ON THE SWEEPING OUT PROPERTY FOR CONVOLUTION OPERATORS OF DISCRETE MEASURES

G. A. KARAGULYAN

Abstract

Let μ_{n} be a sequence of discrete measures on the unit circle $\mathbb{T}=$ \mathbb{R} / \mathbb{Z} with $\mu_{n}(0)=0$, and $\mu_{n}((-\delta, \delta)) \rightarrow 1$, as $n \rightarrow \infty$. We prove that the sequence of convolution operators $\left(f * \mu_{n}\right)(x)$ is strong sweeping out, i.e. there exists a set $E \subset \mathbb{T}$ such that $$
\lim \sup _{n \rightarrow \infty}\left(\mathbb{I}_{E} * \mu_{n}\right)(x)=1, \quad \lim \inf _{n \rightarrow \infty}\left(\mathbb{I}_{E} * \mu_{n}\right)(x)=0
$$ almost everywhere on \mathbb{T}.

1. Introduction

We consider bounded discrete measures

$$
\mu=\sum_{k} m_{k} \delta_{x_{k}}, \quad \sum_{k} m_{k}<\infty
$$

on the circle $\mathbb{T}=\mathbb{R} / \mathbb{Z}$, where $X=\left\{x_{k}\right\}$ is a finite or countable set in \mathbb{T} and $\delta_{x_{k}}$ is Dirac measure at x_{k}. Denote

$$
S_{\mu} f(x)=\int_{\mathbb{R}} f(x+t) d \mu(t)
$$

Let μ_{n} be a sequence of discrete measures satisfying

$$
\begin{equation*}
\mu_{n}(0)=0, \quad \mu_{n}((-\delta, \delta)) \rightarrow 1, \text { as } n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

for any $0<\delta \leq 1 / 2$. It is clear if $f \in L^{1}(\mathbb{T})$ is continuous at $x \in \mathbb{T}$ then

$$
\begin{equation*}
S_{\mu_{n}} f(x) \rightarrow f(x), \tag{1.2}
\end{equation*}
$$

and the convergence is uniformly if $f \in C(\mathbb{T})$. The almost everywhere convergence problem in the case of general $f \in L^{1}(\mathbb{T})$ is not trivial. J. Bourgain in [4] proved

Theorem 1 (J. Bourgain). If $x_{k} \searrow 0$ as $k \rightarrow \infty$, and

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}}
$$

then there exists a function $f \in L^{\infty}$, such that $S_{\mu_{n}} f(x)$ diverges on a set of positive measure.

[^0]In fact, this theorem gave a negative answer to a problem due to A. Bellow [3] and the proof is based on a general theorem often referred as Bourgain's entropy principle. Applying his principle Bourgain was able to deduce an analogous theorems for Riemann sums

$$
\frac{1}{n} \sum_{k=0}^{n-1} f\left(x+\frac{k}{n}\right)
$$

and for the operators

$$
\frac{1}{n} \sum_{k=1}^{n} f(k x)
$$

We note, that first theorem was earlier obtained by W. Rudin [8] by different technique, and the second by J. Marstrand in [7]. S. Kostyukovsky and A. Olevskii in [6], using the same entropy principle, extended Theorem 1 for general discrete sequences satisfying (1.1).

We found a new geometric proof for Theorem 1, as well as for the result from [6]. Moreover, the method allows to obtain a stronger divergence for the operators (1.2). So in this paper we prove

Theorem 2. If discrete measures μ_{n} satisfy (1.1), then there exists a set $E \subset \mathbb{T}$, such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{\mu_{n}} \mathbb{I}_{E}(x)=1, \quad \liminf _{n \rightarrow \infty} S_{\mu_{n}} \mathbb{I}_{E}(x)=0 \tag{1.3}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
The relations (1.3) for sequences of operators is called strong sweeping out property. These kind of operators are investigated by M. Akcoglu, A. Bellow, R. L. Jones, V. Losert, K.Reinhold-Larsson, M. Wierdl [1] and by M. Akcoglu, M. D. Ha, R. L. Jones [2]. In [1] strong sweeping out property for Riemann sums operators is obtained. In [2] authors prove a general version of Bourgain's entropy principle, which allows to deduce sweeping out properties for some operators, but the principle is not applicable for the operators $S_{\mu_{n}}$. The proof of Theorem 2 is based on Lemma 6. It will be obtained from Lemma 6 simply applying a general result proved in [5].

