
Identifying Changed or Sick Resources from Logs 

Ashot N. Harutyunyan, Arnak V. Poghosyan, Naira M. Grigoryan, Nicholas Kushmerick, and Harutyun Beybutyan 

Office of the CTO of Cloud Management 

VMware 

{aharutyunyan;apoghosyan;ngrigoryan;nicholask;hbeybutyan}@vmware.com 

 

 
Abstract—The identification of important changes in a 

complex distributed system is a challenging data science problem. 

Solving this problem is critical for tools for managing modern 

cloud infrastructure stacks and other large complex distributed 

systems. In this paper, we investigate two specific approaches to 

using log data to solve this problem. The first approach is 

comparing a source’s current and past behavior. Some solutions 

that perform anomaly detection on numeric data from the data 

center are inevitably relying on global change point detection 

concepts. On the other hand, while log data promises a 

significantly different perspectives and dimensions to accomplish 

a similar task, state-of-the-art of solutions lack a capability to 

automatically detect significant change points in the log stream of 

an event source through learning its behavioral patterns. Such 

change points indicate the most important times when the source’s 

behavior significantly differs from the past. A second 

complementary approach to real-time change detection involves 

comparing a source’s current behavior with the current behavior 

of its peers in a population of sources serving a common role in the 

data center. Employing the concept of event types of log messages 

introduced earlier, we propose algorithms for each of these 

approaches that apply classical statistical and machine learning 

techniques to data capturing the distribution of those constructs. 

We demonstrate experimental results from our prototype 

algorithms.   

Keywords—Automated log management, anomaly detection, 

change point detection, “sick” log source, machine learning. 

I. INTRODUCTION  

For proactive management of data centers, infrastructure 
and application administrators are interested in any unexpected 
changes in system behavior. The unexpected patterns can be 
categorized as anomalies (extreme events of a random process 
that has still the same overall characteristics as in the past) and 
changes (alterations in characteristics/distribution of the 
random process itself). To adequately identify the anomalies of 
the process, one needs to characterize its typical behavior.  

Cloud management solutions, in particular, vRealize 
Operations (vR Ops) [1] and vRealize Log Insight (LI) [2], 
employ data science and machine learning solutions to reliably 
manage today’s Software Defined Data Centers (SDDC) of 
high complexity. These products detect both context-
independent atypical patterns of data center object indicators 
(see Dynamic Thresholds analytics [3]) and context-dependent 
anomalous events and their transactions [4].  

The analytics developed in [3] applies such a global change 
point detection internally to appropriately form the relevant 
anomaly reports (alarms/alerts) of numeric indicators (time 
series metrics) of infrastructure objects. Compared to those 

time series data of the IT environment any analytics learns 
from, the relevant log data contains significantly different 
perspectives to perform a change analysis. However, for log 
management solutions it is not an easy task to provide an 
automatic capability to identify changes in characteristics of log 
streams. Instead, they enable only a manual functionality to 
query or inspect log messages to find patterns the users are 
interested in. Particularly, LI performs such an inspection of a 
log source using a feature called Event Trends. 

Our work proposes an enhancement analytics to empower 
log management solutions with relevant automation of change 
point detection with setting two types of problems. The first 
problem type concerns introducing a “log plus metric” data 
processing framework for change detection from historic 
perspectives of an event source. Moreover, since modern cloud 
applications are served through populations of IT resources 
with similar roles and behaviors, an additional run-time 
perspective arises to compare an event source to its peers in the 
population as a second type of problem. Such a change for a log 
source indicates its sickness condition within the group it 
belongs to for immediate remediation management.  

For identifying changes of an event source, we apply a 
version of the classical CUSUM, an off-line change point 
detection algorithm (explained in Sections 2 and 3), to its meta-
data and point out a suitable alternative for the streaming log 
scenario. For diagnosing sick resources, first we propose an 
unsupervised machine learning approach to identifying 
similarity groups of event sources for applications topology 
discovery. Then we apply population properties to detect 
outlying or sick event sources subject to healing. 

