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ON THE SWEEPING OUT PROPERTY FOR CONVOLUTION
OPERATORS OF DISCRETE MEASURES

G. A. KARAGULYAN

Abstract. Let µn be a sequence of discrete measures on the unit circle T =

R/Z with µn(0) = 0, and µn((−δ, δ)) → 1, as n → ∞. We prove that the

sequence of convolution operators (f ∗µn)(x) is strong sweeping out, i.e. there
exists a set E ⊂ T such that

lim sup
n→∞

(IE ∗ µn)(x) = 1, lim inf
n→∞

(IE ∗ µn)(x) = 0,

almost everywhere on T.

1. Introduction

We consider bounded discrete measures

µ =
∑
k

mkδxk ,
∑
k

mk <∞,

on the circle T = R/Z, where X = {xk} is a finite or countable set in T and δxk is
Dirac measure at xk. Denote

Sµf(x) =
∫

R
f(x+ t)dµ(t).

Let µn be a sequence of discrete measures satisfying

(1.1) µn(0) = 0, µn((−δ, δ))→ 1, as n→∞,

for any 0 < δ ≤ 1/2. It is clear if f ∈ L1(T) is continuous at x ∈ T then

(1.2) Sµnf(x)→ f(x),

and the convergence is uniformly if f ∈ C(T). The almost everywhere convergence
problem in the case of general f ∈ L1(T) is not trivial. J. Bourgain in [4] proved

Theorem 1 (J. Bourgain). If xk ↘ 0 as k →∞, and

µn =
1
n

n∑
k=1

δxk ,

then there exists a function f ∈ L∞, such that Sµnf(x) diverges on a set of positive
measure.

2000 Mathematics Subject Classification. 42B25.
Key words and phrases. discrete measures, bounded entropy theorem, sweeping out property,

Bellow problem.

c©2009 American Mathematical Society

1



2 G. A. KARAGULYAN

In fact, this theorem gave a negative answer to a problem due to A. Bellow
[3] and the proof is based on a general theorem often referred as Bourgain’s en-
tropy principle. Applying his principle Bourgain was able to deduce an analogous
theorems for Riemann sums

1
n

n−1∑
k=0

f

(
x+

k

n

)
,

and for the operators
1
n

n∑
k=1

f(kx).

We note, that first theorem was earlier obtained by W. Rudin [8] by different
technique, and the second by J. Marstrand in [7]. S. Kostyukovsky and A. Olevskii
in [6], using the same entropy principle, extended Theorem 1 for general discrete
sequences satisfying (1.1).

We found a new geometric proof for Theorem 1, as well as for the result from
[6]. Moreover, the method allows to obtain a stronger divergence for the operators
(1.2). So in this paper we prove

Theorem 2. If discrete measures µn satisfy (1.1), then there exists a set E ⊂ T,
such that

(1.3) lim sup
n→∞

SµnIE(x) = 1, lim inf
n→∞

SµnIE(x) = 0

almost everywhere on T.

The relations (1.3) for sequences of operators is called strong sweeping out prop-
erty. These kind of operators are investigated by M. Akcoglu, A. Bellow, R. L.
Jones, V. Losert, K.Reinhold-Larsson, M. Wierdl [1] and by M. Akcoglu, M. D. Ha,
R. L. Jones [2]. In [1] strong sweeping out property for Riemann sums operators
is obtained. In [2] authors prove a general version of Bourgain’s entropy princi-
ple, which allows to deduce sweeping out properties for some operators, but the
principle is not applicable for the operators Sµn . The proof of Theorem 2 is based
on Lemma 6. It will be obtained from Lemma 6 simply applying a general result
proved in [5].

