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Abstract
In this paper we continue investigations started in [6] and consider para-
metric interpolation of smooth but non periodic function defined on the finite
interval. We analyze Ly—convergence of such interpolations and obtain ex-
act formulae for the principal term of Lo—error. An optimization problem is
solved. Numerical results are presented.
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1 Introduction

Further, we use conventions: the prime on the summation indicates that the
zero term is omitted; [z] stands for the integer part of x; Z is the set of
integers; then we put

~[N/2]+N—-1 ~[N/2]+N—-1
I S D
n n=—[N/2] n£0 n=—[N/2]

where N > 1is an integer.

Consider the following parametric interpolation (see [4],[5]) for f €
C[-1,1]

IN(f, 6) — ZN fn Ze <% —|—8> eiﬂ'(nJrsN)acefiﬂ'sé7 (1)
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where 6 is such that > ,c |0(z + s)| < 00, d(z) = Y ez 0(z + s) # 0 and
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with 0 < § <2if Niseven and —1 <6 <1 if N is odd.

Acceleration problem arises if approximated function f? € C[—1,1], ¢ >
0 has no smooth periodic continuation. One way to solve this problem is
based on application of Bernoulli polynomials (see [1]-[3]). Denote

A(f) =B = fB(=1), k=0,--.q

and consider the following polynomial-periodic interpolation
La(£:6) = Iy (12) = - ADB)0) + X DB, @)
where the Bernoulli polynomials B;, are defined by the recurrent relations
Bo(z) = 2/2, Bu(w) = [ Bia(a)dr, /11 Bu(@)dz =0, z € [~1,1].

Our aim is to investigate the convergence of I, x(f,6) in the framework
of Ls-convergence. Some relevant results concerning splines can be found in

[7].
2 Asymptotic Lo-estimates
We put

fn= %/_11 f(z)e ™ dg,

Lemma 1 If f € Co1[—-1,1], f+2) € Ly(—1,1), A(f)=0,5=0,---,q+
1, ¢ >0, then

> fupene™ = o(N777%), N — 00, —=[N/2] <n < —[N/2]+ N - 1. (3)
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Proof. Evidently,

En 1 —iTnT
I = Simmyre o = /_1f<q+2’<:c>e dz, n # 0. (4)

Taking into account the convergence of the series 3, cz |€n|?, we obtain

Z |‘5n|2 = ZN Z |‘5n-i-rN|2 = ZN|57L|2 + ZN Z ’|8n+T’N|2'

nez n reZ n n reZ
Hence,
i
lim > V3 e, n?=0
+rN
N—oo D5 22

and therefore,

A}im Z,’5”+TN’2 =0, N—>o0, —=[N/2] <n<—[N/2]+ N —1.
ez

From this, we get

EntrN

S const Z W ~

reZ

Z ’fnJrTNeiﬂ'ré

reZ

1/2

const , ) 0(1)

= Nevz (é [Entrn] ) = Nz N — oco.e

By || - || denote the standard norm of the space La(—1,1).

Also denote

d(fL‘) = Z 9(113 + S) a/(x) = M ﬁ(il?) _ Z;Ez |9<SU + S)|2
| d) )P

SEZ

Definition. We say that § € T if the following conditions hold: (i) 6 is
piecewise continuous in R and to be definite is normalized with 6(z) =
1/2(6(z + 0) + 6(z — 0)); (ii) the sum Y |0(x + s)| uniformly converges in

s€Z
[—1/2,1/2]; (iii) a(z) and §(z) are bounded in [—1/2,1/2]; (iv) there exists
monotone in (—1/2,0) as well as in (0,1/2) and integrable in (—1/2,1/2)
non-negative function p such that

(@) P27 < (), Blz)a™ 7 < p(a).



Lemma 2 Suppose 0 € T and the conditions of Lemma 1 hold; then
1f = In(f,8)]| = o(N~7"%), N — cc.

Proof. Taking into account that f, = Z frirn€™® we obtain

reZ
Lf = In(f, 0l =
2\ 1/2
. 0% +r .
— 12 ZN Z fn—}—rNewré . % Z fn+sNez7rsé (5)
n reZ N SEZ

We apply the triangle inequality to (5), by breaking the sums into four
parts, assuming: {r = 0,s =0}, {r #0,s =0}, {r =0,s £ 0}, {r #0,s #

0}. In the case {r = 0,s = 0} by Lemma 1, it follows (¢, = %)

12 const a(ty,) 2\ 1/?2
<2ZN|an‘(t )‘2> ~ Nat2 ZN|5n|2 a+2 <
VN 1/2
const ~
Na+1s (/_@ M(:v)dx> +
N

const /1/2 (2)d 12 N (N—q—l 5) N
—_— x)dx SU En| =0 <), — 0.
NatL5 1/2 K \/ﬁ<|n\§p[N/2]

Application of similar arguments in other cases lead to the required
estimate.e
Using Lemmas 1,2 the following theorem holds.