The various changes that either of these methods detect may 
have many different causes, such as hitting a new software bug, 
hardware failure, software upgrade, configuration changes, 
change in workload, etc. But all of these changes relate to the 
many aspects of the data center administration (security, 
troubleshooting, performance monitoring, capacity planning, 
provisioning and configuration, compliance auditing, policy 
enforcement, etc.), and so are worthy of identification and 
further classification for intelligent incident management. For 
example, a virtual machine (VM) or an application that is being 
attacked probably will change its log content and structure (i.e. 
with a large number of “failed login” messages). These are 
examples of a specific kind of changed or sick sources of logs.  

In Section 2 we mention about our initial motivation for this 
research and reference the related work. Section 3 outlines the 
relevant algorithms towards solutions of the first change point 
detection problem, while Section 4 describes our machine 
learning approach to identifying sick log resources. Section 5 
concludes the paper with notes on a future work. 



II. MOTIVATION AND RELATED WORK 

Event Types are native constructs of LI [2] that perform 
dimensionality reduction of the original log space. Using 
machine learning, LI clusters raw log messages into abstract 
event types based on similarity of message tokens. The 
screenshot in Fig 1 shows how the product’s interactive 
analytics represents a pie chart of distinct event types for a time 
range corresponding to a raw log data portion. The pie chart 
representation of event types for a time window can be 
converted to a probability distribution – relative frequencies of 
event types (number of each event type over the counts of log 
messages), see Fig. 2. Currently LI supports comparison of 
event types for two queried time windows, enabling the user to 
look for message differences between those time ranges. This 
functionality is provided with the Event Trends feature (Fig. 3) 
of the product. The Event Trends view in Fig. 3 highlights 
event-types that occur at different rates in two periods of time 
with 768 types increasing. 
 The motivation for our work started with the following 
question. Can we automate the Event Trends feature in order to 
automatically detect the most “interesting” time ranges of a 
given source to compare rather than having to manually select 
those time ranges? Here the “interestingness” is defined by a 
significant difference in their event type distributions compared 
to the source’s historical baseline distribution. 

 
Fig. 1. Pie chart view of event types as clusters of log messages. 

 

Fig. 2. Example of a probability distribution of event types for a time window. 
 

 In addition to the being useful in offering “intelligent” 
suggestions for the time-range in the Event Type view, such a 
capability would have other uses. For example, a user could 
automatically get alerted on any atypical variation/change 
(point) occurring over time in the event types, that could 
potentially tell him/her about a problem or other issue worthy 

of attention. Actually, we are interested in quantification of 
variations/ changes occurring along the log stream and learning 
historical typicality of differences between event type 
distributions over time to be able to identify atypical behaviors 
in those constructs. 

Fig. 3.  Event Trends: 768 event types are increasing. 
 

To perform such an analysis first we need to monitor and 
quantify the event trends over time. We take relative 
frequencies of event types observed in two log portions as 
probability distributions 𝑃  and 𝑄  (Fig. 2) for which 
information radius or Jensen-Shannon divergence (a symmetric 
version of Kullback-Leibler (KL) divergence [5]):  

𝐽𝑆𝐷(𝑃, 𝑄) =
1

2
𝐷(𝑃,𝑀) +

1

2
𝐷(𝑄,𝑀),  

where 𝑀 =
𝑃+𝑄

2
 and 𝐷(𝑃, 𝑄) is the KL divergence between 𝑃 

and 𝑄. 𝐽𝑆𝐷(𝑃, 𝑄) satisfies the property 0 ≤ 𝐽𝑆𝐷(𝑃, 𝑄) ≤ 1. 

This divergence computed over time with a sliding window 
measures the “differences” between event type distributions in 
neighboring intervals (Fig. 3). 

Different algorithms are known in literature for off-line [6] 
and online change detection (see [7] and references therein) in 
time series data for various purposes. We are going to apply a 
modified version of the classical change point detection 
algorithm called CUSUM [6] which is based on analysis of 
cumulative sums of “departure” of the data from its average 
over time. 