2. Proof of theorem

Let

(2.1) X = {xi : i = 1, . . . , l}, 0 < x1 ≤ x2 ≤ . . . ≤ xl < 1,

be an arbitrary sequence of reals. Suppose

Y = {yi : i = 1, . . . , ν}, y1 < y2 < . . . < yν = xl

is a maximal independent (with respect to rational numbers) subset of X containing
xl. Then we have

xk = r
(k)
1 y1 + . . .+ r(k)ν yν , k = 1, 2, . . . , l,

for some rational numbers r(k)i . Let p be the least common multiple of the denom-
inators of r(k)i . Then we get

(2.2) xk =
n

(k)
1 y1 + n

(k)
2 y2 + . . .+ n

(k)
ν yν

p
,
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for some n(k)
i ∈ Z. Denote

(2.3) τ = max
i,k
|n(k)
i |,

and

(2.4)
Am =

{
y = n1y1+n2y2+...+nνyν

p ; ni ∈ Z,

|ni| ≤ mτ, i = 1, 2, . . . , ν − 1, |nν | ≤ νmτ + 1
}
.

Lemma 1. If (2.1) is an arbitrary sequence with ν ≥ 2, then for any interval
I ⊂ (−1, 1) with |I| ≤ yν/p we have

(2.5) #
(
Am ∩ I

)
∼ γmν−1|I| as m→∞,

where γ = (2τ)ν−1p/yν is a constant depended on X.

Proof. It is easy to observe that

Am ∩ I =
{
y =

n1y1 + . . .+ nνyν
p

:

n1
y1
yν

+ . . .+ nν−1
yν−1

yν
∈ p

yν
· I + Z ∩ [−(νmτ + 1), (νmτ + 1)],

|ni| ≤ mτ, i = 1, 2, . . . , ν − 1
}
.

On the other hand if y ∈ Am ∩ I, then, by (2.4) we have

|n1
y1
yν

+ . . .+ nν−1
yν−1

yν
| ≤ νmτ.

Using also the relation |I| ≤ yν/p, we conclude

(2.6)

Am ∩ I =
{
y =

n1y1 + . . .+ nνyν
p

:

n1
y1
yν

+ . . .+ nν−1
yν−1

yν
∈ p

yν
· I + Z,

|ni| ≤ mτ, i = 1, 2, . . . , ν − 1
}
.

Since y1, . . . , yν are independent, the number

θ = yν−1/yν

is irrational. Denoting

(2.7) Em =
{
n1
y1
yν

+ . . .+ nν−2
yν−2

yν
: |ni| ≤ mτ, i = 1, 2, . . . , ν − 2

}
from (2.6) we get

(2.8)
p

yν
·
(
Am ∩ I

)
=
(
{nν−1θ : |nν−1| ≤ mτ}+ Em

)
∩
( p
yν
· I + Z

)
.

It is well known that nθ+t, n = 1, 2, . . . (n = −1,−2, . . .), is a uniformly distributed
sequence. This implies

(2.9)
#
(
{nν−1θ : |nν−1| ≤ mτ}+ t

)
∩
(
p
yν
· I + Z

)
2mτ

→ p|I|
yν

, as m→∞,
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for any t ∈ R and the convergence is uniformly. Since y1, . . . , yν−1 are independent
from (2.7) we obtain

|Em| = (2mτ + 1)ν−2.

Finally, using (2.8) and (2.9), we get

#
(
Am ∩ I

)
= #

(
p

yν
·
(
Am ∩ I

))
∼ 2mτ

p|I|
yν
|Em| ∼ (2mτ)ν−1 p|I|

yν
.

�

Lemma 2. For any set (2.1) we have

(2.10) Am ∩ (−xl, 0) +X ⊂ Am+1 ∩ (−xl, xl), m = 1, 2, . . . ,

where Am is defined in (2.4).

Proof. Take an arbitrary point x ∈∈ Am ∩ (−xl, 0). According to the definition of
y1, . . . , yν we will have

x =
n1y1 + n2y2 + . . .+ nνyν

p
,

Then suppose xk ∈ X has representation (2.2). Since x ∈ (−xl, 0) and 0 < xk ≤ xl
we get

(2.11) x+ xk ∈ (−xl, xl).
On the other hand

x+ xk =
(n1 + n

(k)
1 )y1 + (n2 + n

(k)
2 )y2 + . . .+ (nν + n

(k)
ν )yν

p
,

and by (2.4) (2.3) we have

(2.12)
|ni + n

(k)
i | ≤ mτ + τ = (m+ 1)τ, i = 1, 2, . . . , ν − 1,

|nν + n(k)
ν | ≤ νmτ + 1 + τ < ν(m+ 1)τ.

