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ON THE SWEEPING OUT PROPERTY FOR CONVOLUTION
OPERATORS OF DISCRETE MEASURES

G. A. KARAGULYAN

ABSTRACT. Let uyn be a sequence of discrete measures on the unit circle T =
R/Z with pn(0) = 0, and pn((—0,0)) — 1, as n — oo. We prove that the
sequence of convolution operators (f * un)(x) is strong sweeping out, i.e. there
exists a set £ C T such that

lim sup (Ig * pn)(x) =1, lim inf (Ig * pn)(xz) =0,

n—oo

almost everywhere on T.

1. INTRODUCTION

We consider bounded discrete measures
n= E mkdzk, E mp < 00,
k k

on the circle T = R/Z, where X = {x}} is a finite or countable set in T and §,, is
Dirac measure at x;. Denote

Suf () = /R £ + Hdu(t).

Let u,, be a sequence of discrete measures satisfying

(1.1) 10(0) = 0, pin((—8,8)) = 1, as n — oo,
for any 0 < § < 1/2. Tt is clear if f € L!(T) is continuous at = € T then
(1.2) Sy f () = f(),

and the convergence is uniformly if f € C(T). The almost everywhere convergence
problem in the case of general f € L!(T) is not trivial. J. Bourgain in [4] proved

Theorem 1 (J. Bourgain). If zx \, 0 as k — oo, and

1 n
Hn = E Zéﬁfk’
k=1

then there exists a function f € L*, such that S, f(x) diverges on a set of positive
measure.
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In fact, this theorem gave a negative answer to a problem due to A. Bellow
[3] and the proof is based on a general theorem often referred as Bourgain’s en-
tropy principle. Applying his principle Bourgain was able to deduce an analogous

theorems for Riemann sums
n—1
1 k
> s(a+ 1)
n n
k=0
and for the operators
1 n
k=1
We note, that first theorem was earlier obtained by W. Rudin [8] by different
technique, and the second by J. Marstrand in [7]. S. Kostyukovsky and A. Olevskii
in [6], using the same entropy principle, extended Theorem 1 for general discrete
sequences satisfying (1.1).
We found a new geometric proof for Theorem 1, as well as for the result from

[6]. Moreover, the method allows to obtain a stronger divergence for the operators
(1.2). So in this paper we prove

Theorem 2. If discrete measures p, satisfy (1.1), then there exists a set E C T,
such that
(1.3) limsup S, Ig(z) =1, liminfsS, Ig(z)=0

n—oo n—oo

almost everywhere on T.

The relations (1.3) for sequences of operators is called strong sweeping out prop-
erty. These kind of operators are investigated by M. Akcoglu, A. Bellow, R. L.
Jones, V. Losert, K.Reinhold-Larsson, M. Wierdl [1] and by M. Akcoglu, M. D. Ha,
R. L. Jones [2]. In [1] strong sweeping out property for Riemann sums operators
is obtained. In [2] authors prove a general version of Bourgain’s entropy princi-
ple, which allows to deduce sweeping out properties for some operators, but the
principle is not applicable for the operators S,,,. The proof of Theorem 2 is based
on Lemma 6. It will be obtained from Lemma 6 simply applying a general result
proved in [5].

2. PROOF OF THEOREM

Let
(2.1) X={z;:i=1,...,0}, O0<zi<zo<...<z <1,
be an arbitrary sequence of reals. Suppose
Y={y;:i=1,...,v}, 1 <pp2<...<y, =z
is a maximal independent (with respect to rational numbers) subset of X containing

;. Then we have

Tk =7’§k)yl +o+rPy, k=12,
for some rational numbers rgk)

(

%

. Let p be the least common multiple of the denom-
). Then we get

k k k
(22) ST Ea SRS AT
p

inators of r




ON THE SWEEPING OUT PROPERTY 3

for some ngk) € Z. Denote
(k)|

(2.3) T = max In;

and

Am _ {y _ n1y1+n2y2p+---+nuyu; n; € Z7

(2.4)
|n| <mr,i=1,2,...,v—1, |ny|gum7'—|—1}.