Related prior work includes [8] where KL divergence was 
proposed to measure the “distance” between two log portions 
applied to anomaly detection. However, the approach in [8] is 
not built on learning “normal” behavioural patterns of event 
sources for full automation of the anomaly detection.  

Moreover, the problem of clustering of event sources and 
related similarity-based management in real-time is a novel 
formulation. Our proposal on diagnostics of an event source 
based on comparing its behavioural patterns to other peers 
within the same population parallels with an important prior art 
[9] for identification of sick VMs using trade-offs between their 
workload and latency metrics and with [10] for an app-aware 
analytics.  

Detection of specific change patterns related to security of 
applications can be found in analyses [11,12]. 

III. CHANGE DETECTIONA: ALGORITHMS AND EXPERIMENTS 

The “difference” data of event type distributions described in 
Section 2 can be used in several different ways: 

1. change point detection algorithms [6,7] that capture 
unusual behaviors in the quantified event trends data (or 
divergences in event types); 
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2. outlier detection algorithms (like [13] based on extreme 
value theory and maximum entropy principle) to detect 
spikes/abrupt changes in the quantified event trends data; 

3. periodicity analysis (with Dynamic Thresholding [3]) to 
exclude the cases of spikes that might have cyclical nature 
(e.g. nightly backups). 

Ideally, we are also interested to find the approximate time 
when the change started to develop (problem start time). This 
is an indicative time for the user to investigate the reasons of 
change further, comparing the event types around it and 
consecutive time ranges after to make conclusions using the 
existing Event Trends capabilities.  

Below we focus on change point detection approach 1. 
There are different methods to detect change points in time 
series data.  We experimented with a version of CUSUM [14] 
that provides a procedure to identifying the change start time as 
a data fitting optimization problem. 

For scenarios of 2 and 3, control charting and DT analysis 
are solutions, respectively. One of our experimental set-ups 
beyond the scope of this paper deals with the approach 3. 

A. Experiments based on CUSUM 

To conduct a controlled experiment, we created an instance of 
a particular application, and then manually introduced specific 
known changes. Namely, we chose Log Insight as our proof-of-
concept application, and we made two changes: change the 
workload by increasing the number of queries launched against 
the system, and changing the logs directly by modifying the log 
level from INFO to DEBUG. These two artificial changes do 
not capture all nuances of real-world change detection. But 
these preliminary experiments allowed us to evaluate our 
algorithms in a systematic and controlled manner. 

For experimental demonstrations on a change point 
detection using event type constructs of LI, we performed a 
monitoring of a LI log stream using another LI instance. When 
we significantly increase the number of query requests to the LI 
being monitored, we start observing new event types as well as 
alteration in distribution of those. A similar phenomenon occurs 
when we modify the logging level of LI from INFO to DEBUG. 
We made this set-up modification (on 11/15/2016 at 19:35 in 
Fig. 4 and 5) in LI while collecting its log messages for a ~3.5-
hour duration. Fig. 4 and 5 display the counts of events and their 
types over time for the above-mentioned period of 
observations. Those counts as well as the rate of arriving 
messages were multiplied after the debug mode was switched 
on. 

Fig. 6 represents the JSD meta-data quantification for event 
trends computed for each 20-minute window sliding it by 2 
minutes. Instead of 20 minutes can be another parameter tuned 
to the application dynamism. JSD=0 implies that the 
distributions are exactly the same, and JSD=1 means that 
distributions are totally different and “no event types in 
common between the two distributions”.  

So, for a time stamp 𝑖, we derive the distributions of event 
types within ∆𝑡 = 20 minutes sliding-window with shift equal 
to 2  minutes and calculate JSD ( 𝐷𝑖 ) between those two 
consecutive distributions. Then the goal is to run a change point 

analysis on the time series data {𝐷𝑖=1
𝑁 }  (Fig. 6). 

