
Identifying Changed or Sick Resources from Logs

Ashot N. Harutyunyan, Arnak V. Poghosyan, Naira M. Grigoryan, Nicholas Kushmerick, and Harutyun Beybutyan

Office of the CTO of Cloud Management

VMware

{aharutyunyan;apoghosyan;ngrigoryan;nicholask;hbeybutyan}@vmware.com

Abstract—The identification of important changes in a

complex distributed system is a challenging data science problem.

Solving this problem is critical for tools for managing modern

cloud infrastructure stacks and other large complex distributed

systems. In this paper, we investigate two specific approaches to

using log data to solve this problem. The first approach is

comparing a source’s current and past behavior. Some solutions

that perform anomaly detection on numeric data from the data

center are inevitably relying on global change point detection

concepts. On the other hand, while log data promises a

significantly different perspectives and dimensions to accomplish

a similar task, state-of-the-art of solutions lack a capability to

automatically detect significant change points in the log stream of

an event source through learning its behavioral patterns. Such

change points indicate the most important times when the source’s

behavior significantly differs from the past. A second

complementary approach to real-time change detection involves

comparing a source’s current behavior with the current behavior

of its peers in a population of sources serving a common role in the

data center. Employing the concept of event types of log messages

introduced earlier, we propose algorithms for each of these

approaches that apply classical statistical and machine learning

techniques to data capturing the distribution of those constructs.

We demonstrate experimental results from our prototype

algorithms.

Keywords—Automated log management, anomaly detection,

change point detection, “sick” log source, machine learning.

I. INTRODUCTION

For proactive management of data centers, infrastructure
and application administrators are interested in any unexpected
changes in system behavior. The unexpected patterns can be
categorized as anomalies (extreme events of a random process
that has still the same overall characteristics as in the past) and
changes (alterations in characteristics/distribution of the
random process itself). To adequately identify the anomalies of
the process, one needs to characterize its typical behavior.

Cloud management solutions, in particular, vRealize
Operations (vR Ops) [1] and vRealize Log Insight (LI) [2],
employ data science and machine learning solutions to reliably
manage today’s Software Defined Data Centers (SDDC) of
high complexity. These products detect both context-
independent atypical patterns of data center object indicators
(see Dynamic Thresholds analytics [3]) and context-dependent
anomalous events and their transactions [4].

The analytics developed in [3] applies such a global change
point detection internally to appropriately form the relevant
anomaly reports (alarms/alerts) of numeric indicators (time
series metrics) of infrastructure objects. Compared to those

time series data of the IT environment any analytics learns
from, the relevant log data contains significantly different
perspectives to perform a change analysis. However, for log
management solutions it is not an easy task to provide an
automatic capability to identify changes in characteristics of log
streams. Instead, they enable only a manual functionality to
query or inspect log messages to find patterns the users are
interested in. Particularly, LI performs such an inspection of a
log source using a feature called Event Trends.

Our work proposes an enhancement analytics to empower
log management solutions with relevant automation of change
point detection with setting two types of problems. The first
problem type concerns introducing a “log plus metric” data
processing framework for change detection from historic
perspectives of an event source. Moreover, since modern cloud
applications are served through populations of IT resources
with similar roles and behaviors, an additional run-time
perspective arises to compare an event source to its peers in the
population as a second type of problem. Such a change for a log
source indicates its sickness condition within the group it
belongs to for immediate remediation management.

For identifying changes of an event source, we apply a
version of the classical CUSUM, an off-line change point
detection algorithm (explained in Sections 2 and 3), to its meta-
data and point out a suitable alternative for the streaming log
scenario. For diagnosing sick resources, first we propose an
unsupervised machine learning approach to identifying
similarity groups of event sources for applications topology
discovery. Then we apply population properties to detect
outlying or sick event sources subject to healing.

The various changes that either of these methods detect may
have many different causes, such as hitting a new software bug,
hardware failure, software upgrade, configuration changes,
change in workload, etc. But all of these changes relate to the
many aspects of the data center administration (security,
troubleshooting, performance monitoring, capacity planning,
provisioning and configuration, compliance auditing, policy
enforcement, etc.), and so are worthy of identification and
further classification for intelligent incident management. For
example, a virtual machine (VM) or an application that is being
attacked probably will change its log content and structure (i.e.
with a large number of “failed login” messages). These are
examples of a specific kind of changed or sick sources of logs.