Lemma 1. If (2.1) is an arbitrary sequence with v > 2, then for any interval
IC(-1,1) with |I| <y, /p we have

(2.5) #(ApNI) ~ym” HI| as m — oo,

where v = (27)""1p/y, is a constant depended on X.

Proof. Tt is easy to observe that

AmﬂI:{y: Ny + . WY :
b
nlg—i—...—i—n,,,lyufl L I+ ZN[—(vmr + 1), (vm7 + 1)),
v v Yu

|ni|§mr,i—l,2,...,ul}.

On the other hand if y € A, NI, then, by (2.4) we have

|n1y—1 +...+ nu,ly’kl | <wvmr.
Using also the relation |I| <y, /p, we conclude
A m:{y: myL -y
" p
(2.6) mPtnattel 1y
v v yl/
|ni| <mr,i=1,2,...,v— 1}.
Since y1,...,1y, are independent, the number
0= yufl/yu
is irrational. Denoting
(2.7) E,, = {nlyl +...+n,,_2yy_2 Dng| <mry i = 1,2,...,V—2}
v 1%

from (2.6) we get
(2.8) yﬂ (AN T) = ({10 [ny_1| < m7}+ Ep) N (y£ 1+7).

v v

It is well known that nf+t, n =1,2,... (n = —1,—2,...), is a uniformly distributed
sequence. This implies

#({nl,,19 : |n1/71‘ S mT} +t) N (y% I + Z) p|I|
—

2mrt Yv

(2.9)

, as m — 00,
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for any ¢ € R and the convergence is uniformly. Since y,...,y,—1 are independent
from (2.7) we obtain

|Ep| = 2mr +1)" 2,
Finally, using (2.8) and (2.9), we get

#(Am ﬁI) = #<p : (Am ﬂI)) ~ 2m7py|j| |Ep| ~ (QmT)lezlﬂ.

Lemma 2. For any set (2.1) we have
(2.10) Am N (—21,0) + X C A1 N (—xg,21), m=1,2,...,
where Ay, is defined in (2.4).
Proof. Take an arbitrary point €€ A, N (—x;,0). According to the definition of
Y1, - -+, Y we will have

_ b Fneyp A+

p )

Then suppose z, € X has representation (2.2). Since x € (—2;,0) and 0 < x, <
we get
(2.11) x4z € (—xy,21).
On the other hand

_ 0Ny + e+ 08N)gs + -+ (0 + 0y,
T+ T = 5 7

and by (2.4) (2.3) we have

(2.12) |ni+nl(-k)|SmT—i—T:(m+1)7,i:1,2,...7y—1,
. In, +n®| <vmr +1+7 <v(m+1)r
This means = + x, € Ap41. Combining (2.11) and (2.12) we get (2.10). O

Lemma 3. For any numbers 6 >0, 0 < e < 1/3 and measure
l
(2.13) u:kaézk,mk>0,0<ac1<x2<...<xl,
k=1
there exists a real number A, with 0 < XA < ¢, such that

(2.14) Suﬂ{t:{t/,\}x}(x)
- / L /a1 5ey (@ + Ddut) > (1= 39)|ul, as {2/} < e.

Proof. Denote

(2.15) E.={A>0: {t/A\}e(e,1—¢)}, t>0.
It is clear .
t t
E, = - ).
! kUO<k‘+1—5’k—|—5)
Hence if

. EX1 5
r = min 72(1—5)’
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and t > 1, we obtain

t t
e [0,r] > Z (k+s_k+15>

k>t/r

B (1—2e)t B 1
(2.16) _g;r ((k+6)(k+1—5)) > 25)’5];% e
(I=2e)tr _ (1 —2e)xyr S (1 —2e)xyr
t+2r x1+2r T xpter/(1—¢)

=(1—-2)(1—¢)r>(1-3e)r
Thus, denoting
F={t>0:{t}€(c,1—¢)},
by (2.15) we have
E,={A>0:te€\F}
and therefore, using (2.16), we get

217 = [ | nroixaute) = [ 1B 0. raute
l
= > il B, 01 [0,7]] = (1 - 3)r]ul.

i=1

This implies

(2.18) S Inp(0) > (1 — 3e)|p|

for some 0 < A < r < 4. From (2.18) it follows that

(2.19) S zpia(z) > (1 —3¢)|p|, z€R.