The procedure to perform the change-point analysis 
iteratively uses a combination of cumulative sum charts and 
bootstrapping to detect the changes. Known from statistical 
quality control, CUSUM algorithms [6] are widely used in 
change point detection in time series data. These algorithms 
alarm about a change based on “large deviations” in cumulative 
sums or variances from the baseline (like mean or median) of 
data.   

The analysis begins with construction of the CUSUM chart 
for the data in Fig. 6 using the classical mean-based approach. 
From Fig. 6 we see that the debug logging introduces a change 
in the initial behaviour of the data and want to detect that 
change.  

Outline of the CUSUM-Mean [14].  The input is a data set 

of length 𝑁 with values 𝐷𝑖 , 𝑖 = 1, 𝑁. The algorithm computes 

the mean of data 𝐷 and its cumulative sums 𝑆𝑖. The index 𝑚 
corresponding to the maximum of those cumulative sums is a 
candidate for change point but it should be validated by a 
bootstrapping (random reordering of the data) to measure the 
confidence 𝐶 in change. Then to detect the change start time the 
data is divided into two parts starting from 𝑚  and the 
corresponding mean square error (MSE) is calculated against 
the averages of left and right portions of data, while decreasing 
𝑚 (a fitting data procedure). The index resulting the minimum 
MSE is picked up as the start time of the change. 

Detected change time. CUSUM-Mean’s output as the 
change index was 68 with confidence level equal to 0.98 and 
there is no process found (start time is the same index=68). So, 
from the mean-based CUSUM perspectives this is an abrupt 
change. 
 

 
 

 

 

 

 

 

 

 

 
Fig. 4. Events Count over time, before and after the change from INFO to DEBUG logging. 

 

 



 

 

 

 

Fig. 5. Events Types Count, before and after the change from INFO to DEBUG logging. 

 

 

 

 

 

 

 

 

 

Fig. 6. Jensen-Shannon divergence (JSD) between two distributions A and B [A is distribution of event types before the change from INFO to DEBUG, B is event-
type distribution after the change from DEBUG to INFO].  The graph shows that there is a large change in the distribution of event types after Time=65 

(corresponds to the red line in Fig. 4/5). 

 

B. Content-Based Change Inspection 

Our algorithm then calculates the rate of change for each 
event type after detected change point. In other words, it 
produces a ranked list of event types “responsible” for the 
mismatch between pre- and post-change log patterns.  

In particular, we calculated the “change rate” (simple 
difference between relative frequencies) for each event type 
when comparing two distributions of those at different time 
stamps: pre-change (66th index in Fig. 6) histogram with the 
changed one (68th index). Then LI’s Event Trends is executed 
to compare the change interval [Nov 15 2016 19:16:00, Nov 
15 2016 19:36:00] with previous 20 minutes to see that 81 
event types are increasing, 1 decreasing and top increasing 
event types relate to the “debug” messages. 

C. Streaming Algorithm for Change Detection 

Although the meta-data (JSD) conversion of the log 
stream mitigates the complexity to perform a retrospective 
analysis of the entire log history for change point detection, 
it is still preferable to have an incremental/streaming 
algorithm reacting to run-time changes instead of the batch 
processing of CUSUM-type algorithms.   

A simplistic streaming alternative solution is 
implemented by incrementally computing the histogram 
distribution of JSD data itself. We build the empirical 

distribution of JSD for an event source and update it as events 
arrive. For this we just need to keep and recalculate the 
counters of JSD values falling into selected number of 
histogram ranges from [0,1]. This distribution over time 
contains all patterns of consecutive changes in the stream. 
Then any JSD variation in neighbouring sliding windows 
matching the ϵ-tail of this distribution indicates an atypicality 
or anomaly in the data.  

Fig. 7 depicts the corresponding histogram distribution of 
JSD data in our experiments.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Histogram of JSD data in Fig. 6. 