In Section 2 we mention about our initial motivation for this
research and reference the related work. Section 3 outlines the
relevant algorithms towards solutions of the first change point
detection problem, while Section 4 describes our machine
learning approach to identifying sick log resources. Section 5
concludes the paper with notes on a future work.

II. MOTIVATION AND RELATED WORK

Event Types are native constructs of LI [2] that perform
dimensionality reduction of the original log space. Using
machine learning, LI clusters raw log messages into abstract
event types based on similarity of message tokens. The
screenshot in Fig 1 shows how the product’s interactive
analytics represents a pie chart of distinct event types for a time
range corresponding to a raw log data portion. The pie chart
representation of event types for a time window can be
converted to a probability distribution – relative frequencies of
event types (number of each event type over the counts of log
messages), see Fig. 2. Currently LI supports comparison of
event types for two queried time windows, enabling the user to
look for message differences between those time ranges. This
functionality is provided with the Event Trends feature (Fig. 3)
of the product. The Event Trends view in Fig. 3 highlights
event-types that occur at different rates in two periods of time
with 768 types increasing.
 The motivation for our work started with the following
question. Can we automate the Event Trends feature in order to
automatically detect the most “interesting” time ranges of a
given source to compare rather than having to manually select
those time ranges? Here the “interestingness” is defined by a
significant difference in their event type distributions compared
to the source’s historical baseline distribution.

Fig. 1. Pie chart view of event types as clusters of log messages.

Fig. 2. Example of a probability distribution of event types for a time window.

 In addition to the being useful in offering “intelligent”
suggestions for the time-range in the Event Type view, such a
capability would have other uses. For example, a user could
automatically get alerted on any atypical variation/change
(point) occurring over time in the event types, that could
potentially tell him/her about a problem or other issue worthy

of attention. Actually, we are interested in quantification of
variations/ changes occurring along the log stream and learning
historical typicality of differences between event type
distributions over time to be able to identify atypical behaviors
in those constructs.

Fig. 3. Event Trends: 768 event types are increasing.

To perform such an analysis first we need to monitor and
quantify the event trends over time. We take relative
frequencies of event types observed in two log portions as
probability distributions 𝑃 and 𝑄 (Fig. 2) for which
information radius or Jensen-Shannon divergence (a symmetric
version of Kullback-Leibler (KL) divergence [5]):

𝐽𝑆𝐷(𝑃, 𝑄) =
1

2
𝐷(𝑃,𝑀) +

1

2
𝐷(𝑄,𝑀),

where 𝑀 =
𝑃+𝑄

2
 and 𝐷(𝑃, 𝑄) is the KL divergence between 𝑃

and 𝑄. 𝐽𝑆𝐷(𝑃, 𝑄) satisfies the property 0 ≤ 𝐽𝑆𝐷(𝑃, 𝑄) ≤ 1.

This divergence computed over time with a sliding window
measures the “differences” between event type distributions in
neighboring intervals (Fig. 3).

Different algorithms are known in literature for off-line [6]
and online change detection (see [7] and references therein) in
time series data for various purposes. We are going to apply a
modified version of the classical change point detection
algorithm called CUSUM [6] which is based on analysis of
cumulative sums of “departure” of the data from its average
over time.

Related prior work includes [8] where KL divergence was
proposed to measure the “distance” between two log portions
applied to anomaly detection. However, the approach in [8] is
not built on learning “normal” behavioural patterns of event
sources for full automation of the anomaly detection.

Moreover, the problem of clustering of event sources and
related similarity-based management in real-time is a novel
formulation. Our proposal on diagnostics of an event source
based on comparing its behavioural patterns to other peers
within the same population parallels with an important prior art
[9] for identification of sick VMs using trade-offs between their
workload and latency metrics and with [10] for an app-aware
analytics.

Detection of specific change patterns related to security of
applications can be found in analyses [11,12].

III. CHANGE DETECTIONA: ALGORITHMS AND EXPERIMENTS

The “difference” data of event type distributions described in
Section 2 can be used in several different ways:

1. change point detection algorithms [6,7] that capture
unusual behaviors in the quantified event trends data (or
divergences in event types);

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ro

b
ab

ili
ty

Event Type Index

Probability Distribution of Event Types

2. outlier detection algorithms (like [13] based on extreme
value theory and maximum entropy principle) to detect
spikes/abrupt changes in the quantified event trends data;

3. periodicity analysis (with Dynamic Thresholding [3]) to
exclude the cases of spikes that might have cyclical nature
(e.g. nightly backups).