It is clear

(2.20) U OF+2)={t: {t/\} >}
z:{x/A}<e

Thus, using (2.19) and (2.20), for any z, {z/\} < e, we obtain
Suﬂ{t: {t/)\}>a}(:17) = SH]I/\F-&-QC(:E) > (1 - 3€)|/L|'
This implies (2.14) and lemma is proved. O

Lemma 4. For any measure (2.13)and number 0 < € < 1/3 there exist finite sets
E,G C (—x,x;) such that

(2.21) ENG=0, #E> E?j?

(2.22) S lg(x) > (1—3¢)|p|, ze€kF.

Proof. Denote
(2.23) Un={t € (—z,0): {t/A } <e}, WVx={te(—x,x): {t/\} > ¢}
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It is clear |Uy| — ex; and |Vy| — 2(1 — e)z; as A — 0. On the other hand, by
Lemma 3, for A small enough we have (2.14). So we can fix A satisfying (2.14) and
the conditions

(2.24) 0< A<, wu<zm,|aq>%?
Denote
(2.25) E,=A,NU\, Gp=A4,+1NV\.

Since the sets Uy and V), are finite union of intervals in (—1, 1), according to Lemma
1 we have

# Ly ~Amt UL, #Go ~ymt TV
as m — oo. Hence for an integer m large enough, denoting
E=E, G=G,
and taking into account (2.24) we will have

(2.26) #E > EﬁG.

Besides, since Uy NVy, = & we have EN G = @ and so (2.21). To show (2.22) we
take an arbitrary x € E. Because of (2.23) and (2.25)we will have

z € Ay N(—x,0), {z/\}<e.

From Lemma 2 we get © + X € A1 N (=2, 2;). Thus we get
Sula(z) = Sullv, (z) = Sulie: (ay>ey (2)
and therefore, since we have {z/A} < e, from Lemma 3 we obtain (2.22). O
For an arbitrary nonempty finite set A C R\ {0} we define

(4) = min{|z —y|: x,y € A, x #y}, HH#A>2
: |, if A={z}.

Lemma 5. Let Ay C R\ {0}, k =1,2,..., be a sequence of nonempty finite sets
such that and

(2.27) max Apy1 < i . (Ak), k=1,2,....

Then the equality

(2.28) T1+Tot ...+ =y1+yot+...+ys, T,y €A, i=12,....,n
implies x; = y;, 1 =1,2,...,n.

Proof. Suppose to the contrary in (2.28) we have z; = y;, @ < k, and z # yp.
Hence we get

(2.29) T+ ...+xp =y + ...+ Yn.
From (2.27) and the relation

1 1
maxAi S Z . (Ai—l) S imaXAi_l
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it follows that
1
(2.30) |z, |yi] < max A; < §maxAi,1 <...

(Ak) |1 — Y|
< gimpm max Ak < o < e

forany i =k +1,k+2,...,n. Thus, using (2.29) and (2.30), we get

|k = Ykl < [@rpr] + ypaal + -+ 2] + [ynl

oo
1
< 2[zp — yi| E DS |z — yil
i=1

which is a contradiction and so x; = y; forallt=1,2,...,n. O

Lemma 6. Let p, be a sequence of measures, satisfying the condition (1.1). Then
for any numbers A > 0 and 0 < § < 1 there exists a measurable set A C T, |A| > 0,
such that

(2.31) Hz € T: sup Sy, La(zx) > 6} > A-|A]
neN

Proof. 1t is easy to observe that can be supposed each supp p,, is a finite set and

moreover
U(n)

M = Z mi(sxia n=12...,
i=l(n—1)+1
where 0 = 1(0) < (1) < (2) < ... areintegers, 1 > x; \,Oand m; > 0,i=1,2,....
Applying Lemma 4 with € = (1 — §)/3 we define finite sets E,, and G,, with