The tail analysis of the histogram shows that the index 68 
with value 0.54 is an outlier distance and should be reported 
as change in the original log stream. We get the same result, 
if assuming the JSD is normally distributed and any 
observations falling outside  

[𝑚𝑒𝑎𝑛 − 3𝑠𝑡𝑑,𝑚𝑒𝑎𝑛 + 3𝑠𝑡𝑑] 

interval of the metric is anomalous.  

IV. RUN-TIME DETECTION OF SICK EVENT SOURCES 

Turning to the second kind of change point problems, note 
that automatic ways of detecting atypical/anomalous event 
sources based on either their historical behavioral analysis or 
run-time status is not a trivial task. It is a common practice 
that an anomaly status of a log source is alerted based on user-
defined alert conditions containing an expert knowledge. 
However, it is very difficult to incorporate expert knowledge 
that covers every kind of change. Fortunately, our 
experiments demonstrate that event type distributions serve 
as generic indicators of change. We believe we can build a 
generic change detector to identify “sick” sources without 
needing complex expert knowledge. As we saw in the last 
sections, event types and their characteristics are such 
indicators. Therefore, they can be applied in solving a wider 
class of problems in managing the distributed cloud 
ecosystems. For instance, while individual learning of 
behavioral patterns for each event source in a big cloud is a 
complex analytical task, for the cloud-native applications it is 
much more effective to realize a segmentation-based 
management approach. This means that first we need to 
identify similar event sources of logs that might serve a 
common role in the application infrastructure (hence, can be 
treated and managed as population/crowd of objects). Then 
populations are subject to a management based on their 
properties. This means that any event source changing its 
behavior against the rest of the population can be identified 
run-time. This leads to application of machine learning both 
in clustering of event sources and detecting dissimilar log 
resources. In those tasks, the event types are invaluable 
“signatures” or “fingerprints” of log sources to rely on again.  

Based on event type distributions of log sources and cosine 
similarity measure of two vectors, our prototype 
implementations apply 

1. hierarchical clustering [15] to identify populations of 
similar sources;   

2. Local Outlier Factor (LOF) [16] analysis for each 
population to identify its sick members. 

LOF is based on a concept of a local density (or similarity 
distance in our case), locality defined by 𝑘 nearest (similar) 
neighbors. Those neighbors are employed to estimate the 
density. Based on this evaluation, outliers are detected as 
those objects that have substantially lower density than their 
neighbors. The local density is estimated by the distance at 
which a point can be "reached" from its neighbors [16]. 

In addition to the identifying anomalous sources, this meta-
data could be exposed to end-users for other purposes, such 
as allowing users to filter their logs to find “all sources like 
this one”.  In this way, users will be able to more easily define 
populations of objects to apply the relevant analytics. In this 
context, a simplistic version of the clustering instead of item 
1 can be applied, making a cluster of event sources with the 

following property – minimum pairwise similarity within the 
cluster is higher than a bar. 

Our experiments with log data from large environements 
show very high similarities (close to 1) between ESXi hosts 
in terms of their event type distributions and, hence, can be 
efficiently clustered using hierarchical clustering [16] to 
manage population of ESXi hosts accordingly.  

For a demonstration purposes, we performed a small 
experiment on five Apache servers (consisting of web, email, 
and ftp services), with similar behavioral patterns of event 
types. We emulated a DDOS attack (using ApacheBench test 
tool) on the web host of one of servers with high-rate service 
requests compared to the rest of servers during a 5-minute 
period. This load “shifted” the corresponding server from the 
population according to the LOF analysis. Moreover, even 
with the simple statistical whisker’s method applied to the 
“average distance from the rest of server group” data 
computed for each server it was possible to identify the sick 
host.   
  For simplicity, we show the distributions of event types 
(during the observation window) for only one “normal” host 
(Fig. 8) from the population of five (the rest exhibited very 
similar distributions while being in their normal operational 
workload modes) and the detected sick one (Fig. 9).  

 

  

 

 

 

 

 

 

 

 

Fig. 8. Event type distribution of one of the “normal” host members of 
Apache servers population. 

