1

−1
f (q+2)(x)e−iπnxdx, n 6= 0.

By Lemma 2,

lim
N→∞

N q+1.5||F2 − IN (F2, δ)|| = 0. (9)

On the other hand (tn = n/N),

||F1 − IN (F1, δ)||2 =
|Aq+1(f)|2
2(πN)2q+4

X
n

NG(tn),

where

G(x) =
X
r∈Z

¯̄̄̄
¯̄(−1)rσeiπrδ(x+ r)q+2

− θ(x+ r)

d(x)

X
s∈Z

(−1)sσeiπsδ
(x+ s)q+2

¯̄̄̄
¯̄
2

.

The assumptions of the theorem imply integrability of the function G(x) in
the interval (−1/2, 1/2) and the existence of the limit (N remains odd or
even)

lim
N→∞

1

N

X
n

NG(tn) =
Z 1/2

−1/2
G(x)dx.

With (9) this proves the theorem.•
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3 Detail investigation of special cases

In this item we consider three examples. All calculations are executed by the
MATHEMATICA package [8].
Example 1. Consider the simplest case

θ(x) =

( 1, |x| < 1/2,
1/2, x = ±1/2,
0, |x| > 1/2.

Here Iq,N (f, δ) coincides with Bernoulli method (see [1]-[3]).
The reader will easily prove that

d(x) ≡ 1, x ∈ [−1/2, 1/2],

α(x) =

(
0, |x| < 1/2,
1/2, x = ±1/2. ,

β(x) =

(
0, |x| < 1/2,
1/4, x = ±1/2. .

Using Theorem 1, we get

N q+1.5||f − Iq,N(f, δ)||→ |Aq+1(f)|aq(σ, δ),

where

aq(σ, δ) =
1

πq+2

⎡⎢⎣ 22q+3
2q + 3

+
Z 1/2

−1/2

¯̄̄̄
¯̄X
s∈Z

0 (−1)sσeiπsδ
(x+ s)q+2

¯̄̄̄
¯̄
2

dx

⎤⎥⎦
1/2

.

The following relations

aq(0, 1− δ) = aq(0, 1 + δ), aq(1,−δ) = aq(1, δ), 0 ≤ δ ≤ 1,

aq(0, δ) = aq(1, δ − 1), aq(1, δ) = aq(0, δ − 1), 0 ≤ δ ≤ 1
simplify the analysis of aq(σ, δ). Hence, for the same q, the behavior of
the functions aq(0, δ) and aq(1, δ) are the same. On Fig.1 the graphics of
the functions a0(0, δ) and a1(1, δ) are represented. These two graphics are
enough for complete analysis of aq(σ, δ) as for even q the behavior of aq(σ, δ)
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for σ = 0, 1 is similar to the left diagram on Fig.1 otherwise to the right.

0.5 1 1.5 2
δ

0.22
0.24
0.26
0.28

0.3
0.32

aintH0,0,δL

−1 −0.5 0.5 1
δ

0.108

0.112
0.114
0.116
0.118

0.12

aintH1,1,δL

Fig.1. Functions a0(0, δ) and a1(1, δ).

Such behavior of aq(σ, δ) allows to find an optimal value δopt of the param-
eter δ for fixed values of q. Table 1 contains the values of δopt and aq(0, δopt).

q 0 1 2 3
δopt 0.442400 1 0.505015 1

aq(0, δopt) 0.202665 0.107417 0.060729 0.034503

q 4 5 6 7
δopt 0.521790 1 0.527234 1

aq(0, δopt) 0.020017 0.011739 0.006964 0.00416521

Table 1. The optimal values δopt of the parameter δ
and the values of aq(0, δopt).

Example 2. Consider the following

θ(x) =

(
coss π

2
x, |x| ≤ 1,

0, |x| > 1, s > q + 1.5.

We have
d(x) = coss

π

2
x+ sins

π

2
|x|,

α(x) =
sins π

2
|x|

coss π
2
x+ sins π

2
|x| , β(x) =

sin2s π
2
|x|

(coss π
2
x+ sins π

2
|x|)2 .

By Theorem 1

N q+1.5||f − Iq,N(f, δ)||→ |Aq+1(f)|bq(σ, δ, s), N →∞
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where

bq(σ, δ, s) =
1

πq+2

⎡⎢⎣Z 1

0

¯̄̄̄
¯̄α(x)xq+2

− (1− α(x))
X
r∈Z

0 (−1)rσeiπrδ
(x+ r)q+2

¯̄̄̄
¯̄
2

dx+
1

2q + 3

⎤⎥⎦
1/2

.

On Fig. 2 the contour plots of the graphics (projection of the graphics on
s× δ plane) of the functions b0(1, δ, s) and b1(1, δ, s) are represented, where
the lower values of bq are marked by dark colors. It is easy to check that
for fixed q, the graphics of the functions bq(σ, δ, s), σ = 0, 1 are the same. If
q is even then the behavior of the bq(σ, δ, s), σ = 0, 1 is similar to the left
diagram on Fig.2 otherwise to the right.

2 4 6 8 10
s

−1

−0.5

0

0.5

1

δ

bintH0,1,δ,sL

4 6 8 10
s

−1

−0.5

0

0.5

1
δ

bintH1,1,δ,sL

Fig.2. Contour plots of the graphics of the functions b0(1, δ, s) and b1(1, δ, s).