Theorem 1 Suppose § € T f € CIT[—1,1], f@*2) € Ly(-1,1),q > 0;

then
N2q+3Hf - [q,N(f, 6)H2 _
; . 2
|Aq+1<f>’2 /1/2 (_1)rcfemr5 B 9(1‘ +7”) Z <_1)Scfewr55 o (6)
2wt Sy G dw) 2 e

while N — oo remains odd or even and o = 0 if N is even and 0 =1 if N
s odd.



Proof. We use the inequality

1f = Lon(F0)ll = |IF = In(F,0)]] <

< By = In(Fy, 0)|| + |[F2 — In(F2, 6)]], (7)

where
F=F +F, (8)

and
(=D Ay (f)

2 (imn)at?’

Fl(x) = Z/Fl,neiwnxv Fl,n = n%ov

n€z
Fy(x) = g:ZIFz,ne”m”, Fy, = W /_11 far2(z)e ™2y n £ 0.
By Lemma 2,
lim N, — Iy (. 8)]| = 0. )
On the other hand (¢, = n/N),
|A

17y — In(Fy, 8)[1 =

o1 (N ¢~ v
TEVER

where )
(_1)roei7rr6 B 9<£C +7,) Z (_1)soei7rsé
@2 d@) & (e

Gz) ="

reZ

The assumptions of the theorem imply integrability of the function G(x) in
the interval (—1/2,1/2) and the existence of the limit (N remains odd or
even)
1 1/2
lim — Y NG(t,) = / G(z)dz.

N—oo N Py 1/2

With (9) this proves the theorem.e



3 Detail investigation of special cases

In this item we consider three examples. All calculations are executed by the
MATHEMATICA package [8].
Example 1. Consider the simplest case

1, lz| < 1/2,
0(z) = { 1/2, r==+1/2,
0, |z| > 1/2.

Here I, n(f,6) coincides with Bernoulli method (see [1]-[3]).
The reader will easily prove that

dlz)=1, z €[-1/2,1/2],

B 0, |z| < 1/2,
o(z) _{ 1/2,  z=41/2.°

0, |z| < 1/2,
Alz) :{ 1/4, z==41/2."

Using Theorem 1, we get

Nq+1'5|]f — Iyn(f0)|| = [Agia(f)lag(a,0),

9 1/2
dx] .

ag(0,1 = 6) = ag(0,1+6), aq(1,—6) = ay(1,6), 0<6<1,

where

1
7TQ+2

, (_1)soei7r56

(x + s)1t2

aq(o,6) =

>

22¢+3 1/2
+/
2q+ 3 -1/2 |1z

The following relations

a,(0,0) = ay(1,6 — 1), a,(1,0) =a,(0,6 —1), 0<6<1

simplify the analysis of a,(c,0). Hence, for the same ¢, the behavior of
the functions a4(0,6) and a,(1,6) are the same. On Fig.1 the graphics of
the functions ag(0,6) and a;(1,6) are represented. These two graphics are
enough for complete analysis of a,(c, §) as for even g the behavior of a,(o, §)

6



for 0 = 0,1 is similar to the left diagram on Fig.1 otherwise to the right.

ajnt (0,0,9) aint (1,1,95)
0.32 0.12
0.3 .118
0.28 0.116
0.26 0.114
0.24 o
0.22 - s
! 5
05 1 1.5 2 -1 0108/ 05 1

Fig.1. Functions ao(0,6) and a1(1,0).

Such behavior of a,(o, §) allows to find an optimal value 6, of the param-
eter ¢ for fixed values of g. Table 1 contains the values of 8., and a4 (0, dppt).-

q 0 1 2 3
Oopt 0.442400 1 0.505015 1
aq(0, 05pt) | 0.202665 | 0.107417 | 0.060729 | 0.034503
q 4 5 6 7
Oopt 0.521790 1 0.527234 1
aq(0, 6pp) | 0.020017 | 0.011739 | 0.006964 | 0.00416521

Table 1. The optimal values 8, of the parameter 6
and the values of aq(0, dopt).

Example 2. Consider the following

_Jocos®Fx, [z <1,
0(x) { 0 2> 1, 5> q+ 1.5.
We have . .
d(x) = cos® 5% + sin® 5]1:\,
sin® Z|x| sin® Tz
a(r) = —F—+= , Bla) = :

 cos® 2z + sin® 2|z (cos® Za 4 sin® Z|x|)?

2
By Theorem 1

NS — I, n(f,0)|] = |Age1(f)]bg(0,6,8), N — o0

7



where

1 1
by(0,6,5) = — {/0

On Fig. 2 the contour plots of the graphics (projection of the graphics on
s x 6 plane) of the functions by(1, 6, s) and by (1,6, s) are represented, where
the lower values of b, are marked by dark colors. It is easy to check that
for fixed ¢, the graphics of the functions b,(c, 6, s), o = 0,1 are the same. If
q is even then the behavior of the b,(c,9,s), o = 0,1 is similar to the left
diagram on Fig.2 otherwise to the right.