 

 Details of the experiment are as follows. All the pair-wise 
similarities between the hosts using cosine similarity measure 
were above 0.95 (a very high similarity) before the 
simulation. Because of the attack on the host xx.xxx.xxx.22 
(Fig. 9) with a 5-minute duration, the latter already exhibits a 
similarity drop from the rest of the hosts. The naïve whisker’s 
anomaly detection method from non-parametric statistics was 
useful for our purposes to observe the “sickness” of the 
attacked host. This method defines anomalous data values as 
those that stay outside the interval  

[𝑄25 − 1.5𝐼𝑄𝑅, 𝑄75 + 1.5𝐼𝑄𝑅], 

where 𝑄25 and 𝑄75 are the first and third quartiles of the data, 
and 𝐼𝑄𝑅 = 𝑄75 − 𝑄25 is its interquartile range. The average 
cosine distance for the loaded host from the rest was detected 
as outlying. Since the average cosine similarity distances 
(ACSD) for the hosts were  

ACSD(host21)=0.97,  

ACSD(host22)=0.89,  

ACSD(host 23)=0.96,  
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ACSD(host 24)=0.97,  

ACSD(host 25)=0.97,  

the ACSD score of 0.89 for the over-requested host is outside 
the above-mentioned interval. Therefore, the attacked host 
with ACSD=0.89 is dissimilar from the rest of the crowd and 
is identified to be “sick”.  
 Note that in this case we deal with an unexpected situation 
which is not about observing specific log messages and their 
types containing a contextual information like “error”, etc., 
but about a statistically atypical distribution of events as an 
important change indicator the system incurs in terms of a 
security attack.  
 Although distributions in Fig. 8 and 9 may look similar, 
their dissimilarity is sufficient for the algorithms to declare 
about the sickness of the stressed host compared to the rest of 
population. In particular, event type #9 was absent at normal 
hosts, while at the sick host it has 8%-presence, or, event type 
#18 that increased from about 4% (at normal hosts) to 11% 
(at sick host), etc.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Event type distribution of the “sick” host in population of Apache 

servers. 
 

Apparently, the naïve outlier detection approach 
mentioned above is only for demonstration purposes. In 
reality, we need to rely on the most sophisticated outlier 
detection methods of machine learning like LOF analysis [16] 
to maximize reliability of capturing the patterns we are 
looking for. However, in both cases, we deal with algorithms 
of polynomial complexity by the size of the population which 
is not a very large number in applications. Therefore, these 
run-time decisions making algorithms are scalable with the 
population dynamics, but might require storing large vectors 
of event type distributions depending on the nature of event 
sources (very high volume of events can be clustered by LI 
into a high number of event types in one case, and into a small 
number of event types in other case). 

V. CONCLUSION AND FUTURE WORK 

We introduced a new framework for change point analysis 
for log event sources with two complementary problem 
formulations. The first relates to an individual historical 
learning of typical characteristics of a log source, while the 
second links to a real-time comparison of event sources with 
each other within a population of peers in distributed cloud 
environments. Our solution approaches to those problems 
and implemented prototypes demonstrated a reliable and 

effective identification of change points in log streams and 
sick log sources. 

We have built a large experimental set-up for our 
algorithms to consume the streamed log data of a large 
environment and perform near-real-time detection of ESXi 
hosts experiencing change. Our plan includes validating 
observed changes with the incident data weekly being 
reported by the operations team. The live never-ending 
stream of all ESXi events with their event-type and hostname 
fields make a big volume (approximately ~14 billion events 
per day for ~2500 ESXi hosts).  

Classifying Change Incident Data. Already occurred 
changes (with corresponding training data) that have been 
investigated can be tagged with corresponding change 
categories observed by the admin (such as ‘restart’, 
‘upgrade’, ‘disk full’, ‘overprovisioning’, etc). Having such a 
labelled data will enable automatic classification of a newly 
detected change into one of known classes applying 
supervised machine learning algorithms. 
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