Table 2 contains the optimal values sopt, δopt of parameters s, δ and the
values of b(q, 0, δopt, sopt).

q sopt δopt bq(0, δopt, sopt) aq/bq
0 2.166471 0.097154 0.095751 2.1
1 3.842676 1 0.018596 5.8
2 4.809502 0 0.007590 8
3 6.295909 1 0.001700 20
4 7.503024 0 0.000941 21
5 8.835812 1 0.000252 46
6 10.106305 0 0.000137 51
7 11.397712 1 0.000049 85
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Table 2. The optimal values of sopt, δopt and the values of b(q, 0, δopt, sopt).

The last column in Table 2 describes the efficiency of optimal interpolation
relatively to Example 1.
Example 3. Finally consider the following

θ(x)

d(x)
=

1

xq+2

⎡⎣X
r∈Z

(−1)rσeiπrδ
(x+ r)q+2

⎤⎦−1 , (10)

where σ = 0, 0 ≤ δ ≤ 2 if N is even and σ = 1, −1 ≤ δ ≤ 1 if is odd.
Evidently,

θ(0)/d(0) = 1, θ(s)/d(0) = 0 if s ∈ Z/{0}

α(x) =

⎛⎝X
r∈Z

(−1)rσeiπrδ
(x+ r)q+2

⎞⎠−1X
r∈Z

0 (−1)rσeiπrδ
(x+ r)q+2

,

β(x) =

¯̄̄̄
¯̄X
r∈Z

(−1)rσeiπrδ
(x+ r)q+2

¯̄̄̄
¯̄
−2X

r∈Z

0 1

(x+ r)2q+4
.

Here the integral in (6) vanishes and we have more rapid convergence

||f − Iq,N (f, δ)|| = o(N−q−1.5), N →∞.

Now we represent a more exact estimate, displaying the principal term of
asymptotic of ||f − Iq,N (f, δ)||.

Theorem 2 Let θ(x)/d(x) is defined by (10) and f ∈ Lip(q + 2.5), q ≥ 0;
then

N2q+4||f − IqN (f, δ)||2 →
1

2π2q+4

⎛⎜⎝2ζ(2q + 4) +
¯̄̄̄
¯̄X
s∈Z

0 (−1)sσeiπsδ
sq+2

¯̄̄̄
¯̄
2
⎞⎟⎠×

Ã
|Aq+1|2 + 2

Z 1

−1
|f (q+2)(z)|2dz −

¯̄̄̄Z 1

−1
f (q+2)(z)dz

¯̄̄̄2!
, (11)

while N →∞ remains odd or even; ζ(s) =
∞X
r=1

r−s is the Riemann function;

σ, δ are the same as in Theorem 1.
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Proof. We start as in Theorem 1. It is easy to check that (see (8))

F1,n+rNe
iπrδ − θn+rN

dn

X
s∈Z
F1,n+sNe

iπsδ = 0, s ∈ Z, n 6= 0. (12)

Now for ||F2−IN(F2, δ)|| we note that
X
r∈z

0
F2,n+rN = o(N

−q−2), N →∞ and

proceed as in the proof of Lemma 1. In the case {r = 0, s = 0} we have
(tn = n/N)

lim
N→∞

2
X
n 6=0

N |F2,nα(tn)|2 =

= lim
N→∞

1

2π2q+4
X
n6=0

N |α(tn)|2

t2q+4n

¯̄̄̄Z 1

−1
f (q+2)(x)e−iπnxdx

¯̄̄̄2
=

1

2π2q+4

¯̄̄̄
¯̄X
r∈Z

0 (−1)rσeiπrδ
rq+2

¯̄̄̄
¯̄
2 X
n∈Z

0
¯̄̄̄Z 1

−1
f (q+2)(x)e−iπnxdx

¯̄̄̄2
.

Arguing as above, we see that

N2q+4||f − IqN(f, δ)||2 →
1

2π2q+4

⎛⎜⎝2ζ(2q + 4) +
¯̄̄̄
¯̄X
s∈Z

0 (−1)sσeiπsδ
sq+2

¯̄̄̄
¯̄
2
⎞⎟⎠×

⎛⎝|Aq+1|2 +X
n∈Z

0
¯̄̄̄Z 1

−1
f (q+2)e−iπnz(z)dz

¯̄̄̄2⎞⎠ .
This completes the proof by Parseval equality.•
As an application of Theorem 2 consider the well known case of the shifted

B-splines

θ(x) =
µ
sin πx

πx

¶q+2
eiπδx. (13)

It is easy to check that the function (13) generates a sequence satisfying
(10). Hence, we can apply Theorem 2.

4 Conclusion

Approximation of smooth in the finite interval but non periodic function by
classical trigonometric interpolation (IN (f, δ) with θ as in Example 1) is non
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efficient due to slow L2-convergence. Acceleration problem can be solved by
Bernoulli method that corresponds to approximation Iq,N(f, δ) with θ as in
Example 1.
Our investigations show that parametric interpolation IN (f, δ) in com-

bination with Bernoulli method (in our notation Iq,N(f, δ)) provides more
efficient approximation. In Example 2 we get 20 times more precise approx-
imation for q = 3 compared with Bernoulli method. Moreover, Example 3
gives

√
N times more rapid rate of convergence compared with Examples 1,2.
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