2. Proof of theorem

Let

$$
\begin{equation*}
X=\left\{x_{i}: i=1, \ldots, l\right\}, \quad 0<x_{1} \leq x_{2} \leq \ldots \leq x_{l}<1 \tag{2.1}
\end{equation*}
$$

be an arbitrary sequence of reals. Suppose

$$
Y=\left\{y_{i}: i=1, \ldots, \nu\right\}, \quad y_{1}<y_{2}<\ldots<y_{\nu}=x_{l}
$$

is a maximal independent (with respect to rational numbers) subset of X containing x_{l}. Then we have

$$
x_{k}=r_{1}^{(k)} y_{1}+\ldots+r_{\nu}^{(k)} y_{\nu}, \quad k=1,2, \ldots, l
$$

for some rational numbers $r_{i}^{(k)}$. Let p be the least common multiple of the denominators of $r_{i}^{(k)}$. Then we get

$$
\begin{equation*}
x_{k}=\frac{n_{1}^{(k)} y_{1}+n_{2}^{(k)} y_{2}+\ldots+n_{\nu}^{(k)} y_{\nu}}{p} \tag{2.2}
\end{equation*}
$$

for some $n_{i}^{(k)} \in \mathbb{Z}$. Denote

$$
\begin{equation*}
\tau=\max _{i, k}\left|n_{i}^{(k)}\right| \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
A_{m}= & \left\{y=\frac{n_{1} y_{1}+n_{2} y_{2}+\ldots+n_{\nu} y_{\nu}}{p} ; n_{i} \in \mathbb{Z}\right. \\
& \left.\left|n_{i}\right| \leq m \tau, i=1,2, \ldots, \nu-1,\left|n_{\nu}\right| \leq \nu m \tau+1\right\} . \tag{2.4}
\end{align*}
$$

Lemma 1. If (2.1) is an arbitrary sequence with $\nu \geq 2$, then for any interval $I \subset(-1,1)$ with $|I| \leq y_{\nu} / p$ we have

$$
\begin{equation*}
\#\left(A_{m} \cap I\right) \sim \gamma m^{\nu-1}|I| \text { as } m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $\gamma=(2 \tau)^{\nu-1} p / y_{\nu}$ is a constant depended on X.
Proof. It is easy to observe that

$$
\begin{aligned}
A_{m} \cap I= & \left\{y=\frac{n_{1} y_{1}+\ldots+n_{\nu} y_{\nu}}{p}:\right. \\
& n_{1} \frac{y_{1}}{y_{\nu}}+\ldots+n_{\nu-1} \frac{y_{\nu-1}}{y_{\nu}} \in \frac{p}{y_{\nu}} \cdot I+\mathbb{Z} \cap[-(\nu m \tau+1),(\nu m \tau+1)], \\
& \left.\left|n_{i}\right| \leq m \tau, i=1,2, \ldots, \nu-1\right\} .
\end{aligned}
$$

On the other hand if $y \in A_{m} \cap I$, then, by (2.4) we have

$$
\left|n_{1} \frac{y_{1}}{y_{\nu}}+\ldots+n_{\nu-1} \frac{y_{\nu-1}}{y_{\nu}}\right| \leq \nu m \tau
$$

Using also the relation $|I| \leq y_{\nu} / p$, we conclude

$$
\begin{align*}
A_{m} \cap I= & \left\{y=\frac{n_{1} y_{1}+\ldots+n_{\nu} y_{\nu}}{p}:\right. \\
& n_{1} \frac{y_{1}}{y_{\nu}}+\ldots+n_{\nu-1} \frac{y_{\nu-1}}{y_{\nu}} \in \frac{p}{y_{\nu}} \cdot I+\mathbb{Z}, \tag{2.6}\\
& \left.\left|n_{i}\right| \leq m \tau, i=1,2, \ldots, \nu-1\right\} .
\end{align*}
$$