Ideally, we are also interested to find the approximate time
when the change started to develop (problem start time). This
is an indicative time for the user to investigate the reasons of
change further, comparing the event types around it and
consecutive time ranges after to make conclusions using the
existing Event Trends capabilities.

Below we focus on change point detection approach 1.
There are different methods to detect change points in time
series data. We experimented with a version of CUSUM [14]
that provides a procedure to identifying the change start time as
a data fitting optimization problem.

For scenarios of 2 and 3, control charting and DT analysis
are solutions, respectively. One of our experimental set-ups
beyond the scope of this paper deals with the approach 3.

A. Experiments based on CUSUM

To conduct a controlled experiment, we created an instance of
a particular application, and then manually introduced specific
known changes. Namely, we chose Log Insight as our proof-of-
concept application, and we made two changes: change the
workload by increasing the number of queries launched against
the system, and changing the logs directly by modifying the log
level from INFO to DEBUG. These two artificial changes do
not capture all nuances of real-world change detection. But
these preliminary experiments allowed us to evaluate our
algorithms in a systematic and controlled manner.

For experimental demonstrations on a change point
detection using event type constructs of LI, we performed a
monitoring of a LI log stream using another LI instance. When
we significantly increase the number of query requests to the LI
being monitored, we start observing new event types as well as
alteration in distribution of those. A similar phenomenon occurs
when we modify the logging level of LI from INFO to DEBUG.
We made this set-up modification (on 11/15/2016 at 19:35 in
Fig. 4 and 5) in LI while collecting its log messages for a ~3.5-
hour duration. Fig. 4 and 5 display the counts of events and their
types over time for the above-mentioned period of
observations. Those counts as well as the rate of arriving
messages were multiplied after the debug mode was switched
on.

Fig. 6 represents the JSD meta-data quantification for event
trends computed for each 20-minute window sliding it by 2
minutes. Instead of 20 minutes can be another parameter tuned
to the application dynamism. JSD=0 implies that the
distributions are exactly the same, and JSD=1 means that
distributions are totally different and “no event types in
common between the two distributions”.

So, for a time stamp 𝑖, we derive the distributions of event
types within ∆𝑡 = 20 minutes sliding-window with shift equal
to 2 minutes and calculate JSD (𝐷𝑖) between those two
consecutive distributions. Then the goal is to run a change point

analysis on the time series data {𝐷𝑖=1
𝑁 } (Fig. 6).

The procedure to perform the change-point analysis
iteratively uses a combination of cumulative sum charts and
bootstrapping to detect the changes. Known from statistical
quality control, CUSUM algorithms [6] are widely used in
change point detection in time series data. These algorithms
alarm about a change based on “large deviations” in cumulative
sums or variances from the baseline (like mean or median) of
data.

The analysis begins with construction of the CUSUM chart
for the data in Fig. 6 using the classical mean-based approach.
From Fig. 6 we see that the debug logging introduces a change
in the initial behaviour of the data and want to detect that
change.

Outline of the CUSUM-Mean [14]. The input is a data set

of length 𝑁 with values 𝐷𝑖 , 𝑖 = 1, 𝑁. The algorithm computes

the mean of data 𝐷 and its cumulative sums 𝑆𝑖. The index 𝑚
corresponding to the maximum of those cumulative sums is a
candidate for change point but it should be validated by a
bootstrapping (random reordering of the data) to measure the
confidence 𝐶 in change. Then to detect the change start time the
data is divided into two parts starting from 𝑚 and the
corresponding mean square error (MSE) is calculated against
the averages of left and right portions of data, while decreasing
𝑚 (a fitting data procedure). The index resulting the minimum
MSE is picked up as the start time of the change.

Detected change time. CUSUM-Mean’s output as the
change index was 68 with confidence level equal to 0.98 and
there is no process found (start time is the same index=68). So,
from the mean-based CUSUM perspectives this is an abrupt
change.

Fig. 4. Events Count over time, before and after the change from INFO to DEBUG logging.

Fig. 5. Events Types Count, before and after the change from INFO to DEBUG logging.