This means x+ xk ∈ Am+1. Combining (2.11) and (2.12) we get (2.10). �

Lemma 3. For any numbers δ > 0, 0 < ε < 1/3 and measure

(2.13) µ =
l∑

k=1

mkδxk , mk > 0, 0 < x1 < x2 < . . . < xl,

there exists a real number λ, with 0 < λ ≤ δ, such that

(2.14) SµI{t: {t/λ}>ε}(x)

=
∫

T
I{t: {t/λ}>ε}(x+ t)dµ(t) > (1− 3ε)|µ|, as {x/λ} < ε.

Proof. Denote

(2.15) Et = {λ > 0 : {t/λ} ∈ (ε, 1− ε)}, t > 0.

It is clear

Et =
∞⋃
k=0

(
t

k + 1− ε
,

t

k + ε

)
.

Hence if

r = min
{

εx1

2(1− ε)
, δ

}
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and t ≥ x1, we obtain

(2.16)

|Et ∩ [0, r]| >
∑
k>t/r

(
t

k + ε
− t

k + 1− ε

)

=
∑
k>t/r

(
(1− 2ε)t

(k + ε)(k + 1− ε)

)
> (1− 2ε)t

∑
k>t/r

1
(k + 1)2

>
(1− 2ε)tr
t+ 2r

>
(1− 2ε)x1r

x1 + 2r
≥ (1− 2ε)x1r

x1 + εx1/(1− ε)
= (1− 2ε)(1− ε)r > (1− 3ε)r.

Thus, denoting
F = {t > 0 : {t} ∈ (ε, 1− ε)},

by (2.15) we have
Et = {λ > 0 : t ∈ λF}

and therefore, using (2.16), we get

(2.17)

∫ r

0

SµIλF (0)dλ =
∫ r

0

∫
T

IλF (t)dµ(t)dλ

=
∫

T

∫ r

0

IλF (t)dλdµ(t) =
∫

T
|Et ∩ [0, r]|dµ(t)

=
l∑
i=1

mi|Exi ∩ [0, r]| ≥ (1− 3ε)r|µ|.

This implies

(2.18) SµIλF (0) > (1− 3ε)|µ|

for some 0 < λ ≤ r ≤ δ. From (2.18) it follows that

(2.19) SµIλF+x(x) > (1− 3ε)|µ|, x ∈ R.

It is clear

(2.20)
⋃

x: {x/λ}<ε

(λF + x) = {t : {t/λ} > ε}.

Thus, using (2.19) and (2.20), for any x, {x/λ} < ε, we obtain

SµI{t: {t/λ}>ε}(x) ≥ SµIλF+x(x) > (1− 3ε)|µ|.

This implies (2.14) and lemma is proved. �

Lemma 4. For any measure (2.13)and number 0 < ε < 1/3 there exist finite sets
E,G ⊂ (−xl, xl) such that

E ∩G = ∅, #E >
ε#G

4
,(2.21)

SµIG(x) > (1− 3ε)|µ|, x ∈ E.(2.22)

Proof. Denote

(2.23) Uλ = {t ∈ (−xl, 0) : {t/λ} < ε}, Vλ = {t ∈ (−xl, xl) : {t/λ} > ε}
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It is clear |Uλ| → εxl and |Vλ| → 2(1 − ε)xl as λ → 0. On the other hand, by
Lemma 3, for λ small enough we have (2.14). So we can fix λ satisfying (2.14) and
the conditions

(2.24) 0 < λ < x1, |Vλ| < 2xl, |Uλ| >
εxl
2
.

Denote

(2.25) Em = Am ∩ Uλ, Gm = Am+1 ∩ Vλ.