Since y_{1}, \ldots, y_{ν} are independent, the number

$$
\theta=y_{\nu-1} / y_{\nu}
$$

is irrational. Denoting

$$
\begin{equation*}
E_{m}=\left\{n_{1} \frac{y_{1}}{y_{\nu}}+\ldots+n_{\nu-2} \frac{y_{\nu-2}}{y_{\nu}}:\left|n_{i}\right| \leq m \tau, i=1,2, \ldots, \nu-2\right\} \tag{2.7}
\end{equation*}
$$

from (2.6) we get

$$
\begin{equation*}
\frac{p}{y_{\nu}} \cdot\left(A_{m} \cap I\right)=\left(\left\{n_{\nu-1} \theta:\left|n_{\nu-1}\right| \leq m \tau\right\}+E_{m}\right) \cap\left(\frac{p}{y_{\nu}} \cdot I+\mathbb{Z}\right) \tag{2.8}
\end{equation*}
$$

It is well known that $n \theta+t, n=1,2, \ldots(n=-1,-2, \ldots)$, is a uniformly distributed sequence. This implies

$$
\begin{equation*}
\frac{\#\left(\left\{n_{\nu-1} \theta:\left|n_{\nu-1}\right| \leq m \tau\right\}+t\right) \cap\left(\frac{p}{y_{\nu}} \cdot I+\mathbb{Z}\right)}{2 m \tau} \rightarrow \frac{p|I|}{y_{\nu}}, \text { as } m \rightarrow \infty \tag{2.9}
\end{equation*}
$$

for any $t \in \mathbb{R}$ and the convergence is uniformly. Since $y_{1}, \ldots, y_{\nu-1}$ are independent from (2.7) we obtain

$$
\left|E_{m}\right|=(2 m \tau+1)^{\nu-2}
$$

Finally, using (2.8) and (2.9), we get

$$
\#\left(A_{m} \cap I\right)=\#\left(\frac{p}{y_{\nu}} \cdot\left(A_{m} \cap I\right)\right) \sim 2 m \tau \frac{p|I|}{y_{\nu}}\left|E_{m}\right| \sim(2 m \tau)^{\nu-1} \frac{p|I|}{y_{\nu}} .
$$

Lemma 2. For any set (2.1) we have

$$
\begin{equation*}
A_{m} \cap\left(-x_{l}, 0\right)+X \subset A_{m+1} \cap\left(-x_{l}, x_{l}\right), m=1,2, \ldots \tag{2.10}
\end{equation*}
$$

where A_{m} is defined in (2.4).
Proof. Take an arbitrary point $x \in \in A_{m} \cap\left(-x_{l}, 0\right)$. According to the definition of y_{1}, \ldots, y_{ν} we will have

$$
x=\frac{n_{1} y_{1}+n_{2} y_{2}+\ldots+n_{\nu} y_{\nu}}{p}
$$

Then suppose $x_{k} \in X$ has representation (2.2). Since $x \in\left(-x_{l}, 0\right)$ and $0<x_{k} \leq x_{l}$ we get

$$
\begin{equation*}
x+x_{k} \in\left(-x_{l}, x_{l}\right) \tag{2.11}
\end{equation*}
$$

On the other hand

$$
x+x_{k}=\frac{\left(n_{1}+n_{1}^{(k)}\right) y_{1}+\left(n_{2}+n_{2}^{(k)}\right) y_{2}+\ldots+\left(n_{\nu}+n_{\nu}^{(k)}\right) y_{\nu}}{p},
$$

and by (2.4) (2.3) we have

$$
\begin{align*}
& \left|n_{i}+n_{i}^{(k)}\right| \leq m \tau+\tau=(m+1) \tau, i=1,2, \ldots, \nu-1 \\
& \left|n_{\nu}+n_{\nu}^{(k)}\right| \leq \nu m \tau+1+\tau<\nu(m+1) \tau \tag{2.12}
\end{align*}
$$

This means $x+x_{k} \in A_{m+1}$. Combining (2.11) and (2.12) we get (2.10).
Lemma 3. For any numbers $\delta>0,0<\varepsilon<1 / 3$ and measure

$$
\begin{equation*}
\mu=\sum_{k=1}^{l} m_{k} \delta_{x_{k}}, m_{k}>0,0<x_{1}<x_{2}<\ldots<x_{l} \tag{2.13}
\end{equation*}
$$

there exists a real number λ, with $0<\lambda \leq \delta$, such that
(2.14) $S_{\mu} \mathbb{I}_{\{t:\{t / \lambda\}>\varepsilon\}}(x)$

$$
=\int_{\mathbb{T}} \mathbb{I}_{\{t:\{t / \lambda\}>\varepsilon\}}(x+t) d \mu(t)>(1-3 \varepsilon)|\mu|, \text { as }\{x / \lambda\}<\varepsilon .
$$

Proof. Denote

$$
\begin{equation*}
E_{t}=\{\lambda>0:\{t / \lambda\} \in(\varepsilon, 1-\varepsilon)\}, \quad t>0 \tag{2.15}
\end{equation*}
$$

It is clear

$$
E_{t}=\bigcup_{k=0}^{\infty}\left(\frac{t}{k+1-\varepsilon}, \frac{t}{k+\varepsilon}\right) .
$$

Hence if

$$
r=\min \left\{\frac{\varepsilon x_{1}}{2(1-\varepsilon)}, \delta\right\}
$$

and $t \geq x_{1}$, we obtain

$$
\begin{align*}
\left|E_{t} \cap[0, r]\right|> & \sum_{k>t / r}\left(\frac{t}{k+\varepsilon}-\frac{t}{k+1-\varepsilon}\right) \\
& =\sum_{k>t / r}\left(\frac{(1-2 \varepsilon) t}{(k+\varepsilon)(k+1-\varepsilon)}\right)>(1-2 \varepsilon) t \sum_{k>t / r} \frac{1}{(k+1)^{2}} \tag{2.16}\\
& >\frac{(1-2 \varepsilon) t r}{t+2 r}>\frac{(1-2 \varepsilon) x_{1} r}{x_{1}+2 r} \geq \frac{(1-2 \varepsilon) x_{1} r}{x_{1}+\varepsilon x_{1} /(1-\varepsilon)} \\
& =(1-2 \varepsilon)(1-\varepsilon) r>(1-3 \varepsilon) r .
\end{align*}
$$

Thus, denoting

$$
F=\{t>0:\{t\} \in(\varepsilon, 1-\varepsilon)\},
$$

by (2.15) we have

$$
E_{t}=\{\lambda>0: t \in \lambda F\}
$$

and therefore, using (2.16), we get

$$
\begin{align*}
\int_{0}^{r} S_{\mu} \mathbb{I}_{\lambda F}(0) d \lambda & =\int_{0}^{r} \int_{\mathbb{T}} \mathbb{I}_{\lambda F}(t) d \mu(t) d \lambda \\
& =\int_{\mathbb{T}} \int_{0}^{r} \mathbb{I}_{\lambda F}(t) d \lambda d \mu(t)=\int_{\mathbb{T}}\left|E_{t} \cap[0, r]\right| d \mu(t) \tag{2.17}\\
& =\sum_{i=1}^{l} m_{i}\left|E_{x_{i}} \cap[0, r]\right| \geq(1-3 \varepsilon) r|\mu| .
\end{align*}
$$

This implies

$$
\begin{equation*}
S_{\mu} \mathbb{I}_{\lambda F}(0)>(1-3 \varepsilon)|\mu| \tag{2.18}
\end{equation*}
$$

for some $0<\lambda \leq r \leq \delta$. From (2.18) it follows that

$$
\begin{equation*}
S_{\mu} \mathbb{I}_{\lambda F+x}(x)>(1-3 \varepsilon)|\mu|, \quad x \in \mathbb{R} . \tag{2.19}
\end{equation*}
$$

It is clear

$$
\begin{equation*}
\bigcup_{x:\{x / \lambda\}<\varepsilon}(\lambda F+x)=\{t:\{t / \lambda\}>\varepsilon\} . \tag{2.20}
\end{equation*}
$$

Thus, using (2.19) and (2.20), for any $x,\{x / \lambda\}<\varepsilon$, we obtain

$$
S_{\mu} \mathbb{I}_{\{t:\{t / \lambda\}>\varepsilon\}}(x) \geq S_{\mu} \mathbb{I}_{\lambda F+x}(x)>(1-3 \varepsilon)|\mu|
$$

This implies (2.14) and lemma is proved.
Lemma 4. For any measure (2.13) and number $0<\varepsilon<1 / 3$ there exist finite sets $E, G \subset\left(-x_{l}, x_{l}\right)$ such that

$$
\begin{align*}
& E \cap G=\varnothing, \quad \# E>\frac{\varepsilon \# G}{4} \tag{2.21}\\
& S_{\mu} \mathbb{I}_{G}(x)>(1-3 \varepsilon)|\mu|, \quad x \in E . \tag{2.22}
\end{align*}
$$

Proof. Denote

$$
\begin{equation*}
U_{\lambda}=\left\{t \in\left(-x_{l}, 0\right):\{t / \lambda\}<\varepsilon\right\}, \quad V_{\lambda}=\left\{t \in\left(-x_{l}, x_{l}\right):\{t / \lambda\}>\varepsilon\right\} \tag{2.23}
\end{equation*}
$$

It is clear $\left|U_{\lambda}\right| \rightarrow \varepsilon x_{l}$ and $\left|V_{\lambda}\right| \rightarrow 2(1-\varepsilon) x_{l}$ as $\lambda \rightarrow 0$. On the other hand, by Lemma 3 , for λ small enough we have (2.14). So we can fix λ satisfying (2.14) and the conditions

$$
\begin{equation*}
0<\lambda<x_{1}, \quad\left|V_{\lambda}\right|<2 x_{l}, \quad\left|U_{\lambda}\right|>\frac{\varepsilon x_{l}}{2} \tag{2.24}
\end{equation*}
$$

Denote

$$
\begin{equation*}
E_{m}=A_{m} \cap U_{\lambda}, \quad G_{m}=A_{m+1} \cap V_{\lambda} \tag{2.25}
\end{equation*}
$$

Since the sets U_{λ} and V_{λ} are finite union of intervals in $(-1,1)$, according to Lemma 1 we have

$$
\# E_{m} \sim \gamma m^{\mu-1}\left|U_{\lambda}\right|, \quad \# G_{m} \sim \gamma m^{\mu-1}\left|V_{\lambda}\right|
$$

as $m \rightarrow \infty$. Hence for an integer m large enough, denoting

$$
E=E_{m}, \quad G=G_{m}
$$

and taking into account (2.24) we will have

$$
\begin{equation*}
\# E>\frac{\varepsilon \# G}{4} \tag{2.26}
\end{equation*}
$$

Besides, since $U_{\lambda} \cap V_{\lambda}=\varnothing$ we have $E \cap G=\varnothing$ and so (2.21). To show (2.22) we take an arbitrary $x \in E$. Because of (2.23) and (2.25)we will have

$$
x \in A_{m} \cap\left(-x_{l}, 0\right), \quad\{x / \lambda\}<\varepsilon .
$$

From Lemma 2 we get $x+X \in A_{m+1} \cap\left(-x_{l}, x_{l}\right)$. Thus we get

$$
S_{\mu} \mathbb{I}_{G}(x)=S_{\mu} \mathbb{I}_{V_{\lambda}}(x)=S_{\mu} \mathbb{I}_{\{t:\{\lambda t\}>\varepsilon\}}(x)
$$

and therefore, since we have $\{x / \lambda\}<\varepsilon$, from Lemma 3 we obtain (2.22).
For an arbitrary nonempty finite set $A \subset \mathbb{R} \backslash\{0\}$ we define

$$
(A)= \begin{cases}\min \{|x-y|: x, y \in A, x \neq y\}, & \text { if } \# A \geq 2 \\ |x|, & \text { if } A=\{x\}\end{cases}
$$

Lemma 5. Let $A_{k} \subset \mathbb{R} \backslash\{0\}, k=1,2, \ldots$, be a sequence of nonempty finite sets such that and

$$
\begin{equation*}
\max A_{k+1} \leq \frac{1}{4} \cdot\left(A_{k}\right), \quad k=1,2, \ldots \tag{2.27}
\end{equation*}
$$

Then the equality

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{n}=y_{1}+y_{2}+\ldots+y_{n}, \quad x_{i}, y_{i} \in A_{i}, i=1,2, \ldots, n \tag{2.28}
\end{equation*}
$$

implies $x_{i}=y_{i}, i=1,2, \ldots, n$.
Proof. Suppose to the contrary in (2.28) we have $x_{i}=y_{i}, i<k$, and $x_{k} \neq y_{k}$. Hence we get

$$
\begin{equation*}
x_{k}+\ldots+x_{n}=y_{k}+\ldots+y_{n} . \tag{2.29}
\end{equation*}
$$

From (2.27) and the relation

$$
\max A_{i} \leq \frac{1}{4} \cdot\left(A_{i-1}\right) \leq \frac{1}{2} \max A_{i-1}
$$

it follows that

$$
\begin{align*}
\left|x_{i}\right|,\left|y_{i}\right| \leq \max A_{i} \leq \frac{1}{2} \max A_{i-1} & \leq \ldots \tag{2.30}\\
& \leq \frac{1}{2^{i-k-1}} \max A_{k+1} \leq \frac{\left(A_{k}\right)}{2^{i-k+1}} \leq \frac{\left|x_{k}-y_{k}\right|}{2^{i-k+1}}
\end{align*}
$$

for any $i=k+1, k+2, \ldots, n$. Thus, using (2.29) and (2.30), we get

$$
\begin{aligned}
&\left|x_{k}-y_{k}\right| \leq\left|x_{k+1}\right|+\left|y_{k+1}\right|+\ldots+\left|x_{n}\right|+\left|y_{n}\right| \\
& \qquad<2\left|x_{k}-y_{k}\right| \sum_{i=1}^{\infty} \frac{1}{2^{i+1}}=\left|x_{k}-y_{k}\right|
\end{aligned}
$$

which is a contradiction and so $x_{i}=y_{i}$ for all $i=1,2, \ldots, n$.
Lemma 6. Let μ_{n} be a sequence of measures, satisfying the condition (1.1). Then for any numbers $\Delta>0$ and $0<\delta<1$ there exists a measurable set $A \subset \mathbb{T},|A|>0$, such that

$$
\begin{equation*}
\left|\left\{x \in \mathbb{T}: \sup _{n \in \mathbb{N}} S_{\mu_{n}} \mathbb{I}_{A}(x)>\delta\right\}\right|>\Delta \cdot|A| \tag{2.31}
\end{equation*}
$$

Proof. It is easy to observe that can be supposed each $\operatorname{supp} \mu_{n}$ is a finite set and moreover

$$
\mu_{n}=\sum_{i=l(n-1)+1}^{l(n)} m_{i} \delta_{x_{i}}, \quad n=1,2, \ldots
$$

where $0=l(0)<l(1)<l(2)<\ldots$ are integers, $1>x_{i} \searrow 0$ and $m_{i}>0, i=1,2, \ldots$. Applying Lemma 4 with $\varepsilon=(1-\delta) / 3$ we define finite sets E_{n} and G_{n} with

$$
\begin{align*}
& E_{n}, G_{n} \subset\left(-x_{l(n)}, x_{l(n)}\right), \quad E_{n} \cap G_{n}=\varnothing \tag{2.32}\\
& \#\left(E_{n}\right)>\frac{(1-\delta) \#\left(G_{n}\right)}{12} \tag{2.33}\\
& S_{\mu_{n}} \mathbb{I}_{G_{n}}(x)>\delta, \quad x \in E_{n} . \tag{2.34}
\end{align*}
$$

Clearly we can chose a sequence of integers $n_{k}, k=1,2, \ldots$, satisfying

$$
\begin{equation*}
\max \left(E_{n_{k+1}} \cap G_{n_{k+1}}\right)<\frac{\left(E_{n_{k}} \cap G_{n_{k}}\right)}{4}, \quad k=1,2, \ldots \tag{2.35}
\end{equation*}
$$

So the sequence of sets $A_{k}=E_{n_{k}} \cup G_{n_{k}}$ satisfies the condition (2.27). Fix an integer

$$
\begin{equation*}
m>\frac{12 \Delta}{1-\delta} \tag{2.36}
\end{equation*}
$$

and denote

$$
\begin{align*}
& G=G_{n_{1}}+G_{n_{2}}+\ldots+G_{n_{m}}, \tag{2.37}\\
& F_{k}=\sum_{i \neq k} G_{n_{i}}+E_{n_{k}}, \quad E=\cup_{i=1}^{n} F_{i} . \tag{2.38}
\end{align*}
$$

Notice that the sets F_{k} are mutually disjoint. Indeed, suppose to the contrary $F_{p} \cap F_{q} \neq \varnothing, p \neq q$, and $x \in F_{p} \cap F_{q}$. We then have

$$
\begin{aligned}
& x=x_{1}+\ldots+x_{m}=y_{1}+\ldots+y_{m}, \text { where } \\
& x_{i}, y_{i} \in A_{i}, \quad x_{p} \in E_{n_{p}}, y_{p} \in G_{n_{p}},
\end{aligned}
$$

Since $G_{n_{p}} \cap E_{n_{p}}=\varnothing$ (see (2.32)), we have $x_{n_{p}} \neq y_{n_{p}}$. On the other hand because $x_{i}, y_{i} \in A_{i}$ and the family A_{i} satisfies the hypothesis of Lemma 5 we get $x_{i}=y_{i}$ for all $i=1,2, \ldots, m$. This is a contradiction and so F_{k} are mutually disjoint. Similarly we can prove that any point $x \in G$ has unique representation

$$
x=x_{1}+\ldots+x_{m}, \quad x_{i} \in G_{n_{i}}, i=1,2, \ldots, m
$$

This implies

$$
\# G=\prod_{i=1}^{m} \#\left(G_{n_{i}}\right)
$$

By the same argument, using (2.33), we get

$$
\# F_{k}=\prod_{i \neq k} \#\left(G_{n_{i}}\right) \cdot \#\left(E_{n_{k}}\right) \geq \prod_{i \neq k} \#\left(G_{n_{i}}\right) \cdot \frac{(1-\delta) \#\left(G_{n_{k}}\right)}{12}=\frac{(1-\delta) \# G}{12}
$$

Combining this and (2.36) we conclude

$$
\begin{equation*}
\# E=\sum_{k=1}^{m} \# F_{k}>\frac{m(1-\delta) \# G}{12}>\Delta \cdot \# G \tag{2.39}
\end{equation*}
$$

To prove (2.31), we take an arbitrary $x \in E$. We have $x \in F_{k}$ for some $1 \leq k \leq m$ and so

$$
x=x_{1}+\ldots+x_{m}, \quad x_{i} \in G_{n_{i}}, i \neq k, x_{k} \in E_{n_{k}}
$$

From (2.37) it follows that $G_{n_{k}} \subset G-\sum_{i \neq k} x_{i}$. Therefore, by (2.34), we get

$$
S_{\mu_{n_{k}}} \mathbb{I}_{G}(x)=S_{\mu_{n_{k}}} \mathbb{I}_{G-\sum_{i \neq k} x_{i}}\left(x_{k}\right) \geq S_{\mu_{n_{k}}} \mathbb{I}_{G_{n_{k}}}\left(x_{k}\right)>\delta
$$

Hence we have

$$
\begin{equation*}
\sup _{k} S_{\mu_{n_{k}}} \mathbb{I}_{G}(x)>\delta, \quad x \in E, \tag{2.40}
\end{equation*}
$$

Finally we let $\varepsilon=(G \cup E) / 2$ and denote

$$
A=G+(-\varepsilon, \varepsilon), \quad B=E+(-\varepsilon, \varepsilon)
$$

It is clear that the intervals $t+(-\varepsilon, \varepsilon), t \in G \cup E$, are pairwise disjoint. Hence

$$
|A|=2 \varepsilon \# G, \quad|B|=2 \varepsilon \# E,
$$

and so, by (2.39) we conclude

$$
\begin{equation*}
|B|>\Delta|A| \tag{2.41}
\end{equation*}
$$

Then for an arbitrary $x \in B$ we have $x=t+y$ where $t \in E$ and $|y|<\varepsilon$. Hence, using (2.40), we get

$$
\begin{equation*}
\sup _{k} S_{\mu_{n_{k}}} \mathbb{I}_{A}(x) \geq \sup _{k} S_{\mu_{n_{k}}} \mathbb{I}_{G+y}(x)=\sup _{k} S_{\mu_{n_{k}}} \mathbb{I}_{G}(t)>\delta, \quad x \in B . \tag{2.42}
\end{equation*}
$$

Collecting (2.41) and (2.42) we obtain (2.31). Lemma is proved.
Definition. A sequence of linear operators

$$
U_{n}: L^{1}(\mathbb{T}) \rightarrow\{\text { measurable functions on } \mathbb{T}\}
$$

is said to be strong sweeping out, if given $\varepsilon>0$ there is a set E with $m E<\varepsilon$ such that $\lim \sup _{n \rightarrow \infty} U_{n} \mathbb{I}_{E}(x)=1$ and $\liminf _{n \rightarrow \infty} U_{n} \mathbb{I}_{E}(x)=0$ a.e..

To prove the theorem we need to show that the sequence $S_{\mu_{n}}$ is strong sweeping out. The following theorem gives a sufficient condition for a sequence of operators to be strong sweeping out.

Theorem 3 ([5], §7, Theorem 6). If the sequence of positive translation invariant operators U_{n} satisfies the conditions
a: $U_{n}\left(\mathbb{I}_{\mathbb{T}}\right) \rightarrow 1$ as $n \rightarrow \infty$,
b: for any $\varepsilon>0$ and $n \in \mathbb{N}$ there exists a number $\delta=\delta(\varepsilon, n)>0$, such that if $G \subset \mathbb{T}$ and $m(G)<\delta$ then

$$
\begin{equation*}
m\left\{x \in \mathbb{T}: U_{n} \mathbb{I}_{G}(x)>\varepsilon\right\}<\varepsilon \tag{2.43}
\end{equation*}
$$

c: for any $0<\delta<1$ we have

$$
\sup _{G \subset \mathbb{T},|G|>0} \frac{\left|\left\{x \in X: \sup _{n \in \mathbb{N}} U_{n} \mathbb{I}_{G}(x) \geq \delta\right\}\right|}{|G|}=\infty
$$

then it is strong sweeping out.
Observe, that each $S_{\mu_{n}}$ is positive translation invariant. The conditions (a) follows from (1.1). To show (b) we simply note

$$
\int_{\mathbb{T}} S_{\mu_{n}} \mathbb{I}_{G}(x) d x=\int_{\mathbb{T}} \int_{\mathbb{T}} \mathbb{I}_{G}(x+t) d t d x=\left|\mu_{n}\right| \cdot|G|
$$

and therefore, by Chebishev inequality, we will have (2.43) provided $|G|<\delta=$ $\left|\mu_{n}\right| / \varepsilon$. The condition (c) immediately follows from Lemma 6. Theorem is proved

References

1. M. Akcoglu, A. Bellow, R. L. Jones, V. Losert, K. Reinhold-Larsson, and M. Wierdl, The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers, and related matters, Ergodic Theory and Dynamical Systems, 16(1996), 207-253.
2. M. Akcoglu, M. D. Ha, and R. L. Jones, Sweeping out properties for operator sequences, Canadian J. Math., 49(1997), 3-23.
3. A. Bellow, Two problems, Proc. Oberwolfach Conference on Measure Theory (June 1987), Springer Lecture Notes in Math., 945, 1987.
4. J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math, 62(1988), 79-97.
5. G. A. Karagulyan, On Riemann sums and maximal functions in \mathbb{R}^{n}, (English. Russian original) Sb. Math. 200, No. 4, 521-548 (2009); translation from Mat. Sb. 200, No. 4, 53-82 (2009).
6. S. Kostyukovsky and A. Olevskii, Compactess of families of convolution operators with respect to convergence almost everywhere, Real Analysis Exchange, 2004-2005, 30, No 2,p. 755-766.
7. J. M. Marstrand, On Kinchine's conjecture about strong uniform distribution, Proc. London Math. Soc., 21(1970), 540-556.
8. W.Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc., 15, 1964, p. 321-324.

Institute of Mathematics of Armenian National Academy of Sciences, Baghramian Ave.- 24b, 0019, Yerevan, Armenia

E-mail address: g.karagulyan@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 42B25.
 Key words and phrases. discrete measures, bounded entropy theorem, sweeping out property, Bellow problem.