Fig. 6. Jensen-Shannon divergence (JSD) between two distributions A and B [A is distribution of event types before the change from INFO to DEBUG, B is event-
type distribution after the change from DEBUG to INFO]. The graph shows that there is a large change in the distribution of event types after Time=65

(corresponds to the red line in Fig. 4/5).

B. Content-Based Change Inspection

Our algorithm then calculates the rate of change for each
event type after detected change point. In other words, it
produces a ranked list of event types “responsible” for the
mismatch between pre- and post-change log patterns.

In particular, we calculated the “change rate” (simple
difference between relative frequencies) for each event type
when comparing two distributions of those at different time
stamps: pre-change (66th index in Fig. 6) histogram with the
changed one (68th index). Then LI’s Event Trends is executed
to compare the change interval [Nov 15 2016 19:16:00, Nov
15 2016 19:36:00] with previous 20 minutes to see that 81
event types are increasing, 1 decreasing and top increasing
event types relate to the “debug” messages.

C. Streaming Algorithm for Change Detection

Although the meta-data (JSD) conversion of the log
stream mitigates the complexity to perform a retrospective
analysis of the entire log history for change point detection,
it is still preferable to have an incremental/streaming
algorithm reacting to run-time changes instead of the batch
processing of CUSUM-type algorithms.

A simplistic streaming alternative solution is
implemented by incrementally computing the histogram
distribution of JSD data itself. We build the empirical

distribution of JSD for an event source and update it as events
arrive. For this we just need to keep and recalculate the
counters of JSD values falling into selected number of
histogram ranges from [0,1]. This distribution over time
contains all patterns of consecutive changes in the stream.
Then any JSD variation in neighbouring sliding windows
matching the ϵ-tail of this distribution indicates an atypicality
or anomaly in the data.

Fig. 7 depicts the corresponding histogram distribution of
JSD data in our experiments.

Fig. 7. Histogram of JSD data in Fig. 6.

The tail analysis of the histogram shows that the index 68
with value 0.54 is an outlier distance and should be reported
as change in the original log stream. We get the same result,
if assuming the JSD is normally distributed and any
observations falling outside

[𝑚𝑒𝑎𝑛 − 3𝑠𝑡𝑑,𝑚𝑒𝑎𝑛 + 3𝑠𝑡𝑑]

interval of the metric is anomalous.

IV. RUN-TIME DETECTION OF SICK EVENT SOURCES

Turning to the second kind of change point problems, note
that automatic ways of detecting atypical/anomalous event
sources based on either their historical behavioral analysis or
run-time status is not a trivial task. It is a common practice
that an anomaly status of a log source is alerted based on user-
defined alert conditions containing an expert knowledge.
However, it is very difficult to incorporate expert knowledge
that covers every kind of change. Fortunately, our
experiments demonstrate that event type distributions serve
as generic indicators of change. We believe we can build a
generic change detector to identify “sick” sources without
needing complex expert knowledge. As we saw in the last
sections, event types and their characteristics are such
indicators. Therefore, they can be applied in solving a wider
class of problems in managing the distributed cloud
ecosystems. For instance, while individual learning of
behavioral patterns for each event source in a big cloud is a
complex analytical task, for the cloud-native applications it is
much more effective to realize a segmentation-based
management approach. This means that first we need to
identify similar event sources of logs that might serve a
common role in the application infrastructure (hence, can be
treated and managed as population/crowd of objects). Then
populations are subject to a management based on their
properties. This means that any event source changing its
behavior against the rest of the population can be identified
run-time. This leads to application of machine learning both
in clustering of event sources and detecting dissimilar log
resources. In those tasks, the event types are invaluable
“signatures” or “fingerprints” of log sources to rely on again.

Based on event type distributions of log sources and cosine
similarity measure of two vectors, our prototype
implementations apply

1. hierarchical clustering [15] to identify populations of
similar sources;

2. Local Outlier Factor (LOF) [16] analysis for each
population to identify its sick members.

LOF is based on a concept of a local density (or similarity
distance in our case), locality defined by 𝑘 nearest (similar)
neighbors. Those neighbors are employed to estimate the
density. Based on this evaluation, outliers are detected as
those objects that have substantially lower density than their
neighbors. The local density is estimated by the distance at
which a point can be "reached" from its neighbors [16].