Since the sets Uλ and Vλ are finite union of intervals in (−1, 1), according to Lemma
1 we have

#Em ∼ γmµ−1|Uλ|, #Gm ∼ γmµ−1|Vλ|
as m→∞. Hence for an integer m large enough, denoting

E = Em, G = Gm

and taking into account (2.24) we will have

(2.26) #E >
ε#G

4
.

Besides, since Uλ ∩ Vλ = ∅ we have E ∩ G = ∅ and so (2.21). To show (2.22) we
take an arbitrary x ∈ E. Because of (2.23) and (2.25)we will have

x ∈ Am ∩ (−xl, 0), {x/λ} < ε.

From Lemma 2 we get x+X ∈ Am+1 ∩ (−xl, xl). Thus we get

SµIG(x) = SµIVλ(x) = SµI{t: {λt}>ε}(x)

and therefore, since we have {x/λ} < ε, from Lemma 3 we obtain (2.22). �

For an arbitrary nonempty finite set A ⊂ R \ {0} we define

(.A) =
{

min{|x− y| : x, y ∈ A, x 6= y}, if #A ≥ 2,
|x|, if A = {x}.

Lemma 5. Let Ak ⊂ R \ {0}, k = 1, 2, . . ., be a sequence of nonempty finite sets
such that and

(2.27) maxAk+1 ≤
1
4
· (.Ak), k = 1, 2, . . . .

Then the equality

(2.28) x1 + x2 + . . .+ xn = y1 + y2 + . . .+ yn, xi, yi ∈ Ai, i = 1, 2, . . . , n

implies xi = yi, i = 1, 2, . . . , n.

Proof. Suppose to the contrary in (2.28) we have xi = yi, i < k, and xk 6= yk.
Hence we get

(2.29) xk + . . .+ xn = yk + . . .+ yn.

From (2.27) and the relation

maxAi ≤
1
4
· (.Ai−1) ≤ 1

2
maxAi−1
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it follows that

(2.30) |xi|, |yi| ≤ maxAi ≤
1
2

maxAi−1 ≤ . . .

≤ 1
2i−k−1

maxAk+1 ≤
(.Ak)

2i−k+1
≤ |xk − yk|

2i−k+1

for any i = k + 1, k + 2, . . . , n. Thus, using (2.29) and (2.30), we get

|xk − yk| ≤ |xk+1|+ |yk+1|+ . . .+ |xn|+ |yn|

< 2|xk − yk|
∞∑
i=1

1
2i+1

= |xk − yk|

which is a contradiction and so xi = yi for all i = 1, 2, . . . , n. �

Lemma 6. Let µn be a sequence of measures, satisfying the condition (1.1). Then
for any numbers ∆ > 0 and 0 < δ < 1 there exists a measurable set A ⊂ T, |A| > 0,
such that

(2.31) |{x ∈ T : sup
n∈N

SµnIA(x) > δ}| > ∆ · |A|.

Proof. It is easy to observe that can be supposed each suppµn is a finite set and
moreover

µn =
l(n)∑

i=l(n−1)+1

miδxi , n = 1, 2, . . . ,

where 0 = l(0) < l(1) < l(2) < . . . are integers, 1 > xi ↘ 0 and mi > 0, i = 1, 2, . . ..
Applying Lemma 4 with ε = (1− δ)/3 we define finite sets En and Gn with

En, Gn ⊂ (−xl(n), xl(n)), En ∩Gn = ∅,(2.32)

#(En) >
(1− δ)#(Gn)

12
,(2.33)

SµnIGn(x) > δ, x ∈ En.(2.34)

Clearly we can chose a sequence of integers nk, k = 1, 2, . . ., satisfying

(2.35) max(Enk+1 ∩Gnk+1) <
(.Enk ∩Gnk)

4
, k = 1, 2, . . . .

So the sequence of sets Ak = Enk∪Gnk satisfies the condition (2.27). Fix an integer

(2.36) m >
12∆
1− δ

,

and denote

G = Gn1 +Gn2 + . . .+Gnm ,(2.37)

Fk =
∑
i 6=k

Gni + Enk , E = ∪ni=1Fi.(2.38)

Notice that the sets Fk are mutually disjoint. Indeed, suppose to the contrary
Fp ∩ Fq 6= ∅, p 6= q, and x ∈ Fp ∩ Fq. We then have

x = x1 + . . .+ xm = y1 + . . .+ ym, where
xi, yi ∈ Ai, xp ∈ Enp , yp ∈ Gnp ,
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Since Gnp ∩ Enp = ∅ (see (2.32)), we have xnp 6= ynp . On the other hand because
xi, yi ∈ Ai and the family Ai satisfies the hypothesis of Lemma 5 we get xi = yi
for all i = 1, 2, . . . ,m. This is a contradiction and so Fk are mutually disjoint.
Similarly we can prove that any point x ∈ G has unique representation

x = x1 + . . .+ xm, xi ∈ Gni , i = 1, 2, . . . ,m.

This implies

#G =
m∏
i=1

#(Gni).

By the same argument, using (2.33), we get

#Fk =
∏
i 6=k

#(Gni) ·#(Enk) ≥
∏
i 6=k

#(Gni) ·
(1− δ)#(Gnk)

12
=

(1− δ)#G
12

.

Combining this and (2.36) we conclude

(2.39) #E =
m∑
k=1

#Fk >
m(1− δ)#G

12
> ∆ ·#G.

To prove (2.31), we take an arbitrary x ∈ E. We have x ∈ Fk for some 1 ≤ k ≤ m
and so

x = x1 + . . .+ xm, xi ∈ Gni , i 6= k, xk ∈ Enk .
From (2.37) it follows that Gnk ⊂ G−

∑
i 6=k xi. Therefore, by (2.34), we get

Sµnk IG(x) = Sµnk IG−∑
i6=k xi

(xk) ≥ Sµnk IGnk (xk) > δ.

Hence we have

(2.40) sup
k
Sµnk IG(x) > δ, x ∈ E,

Finally we let ε = (.G ∪ E)/2 and denote

A = G+ (−ε, ε), B = E + (−ε, ε).
It is clear that the intervals t+ (−ε, ε), t ∈ G ∪ E, are pairwise disjoint. Hence

|A| = 2ε#G, |B| = 2ε#E,

and so, by (2.39) we conclude

(2.41) |B| > ∆|A|.
Then for an arbitrary x ∈ B we have x = t + y where t ∈ E and |y| < ε. Hence,
using (2.40), we get

(2.42) sup
k
Sµnk IA(x) ≥ sup

k
Sµnk IG+y(x) = sup

k
Sµnk IG(t) > δ, x ∈ B.

Collecting (2.41) and (2.42) we obtain (2.31). Lemma is proved. �

Definition. A sequence of linear operators

Un : L1(T)→ { measurable functions on T}.
is said to be strong sweeping out, if given ε > 0 there is a set E with mE < ε such
that lim supn→∞ UnIE(x) = 1 and lim infn→∞ UnIE(x) = 0 a.e..

To prove the theorem we need to show that the sequence Sµn is strong sweeping
out. The following theorem gives a sufficient condition for a sequence of operators
to be strong sweeping out.
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Theorem 3 ([5], §7, Theorem 6). If the sequence of positive translation invariant
operators Un satisfies the conditions

a: Un(IT)→ 1 as n→∞,
b: for any ε > 0 and n ∈ N there exists a number δ = δ(ε, n) > 0, such that

if G ⊂ T and m(G) < δ then

(2.43) m{x ∈ T : UnIG(x) > ε} < ε,

c: for any 0 < δ < 1 we have

sup
G⊂T, |G|>0

|{x ∈ X : supn∈N UnIG(x) ≥ δ}|
|G|

=∞.

then it is strong sweeping out.

Observe, that each Sµn is positive translation invariant. The conditions (a)
follows from (1.1). To show (b) we simply note∫

T
SµnIG(x)dx =

∫
T

∫
T

IG(x+ t)dtdx = |µn| · |G|,

and therefore, by Chebishev inequality, we will have (2.43) provided |G| < δ =
|µn|/ε. The condition (c) immediately follows from Lemma 6. Theorem is proved
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