(2.32) En, Gn C (—Ti(n); Tin)), EnNGp =9,
o H > L=0#G)
(2.34) Sulag, () >0, ek,
Clearly we can chose a sequence of integers ng, k = 1,2, ..., satisfying
(2.35) max(E,, ., NGy, ) < w, k=1,2,....
So the sequence of sets Ay, = E,, UG, satisfies the condition (2.27). Fix an integer
12A
(2.36) m > T4
and denote
(2.37) G=GCp +GCny+...+Gn,,
(2.38) Fp =Y Gn +En, E=ULF,.
i#k

Notice that the sets Fj are mutually disjoint. Indeed, suppose to the contrary
E,NF,# 3, p+#q, and x € F, N F,;. We then have

r=x14+...+Tm =y1+ ...+ Ym, where
Ty, Yi € A, Tp EEnpv yngnpa
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Since G, N E,, = @ (see (2.32)), we have x,,, # yn,. On the other hand because
i,y € A; and the family A; satisfies the hypothesis of Lemma 5 we get z; = y;
for all + = 1,2,...,m. This is a contradiction and so F} are mutually disjoint.
Similarly we can prove that any point € G has unique representation

r=x1+...+&m, x€Gn,i=12...,m.
This implies
#G =[] #(Gn).

i=1

By the same argument, using (2.33), we get

ik ik 12 12
Combining this and (2.36) we conclude
= m(l — 0)#G
2. E = F —— > A .
(2:39) # ,;# k> > A#G

To prove (2.31), we take an arbitrary € E. We have z € F}, for some 1 <k <m
and so
r=x1+...+%m, % €Gn,,iF#k xp€E,,.
From (2.37) it follows that G, C G — 3, x;. Therefore, by (2.34), we get
S#nk Hg(x) = S“"k Eg_zi#k o (xk) > S'“"k ]IGnk. (Cﬂk) > 0.
Hence we have

(2.40) sup Sy, la(z) >96, z€E,
k

Finally we let ¢ = (G U E)/2 and denote
A=G+ (—¢,e), B=E+(—¢,¢).
It is clear that the intervals t + (—¢,¢), t € GU E, are pairwise disjoint. Hence
|A| = 2e#G, |B| = 2e#E,
and so, by (2.39) we conclude
(2.41) |B| > A A].

Then for an arbitrary @ € B we have = ¢t + y where t € E and |y| < . Hence,
using (2.40), we get

(2.42) st;pS W lalz) > Sl;p Spn La+y(2) = sgpS le(t) >0, xz€B.

Collecting (2.41) and (2.42) we obtain (2.31). Lemma is proved. O

Definition. A sequence of linear operators
U, : L*(T) — { measurable functions on T}.
is said to be strong sweeping out, if given € > 0 there is a set £ with mE < € such

that limsup,, ., Uplg(z) =1 and liminf,, o U,Ig(z) =0 a.e..

To prove the theorem we need to show that the sequence S, is strong sweeping
out. The following theorem gives a sufficient condition for a sequence of operators
to be strong sweeping out.
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Theorem 3 ([5], §7, Theorem 6). If the sequence of positive translation invariant
operators U, satisfies the conditions
a: U,(It) = 1 as n — oo,
b: for any e > 0 and n € N there exists a number 6 = §(e,n) > 0, such that
if G C T and m(G) < ¢ then

(2.43) m{z €T: U,lg(z) >e} <e,
c: for any 0 < <1 we have
Hz € X : sup,en Unla(z) > 6}

sup = Q.
GCT, |G|>0 ‘G|

then it is strong sweeping out.

Observe, that each S, is positive translation invariant. The conditions (a)
follows from (1.1). To show (b) we simply note

/sﬂnug dx—//ﬂg o+ t)dtde = | - |G,

and therefore, by Chebishev inequality, we will have (2.43) provided |G| < § =
|t | /€. The condition (c) immediately follows from Lemma 6. Theorem is proved
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