In addition to the identifying anomalous sources, this meta-
data could be exposed to end-users for other purposes, such
as allowing users to filter their logs to find “all sources like
this one”. In this way, users will be able to more easily define
populations of objects to apply the relevant analytics. In this
context, a simplistic version of the clustering instead of item
1 can be applied, making a cluster of event sources with the

following property – minimum pairwise similarity within the
cluster is higher than a bar.

Our experiments with log data from large environements
show very high similarities (close to 1) between ESXi hosts
in terms of their event type distributions and, hence, can be
efficiently clustered using hierarchical clustering [16] to
manage population of ESXi hosts accordingly.

For a demonstration purposes, we performed a small
experiment on five Apache servers (consisting of web, email,
and ftp services), with similar behavioral patterns of event
types. We emulated a DDOS attack (using ApacheBench test
tool) on the web host of one of servers with high-rate service
requests compared to the rest of servers during a 5-minute
period. This load “shifted” the corresponding server from the
population according to the LOF analysis. Moreover, even
with the simple statistical whisker’s method applied to the
“average distance from the rest of server group” data
computed for each server it was possible to identify the sick
host.
 For simplicity, we show the distributions of event types
(during the observation window) for only one “normal” host
(Fig. 8) from the population of five (the rest exhibited very
similar distributions while being in their normal operational
workload modes) and the detected sick one (Fig. 9).

Fig. 8. Event type distribution of one of the “normal” host members of
Apache servers population.

 Details of the experiment are as follows. All the pair-wise
similarities between the hosts using cosine similarity measure
were above 0.95 (a very high similarity) before the
simulation. Because of the attack on the host xx.xxx.xxx.22
(Fig. 9) with a 5-minute duration, the latter already exhibits a
similarity drop from the rest of the hosts. The naïve whisker’s
anomaly detection method from non-parametric statistics was
useful for our purposes to observe the “sickness” of the
attacked host. This method defines anomalous data values as
those that stay outside the interval

[𝑄25 − 1.5𝐼𝑄𝑅, 𝑄75 + 1.5𝐼𝑄𝑅],

where 𝑄25 and 𝑄75 are the first and third quartiles of the data,
and 𝐼𝑄𝑅 = 𝑄75 − 𝑄25 is its interquartile range. The average
cosine distance for the loaded host from the rest was detected
as outlying. Since the average cosine similarity distances
(ACSD) for the hosts were

ACSD(host21)=0.97,

ACSD(host22)=0.89,

ACSD(host 23)=0.96,

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25

P
ro

b
ab

ili
ty

Event Types

Probability Distribution of Event Types for
Host xx.xxx.xxx.21

ACSD(host 24)=0.97,

ACSD(host 25)=0.97,

the ACSD score of 0.89 for the over-requested host is outside
the above-mentioned interval. Therefore, the attacked host
with ACSD=0.89 is dissimilar from the rest of the crowd and
is identified to be “sick”.
 Note that in this case we deal with an unexpected situation
which is not about observing specific log messages and their
types containing a contextual information like “error”, etc.,
but about a statistically atypical distribution of events as an
important change indicator the system incurs in terms of a
security attack.
 Although distributions in Fig. 8 and 9 may look similar,
their dissimilarity is sufficient for the algorithms to declare
about the sickness of the stressed host compared to the rest of
population. In particular, event type #9 was absent at normal
hosts, while at the sick host it has 8%-presence, or, event type
#18 that increased from about 4% (at normal hosts) to 11%
(at sick host), etc.

Fig. 9. Event type distribution of the “sick” host in population of Apache

servers.

Apparently, the naïve outlier detection approach
mentioned above is only for demonstration purposes. In
reality, we need to rely on the most sophisticated outlier
detection methods of machine learning like LOF analysis [16]
to maximize reliability of capturing the patterns we are
looking for. However, in both cases, we deal with algorithms
of polynomial complexity by the size of the population which
is not a very large number in applications. Therefore, these
run-time decisions making algorithms are scalable with the
population dynamics, but might require storing large vectors
of event type distributions depending on the nature of event
sources (very high volume of events can be clustered by LI
into a high number of event types in one case, and into a small
number of event types in other case).