1/2

a(z)

_ raeiwr52
) -y Y

| de+
reZ (l‘+’f’)q+2 !

29+ 3

bint(0,1,5,5) ;. Pint(1.1.5,5)

Fig.2. Contour plots of the graphics of the functions by(1, 6, s) and by(1, 6, s).

Table 2 contains the optimal values s, 0oyt Of parameters s, 6 and the
values of b(q, 0, dopt, Sopt)-

q Sopt bopt by (0, Sopt, Sopt) | @q/bq
0| 2.166471 | 0.097154 0.095751 2.1
1| 3.842676 1 0.018596 5.8
2 | 4.809502 0 0.007590 8
3| 6.295909 1 0.001700 20
4 | 7.503024 0 0.000941 21
5| 8.835812 1 0.000252 46
6 | 10.106305 0 0.000137 51
71 11.397712 1 0.000049 85




Table 2. The optimal values of sqpt, Oopt and the values of b(q, 0, dopt, Sopt)-

The last column in Table 2 describes the efficiency of optimal interpolation
relatively to Example 1.
Example 3. Finally consider the following

-1

4 1 —1)re iwrd

<I> — — Z ( ) € - , (10)

d(z) 29+? | (v +7)

where 0 = 0,0 <6 <2if Nisevenand o =1, —1 <6 <1 if is odd.
Evidently,

0(0)/d(0) = 1, 6(s)/d(0) = 0 if s Z/{0}

B (_1)rcrei7rr6 -1 ,<_1)rcrei7rr§
a(r) = (TEZZ (x + 1)t ) TEZZ (x +r)at2’

/ 1
Z (v +r)2ats

reZ

(_1)raei7rr5
(x +r)et2

Blz) =1

reZ

Here the integral in (6) vanishes and we have more rapid convergence
1f = Lon(f )l = o(N~"71?), N — o0,

Now we represent a more exact estimate, displaying the principal term of
asymptotic of || f — I, v(f, )]

Theorem 2 Let 6(z)/d(z) is defined by (10) and f € Lip(q + 2.5), ¢ > 0;
then

(_ 1)50’ei7r56 2
/
SQ+2

. (1)

o0
while N — oo remains odd or even; ((s) = Z r~* is the Riemann function,
r=1

N f = IR (f, 01 — 2((29 +4) +

>

SEZ

<|Aq+1|2 n 2/_11 | F@+D ()22 — '/_11 F+2 ()42

27T2q+4

0,0 are the same as in Theorem 1.



Proof. We start as in Theorem 1. It is easy to check that (see (8))

o .
Fipirne™ — dLN Z F17n+sNe”r35 =0, s€Z, n#0. (12)
n seZ

Now for ||Fy— In(F», 6)|| we note that ZIFQMTN = o(N"7?), N — oo and

rez
proceed as in the proof of Lemma 1. In the case {r = 0,s = 0} we have

(tn =n/N)
lim 2> N Fy,a(t,) =

N—oo 720

|o(tn) ?
2q+4
n

1 )
/ f(q+2) (x)efmnxdx
-1

: 1 N
- ]\}Lnéo O r2q+4 >
n#0

1 2

27T2q+4

, (_1)7’0’61'71'7‘6

ng ra+2

Arguing as above, we see that

2
’ 1 :
Z / f(q+2) (x)efmna:dx
1

neZ

, (_1)80'ei7r36 2

Z 8q+2

s€Z
2)
This completes the proof by Parseval equality.e
As an application of Theorem 2 consider the well known case of the shifted
B-splines

N f = IR (f, 0] — 20(2g +4) + X

27-(-2q+4

1 .
/ f(q+2)e—z7rnz<z)dz
1

(|Aq+1’2 + Z l

nez

; a+2
Sin X ) e” .

o(z) = (

It is easy to check that the function (13) generates a sequence satisfying
(10). Hence, we can apply Theorem 2.

(13)

T™r

4 Conclusion

Approximation of smooth in the finite interval but non periodic function by
classical trigonometric interpolation (Ix(f,¢) with 6 as in Example 1) is non

10



efficient due to slow Lo-convergence. Acceleration problem can be solved by
Bernoulli method that corresponds to approximation I, y(f, ) with 6 as in
Example 1.

Our investigations show that parametric interpolation Iy (f, ) in com-
bination with Bernoulli method (in our notation I, n(f,8)) provides more
efficient approximation. In Example 2 we get 20 times more precise approx-
imation for ¢ = 3 compared with Bernoulli method. Moreover, Example 3
gives v/ N times more rapid rate of convergence compared with Examples 1,2.
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