V. CONCLUSION AND FUTURE WORK

We introduced a new framework for change point analysis
for log event sources with two complementary problem
formulations. The first relates to an individual historical
learning of typical characteristics of a log source, while the
second links to a real-time comparison of event sources with
each other within a population of peers in distributed cloud
environments. Our solution approaches to those problems
and implemented prototypes demonstrated a reliable and

effective identification of change points in log streams and
sick log sources.

We have built a large experimental set-up for our
algorithms to consume the streamed log data of a large
environment and perform near-real-time detection of ESXi
hosts experiencing change. Our plan includes validating
observed changes with the incident data weekly being
reported by the operations team. The live never-ending
stream of all ESXi events with their event-type and hostname
fields make a big volume (approximately ~14 billion events
per day for ~2500 ESXi hosts).

Classifying Change Incident Data. Already occurred
changes (with corresponding training data) that have been
investigated can be tagged with corresponding change
categories observed by the admin (such as ‘restart’,
‘upgrade’, ‘disk full’, ‘overprovisioning’, etc). Having such a
labelled data will enable automatic classification of a newly
detected change into one of known classes applying
supervised machine learning algorithms.

REFERENCES

[1] VMware vRealize Operations Manager,
http://www.vmware.com/products/vrealize-operations.html, last
accessed 07/12/2018.

[2] VMware vRealize Log Insight,
https://www.vmware.com/products/vrealize-log-insight, last accessed
07/12/2018.

[3] M.A. Marvasti, A.V. Poghosyan, A.N. Harutyunyan, and N.M.
Grigoryan, An enterprise dynamic thresholding system, USENIX
International Conference on Autonomic Computing, June 18-20,
Philadelphia, US, pp. 129-135, 2014.

[4] A.N. Harutyunyan, A.V. Poghosyan, N.M. Grigoryan, and M.A.
Marvasti, Abnormality analysis of streamed log data, IEEE Network
Operations and Management Symposium (NOMS), May 5-9, Krakow,
Poland, 7 p., 2014.

[5] T. Cover and J. Thomas, Elements of Information Theory, Wiley, 1991.
[6] E.S. Page, Continuous inspection schemes, Biometrika, vol. 41, issue

1-2, pp. 100–115, June 1954.
[7] A.B. Downey, A novel changepoint detection algorithm,

arXiv:0812.1237, 2008.
[8] D. Brown and N. Kushmerick, Anomaly detection using log summary

divergence. A method for computing the similarity of two log message
queries and its application in anomaly detection in distributed
environments, VMware technical paper, 2015.

[9] V. Gupta, P. Padala, A. Holler, and A. Desai, Automated management
of “sick” virtual machines for cloud applications, VMware technical
paper, 2014.

[10] A.N. Harutyunyan, N.M. Grigoryan, A.V. Poghosyan, M. Avagyan,
and A. Dangizyan, Application-aware analytics based on object
populations, VMware technical paper, 2016.

[11] A. Ambre and N. Shekokar, Insider threat detection using log analysis
and event correlation, Procedia Computer Science, vol. 45, pp. 436-
445, Elsevier, 2015.

[12] Q. Hu, B. Tang, D. Lin, Anomalous user activity detection in enterprise
multi-source logs, IEEE International Conference on Data Mining
Workshops (ICDMW), Nov. 18-21, New Orleans, LA, USA, 2017.

[13] A.V. Poghosyan, A.N. Harutyunyan, and N.M. Grigoryan, Managing
cloud infrastructures by a multi-layer data analytics, IEEE
International Conference on Autonomic Computing, July 19-22,
Wurzburg, Germany, pp. 351-356, 2016.

[14] W.A. Taylor, Change Point Analysis:
http://www.variation.com/cpa/tech/changepoint.html, last accessed
07/12/2018.

[15] L. Rokach and O. Maimon, Data Mining and Knowledge Discovery
Handbook, Springer, Boston, MA, 2005.

[16] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, LOF: Identifying
density-based local outliers, Proc. ACM SIGMOD International
Conference on Management of Data, pp. 93–104, 2000.

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25

P
ro

b
ab

ili
ty

Event Types

Probability Distribution of Event Types for
Host xx.xxx.xxx.22

http://www.vmware.com/products/vrealize-operations.html
https://www.vmware.com/products/vrealize-log-insight
https://arxiv.org/abs/0812.1237
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qiaona%20Hu.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Baoming%20Tang.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Derek%20Lin.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8211022
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8211022
http://www.variation.com/cpa/tech/changepoint.html
https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf

