

On weighted classes of harmonic functions in the unit ball of Rⁿ

A. I. PETROSYAN*

Yerevan State University, 1 Aleck Manoogian street, Yerevan 375049, Armenia

Communicated by H. Begehr

(Received 22 August 2004; in final form 12 April 2005)

This article gives the main representation theorems for harmonic functions in the spaces $b^p_\omega(B)$ on the unit ball B in \mathbf{R}^n . These spaces depend on a parameter function ω and are arbitrarily large. We receive the integral representation for the functions of $b^p_\omega(B)$ over the unit ball. The article also gives a representation connected with the natural isometry between $b^2_\omega(B)$ and the ordinary space L^2 on the unit sphere, which is explicitly given in the form of an integral operator along with its inversion.

Keywords: Weighted spaces; Harmonic functions; Integral representation; Isometry

AMS 2000 Mathematics Subject Classifications: 30H05; 46E15

1. Introduction

This article gives the main representation theorems for arbitrarily large harmonic $b_{\omega}^{p}(B)$ spaces in the unit ball in \mathbb{R}^{n} , which are similar to the analytic spaces investigated in [1].

Section 2 is devoted to some preliminary notation and construction of Djrbashian's ω -kernel [2] in the unit ball of \mathbb{R}^n . In section 3, we introduce the spaces $b^p_\omega(B)$ and prove some preliminary statements. Section 4 is devoted to the main integral representation of $b^p_\omega(B)$ over the unit ball (Theorem 1) and to the orthogonal projection from $L^2_\omega(B)$ to $b^p_\omega(B)$ (Theorem 2). Note that for the particular case

$$\omega(t) = \frac{nV(B)}{2} \int_{t}^{1} \tau^{(n/2)-1} (1-\tau)^{\alpha} d\tau$$

_

^{*}Email: apet@freenet.am

the representation of Theorem 1 was obtained in [3] and for $\alpha = 0$ one can find this representation also in [4]. Section 5 gives an integral representation of the considered spaces $b_{\omega}^{2}(B)$ over the unit sphere. This leads to an isometry between the $b_{\omega}^{2}(B)$ spaces and the ordinary L^2 -space on the unit sphere, which has an explicit form of integral operator along with its inversion (Theorems 3 and 4).

In this article, we shall frequently use some basic statements of the n-dimensional theory of harmonic functions explicitly given in [4].

Note that for the one-dimensional case, i.e. in the unit disc, the basics of the theory of arbitrarily large classes A^p_{ω} of analytic functions were more exhaustively constructed in [5,6].

2. Construction of the R_{ω} -kernel

2.1. We start by giving the notations, which we use throughout the article.

 $B = \{x \in \mathbf{R}^n : |x| < 1\}$ is the open unit ball in \mathbf{R}^n and $S = \{x \in \mathbf{R}^n : |x| = 1\}$ is its boundary, i.e. S is the unit sphere in \mathbb{R}^n ;

 σ is the normalized surface-area measure on S, so that $\sigma(S) = 1$;

 $\mathcal{H}_m(\mathbf{R}^n)$ is the set of all complex-valued homogeneous harmonic polynomials of degree m in \mathbb{R}^n ;

 $\mathcal{H}_m(S)$ is the set of all spherical harmonics of degree m, i.e. the restrictions of functions from $\mathcal{H}_m(\mathbf{R}^n)$ on the sphere S;

P[f] denotes the Poisson integral of f:

$$P[f](x) = \int_{S} P(x,\zeta)f(\zeta) d\sigma(\zeta), \quad \text{where } P(x,\zeta) = \frac{1 - |x|^2}{|\zeta - x|^n}.$$
 (1)

We associate with each complex function f on [a,b] its total variation $\bigvee_a^b f$ defined by $\bigvee_a^b f = \sup \left\{ \sum_{j=1}^N |f(t_j) - f(t_{j-1})| \right\}$, where the supremum is taken over all N and over all choices of $\{t_i\}$ such that $a = t_1 < t_2 < \cdots < t_N = b$.

Further, as in [4], by Ω we denote the class of functions $\omega(t)$ in [0, 1] such that $\omega(1) = \omega(1-0)$ and

- (i) $0 < \bigvee_{\delta}^{1} \omega < \infty$ for any $\delta \in [0, 1)$; (ii) $\Delta_{k} \equiv \Delta_{k}(\omega) = -\int_{0}^{1} t^{k} d\omega(t) \neq 0, \infty, \ k = 0, 1, ...$; (iii) $\liminf_{k \to \infty} \sqrt[k]{|\Delta_{k}|} \geq 1$.
- **2.2.** For a given $\omega \in \Omega$ we introduce the ω -kernel

$$R_{\omega}(x,y) = \sum_{k=0}^{\infty} \Delta_k^{-1} Z_k(x,y).$$
 (2)

Lemma 1 The series in the right side of (2) converges absolutely and uniformly on the set $\{(x,y) \in \mathbb{R}^{2n}: |x||y| \le q, \ 0 < q < 1\}$ and particularly on $K \times \overline{B}$, where K is an arbitrary compact subset of B.

Proof Let $x = r\zeta$, $y = \rho \eta$, where $\zeta, \eta \in S$. Taking into account that the function $Z_k(x, y)$ is homogeneous by both variables, we obtain

$$|Z_k(x,y)| = r^k \rho^k |Z_k(\zeta,\eta)| \le r^k \rho^k d_k, \tag{3}$$

where d_k is the dimension of $\mathcal{H}_k(S)$. The property (i) of the parameter function ω implies

$$\limsup_{k\to\infty} \sqrt[k]{|\Delta_k|} \le \limsup_{k\to\infty} \sqrt[k]{\int_0^1 t^k |\mathrm{d}\omega(t)|} \le \limsup_{k\to\infty} \sqrt[k]{\int_0^1 \omega} = 1.$$

Along with (iii), this means that

$$\lim_{k\to\infty} \sqrt[k]{|\Delta_k|} = 1.$$

The desired convergence follows from (3) in view of the estimate $d_k \le Ck^{n-2}$ from [4].

3. The spaces $b_{\omega}^{p}(B)$

3.1. For a given $\omega \in \Omega$, we denote

$$d\mu_{\omega}(x) = -d\omega(r^2) d\sigma(\zeta),$$

where $x = r\zeta$ is the polar form of $x \in B$ (i.e. $r = |x|, \zeta \in S$), and define $L^p_{\omega}(B)$ as the set of all $d\mu_{\omega}$ -measurable functions in B for which

$$||u||_{p,\omega} = \left\{ \int_{B} |u(x)|^{p} |d\mu_{\omega}(x)| \right\}^{1/p} < +\infty, \quad 1 \le p < \infty.$$

We introduce $b_{\omega}^{p}(B)$ as the harmonic subset of $L_{\omega}^{p}(B)$.

It turns out that for any fixed p the classes $b_{\omega}^{p}(B)$ can contain harmonic functions of arbitrary growth near the boundary.

PROPOSITION 1 For any fixed $p \in [1, \infty)$ the sum $\bigcup_{\omega \in \Omega} b^p_{\omega}(B)$ coincides with the set of all functions harmonic in B.

Proof Evidently, it is sufficient to show that Ω contains functions of any rate of decrease as $t \to 1 - 0$. Indeed, if $\omega \setminus$ in [0, 1] then

$$\Delta_k = -\int_0^1 t^k d\omega(t) \ge -\int_{1-\varepsilon}^1 t^k d\omega(t) \ge (1-\varepsilon)^k \bigvee_{1-\varepsilon}^1 \omega$$

for any $\varepsilon \in (0, 1)$. Therefore, by (i)

$$\liminf_{k\to\infty} \sqrt[k]{|\Delta_k|} \ge (1-\varepsilon) \sqrt[k]{\bigvee_{1-\varepsilon}^1 \omega} = 1-\varepsilon,$$

and the passage $\varepsilon \to 0$ gives (iii).

For any fixed $x \in B$, the mapping $u \mapsto u(x)$ is a linear functional over $b_{\omega}^{p}(B)$. The following proposition shows that this is a continuous functional.

Proposition 2 For any function $u \in b_{\omega}^{p}(B)$ and any point $x \in B$

$$|u(x)| \le \frac{2^{n/p}}{(1-|x|)^{(n-1)/p}} \left(\int_{(1+|x|)/2}^{1} |d\omega(t^2)| \right)^{-1/p} ||u||_{p,\omega}.$$

Proof The following estimates obviously are true for the Poisson's kernel (1):

$$P(x,\zeta) = \frac{1 - |x|^2}{|\zeta - x|^n} \le \frac{1 + |x|}{(1 - |x|)^{n-1}} \le \frac{2}{(1 - |x|)^{n-1}}.$$
 (4)

Let $x \in B$ and |x| < R < 1. Using the subharmonicity of the function $|u(Rx)|^p$ in the neighbourhood of the ball \overline{B} and (4), we get

$$|u(Rx)|^p \le \int_{S} |u(R\zeta)|^p P(x,\zeta) \, d\sigma(\zeta) \le \frac{2}{(1-|x|)^{n-1}} \int_{S} |u(R\zeta)|^p \, d\sigma(\zeta).$$
 (5)

The integral means $M(R) = \int_{S} |u(R\zeta)|^{p} d\sigma(\zeta)$ is nondecreasing in R. Hence

$$\int_{R}^{1} |d\omega(t^{2})| \int_{S} |u(R\zeta)|^{p} d\sigma(\zeta) \leq \int_{R}^{1} \left(\int_{S} |u(t\zeta)|^{p} d\sigma(\zeta) \right) |d\omega(t^{2})|$$

$$= \int_{R < |x| \leq 1} |u(x)|^{p} |d\mu_{\omega}(x)| \leq ||u||_{p,\omega}^{p}.$$
(6)

By (5) and (6)

$$|u(Rx)|^p \le \frac{2}{(1-|x|)^{n-1}} \left(\int_R^1 |d\omega(t^2)| \right)^{-1} ||u||_{p,\omega}^p,$$

and the change of a variable $Rx \mapsto x$ gives

$$|u(x)| \le \frac{2^{n/p}}{(R-|x|)^{(n-1)/p}} \left(\int_{R}^{1} |d\omega(t^2)| \right)^{-1/p} ||u||_{p,\omega}.$$

Taking R = (1 + |x|)/2 we come to our assertion.

For a multi-index $s = (s_1, ..., s_n)$ (where s_i are nonnegative integers), the partial differentiation operator D^s is usually defined as $D_1^{s_1} ... D_n^{s_n}$. Using this definition and the Cauchy inequalities for harmonic functions, we come to

Corollary 1 For any multi-index s there is a constant C = C(s) such that

$$\left| D^{s}u(x) \right| \leq \frac{C}{(1-|x|)^{|s|+(n-1)/p}} \left(\int_{(3+|x|)/4}^{1} |\mathrm{d}\omega(t^{2})| \right)^{-1/p} \|u\|_{p,\omega}.$$

Proof Applied for the ball $B(x) = \{y: |y - x| < (1 - |x|)/2\}$, the Cauchy inequalities give

$$|D^{s}u(x)| \le \frac{C_{s}M(x)}{(1-|x|)^{|s|}},$$
 (7)

where $M(x) = \max_{y \in B(x)} u(y)$. By Proposition 2, for any $y \in B(x)$

$$|u(y)| \le \frac{2^{n/p}}{(1-|y|)^{(n-1)/p}} \left(\int_{(1+|y|)/2}^{1} |\mathrm{d}\omega(t^2)| \right)^{-1/p} ||u||_{p,\omega}.$$

Besides, the inequalities $1 - |y| \ge (1 - |x|)/2$ and $(1 + |y|)/2 \le (3 + |x|)/4$ obviously follow from $y \in B(x)$, and taking the maximum over all $y \in B(x)$ we get

$$M(x) \le \frac{2^{(2n-1)/p}}{(1-|x|)^{(n-1)/p}} \left(\int_{(3+|x|)/4}^{1} |d\omega(t^2)| \right)^{-1/p} ||u||_{p,\omega}.$$

Our statement follows from (7) and the last inequalities.

Proposition 3 For any $1 \le p < \infty$, $b_{\omega}^{p}(B)$ is a closed subset of $L_{\omega}^{p}(B)$.

Proof Suppose $||u_j - u||_{p,\omega} \to 0$ as $j \to \infty$, where u_j is a sequence of functions in $b_{\omega}^p(B)$ and $u \in L_{\omega}^p(B)$. We shall show that u is equivalent to some function harmonic on B, with respect to the measure μ_{ω} .

Let $K \in B$ be a compact. Proposition 2 implies that there exists a constant $C \equiv C(K, p, \omega)$ such that

$$\max_{x \in K} |u(x)| \le C \|u\|_{p,\omega}$$

for any $u \in b^p_{\omega}(B)$. Hence $|u_j(x) - u_k(x)| \le C||u_j - u_k||_{p,\omega}$ for any $x \in K$ and j,k. The sequence u_j is fundamental in $b^p_{\omega}(B)$, and hence u_j converges uniformly on compact subsets of B to a function v harmonic on B. Besides, $u_j \to u$ in L^p_{ω} . Therefore, by Riesz' theorem there exists a subsequence of u_j converging to u pointwise almost everywhere in B, with respect to μ_{ω} . Thus, u = v almost everywhere in B, and $u \in b^p_{\omega}(B)$.

COROLLARY 2 $b_{\omega}^{p}(B)$ is a Banach space.

3.2. The next assertion states the continuity of ϱ -dilatation in $b_{\varrho}^{p}(B)$.

Proposition 4 Let $u \in b^p_\omega(B)$ and $u_\varrho(x) = u(\varrho x)$. Then $||u_\varrho - u||_{p,\omega} \to 0$ as $\varrho \to 1 - 0$. Proof For any $\delta \in (0,1)$

$$\|u_{\varrho} - u\|_{p,\omega}^{p} \le \int_{\delta B} |u(\varrho x) - u(x)|^{p} d\mu_{\omega}(x)$$

$$+ 2^{p} \int_{\delta}^{1} \left\{ \int_{S} (|u(\varrho r\zeta)|^{p} + |u(r\zeta)|^{p}) d\sigma(\zeta) \right\} d\omega(r^{2})$$
(8)

since $(a+b)^p \le 2^p (a^p + b^p)$ (a,b > 0). Further $m(\varrho) = \int_S |u(\varrho r\zeta)|^p d\sigma(\zeta)$ is nondecreasing and $m(\varrho) \le m(1)$ since $|u(x)|^p$ is subharmonic. Hence by (8)

$$||u_{\varrho}-u||_{p,\omega}^{p} \leq \int_{\delta B} |u(\varrho x)-u(x)|^{p} d\mu_{\omega}(x) + 2^{p+1} \int_{B\setminus \delta B} |u(x)|^{p} d\mu_{\omega}(x).$$

It remains to see that the right-hand side of this inequality can be made arbitrarily small by taking δ and then ϱ close enough to 1.

It is well known that any function harmonic in a domain containing \overline{B} can be uniformly approximated on \overline{B} by harmonic polynomials. Using this fact, one can prove the following corollary of Proposition 4.

COROLLARY 3 Harmonic polynomials are dense in $b_{\omega}^{p}(B)$.

4. Representation over the ball

4.1. Let u(x) be a harmonic function in the unit ball of the space \mathbb{R}^n . The following homogeneous expansion is well known:

$$u(x) = \sum_{k=0}^{\infty} p_k(x),\tag{9}$$

where $p \in \mathcal{H}_m(\mathbf{R}^n)$ and the series (9) is absolutely and uniformly convergent on compact subsets of the ball.

Let $Z_m(\zeta, \eta)$ ($\zeta \in S$, $\eta \in S$) be the zonal harmonic of degree m. Then $Z_m(\zeta, \eta) = Z_m(\eta, \zeta)$, $Z_m(\zeta, \cdot) \in \mathcal{H}_m(S)$ and the following representation is true:

$$p_m(\zeta) = \int_{S} p_m(\eta) Z_m(\zeta, \eta) \, \mathrm{d}\eta. \tag{10}$$

The theorem below gives the main representation formulas in $b_{\omega}^{p}(B)$ spaces.

Theorem 1 Let $u \in b_{\omega}^{p}(B)$. Then

$$u(x) = \int_{B} u(y)R_{\omega}(x, y) \,\mathrm{d}\mu_{\omega}(y), \quad x \in B.$$
 (11)

Proof Let $p_k \in \mathcal{H}_m(S)$. Then

$$\int_{B} p_{k}(y) R_{\omega}(x, y) d\mu_{\omega}(y) = \int_{B} p_{k}(y) \left(\sum_{m=0}^{\infty} \frac{Z_{m}(x, y)}{\Delta_{m}} \right) d\mu_{\omega}(y)$$

$$= \sum_{m=0}^{\infty} \frac{1}{\Delta_{m}} \int_{B} p_{k}(y) Z_{m}(x, y) d\mu_{\omega}(y). \tag{12}$$

If $\zeta, \eta \in S$ and $x = r\zeta$, $y = \rho\eta$, then by homogeneity of the functions $p_k(y)$ and $Z_m(x, y)$

$$\int_{B} p_{k}(y) Z_{m}(x, y) d\mu_{\omega}(y) = -\int_{B} \rho^{k} p_{k}(\eta) r^{m} \rho^{m} Z_{m}(\zeta, \eta) d\omega(\rho^{2}) d\sigma(\eta)$$
$$= -r^{m} \int_{0}^{1} \rho^{k+m} d\omega(\rho^{2}) \int_{S} p_{k}(\eta) Z_{m}(\zeta, \eta) d\sigma(\eta).$$

The last integral vanishes for $m \neq k$ by orthogonality and is equal to $p_k(\zeta)$ for m = k in accordance to (10). Hence

$$\int_{B} p_{k}(y) Z_{k}(x, y) d\mu_{\omega}(y) = -r^{k} p_{k}(\zeta) \int_{0}^{1} \rho^{2k} d\omega(\rho^{2})$$

$$= -p_{k}(x) \int_{0}^{1} t^{k} d\omega(t) = \Delta_{k} p_{k}(x).$$
(13)

By (12) and (13),

$$\int_{R} p_k(y) R_{\omega}(x, y) \, \mathrm{d}\mu_{\omega}(y) = p_k(x). \tag{14}$$

Further, let $u_{\varrho}(x) = u(\varrho x)$ (0 < ϱ < 1). By the uniform convergence of the expansion $u(\varrho x) = \sum p_k(\varrho x)$ in \overline{B} and by (14)

$$u_{\varrho}(x) = \sum_{k=0}^{\infty} \varrho^{k} p_{k}(x) = \sum_{k=0}^{\infty} \varrho^{k} \int_{B} p_{k}(y) R_{\omega}(x, y) \, \mathrm{d}\mu_{\omega}(y)$$

$$= \int_{B} \left(\sum_{k=0}^{\infty} \varrho^{k} p_{k}(y) \right) R_{\omega}(x, y) \, \mathrm{d}\mu_{\omega}(y) = \int_{B} \left(\sum_{k=0}^{\infty} p_{k}(\varrho y) \right) R_{\omega}(x, y) \, \mathrm{d}\mu_{\omega}(y)$$

$$= \int_{B} u_{\varrho}(y) R_{\omega}(x, y) \, \mathrm{d}\mu_{\omega}(y).$$

By Proposition 4, the passage $\rho \to 0$ leads to the desired assertion.

4.2. Consider the special case

$$\omega(t) = \frac{nV(B)}{2} \int_{t}^{1} \tau^{(n/2)-1} (1-\tau)^{\alpha} dt.$$

Let $x = r\zeta$, where $r = |x|, \zeta \in S$. Using the expression of the volume element in polar coordinates (see, for instance, [7]), we get

$$d\mu_{\omega}(x) = -d\omega(r^2)d\sigma(\zeta) = -\omega'(r^2) 2r dr d\sigma(\zeta)$$

= $nV(B)r^{n-1} (1 - r^2)^{\alpha} dr d\sigma(\zeta) = (1 - r^2)^{\alpha} dV(x).$

Thus, in the considered case $b_{\omega}^{p}(B)$ consists of all harmonic functions u in B, which satisfy

$$||u||_{p,\alpha} = \left(\int_{B} |u(x)|^{p} (1-|x|^{2})^{\alpha} dV(x)\right)^{1/p} < \infty.$$

We denote this space by $b_{\alpha}^{p}(B)$. Further,

$$\Delta_m = -\int_0^1 t^m d\omega(t) = \frac{nV(B)}{2} \int_0^1 t^{n/2+m-1} (1-t)^{\alpha} dt$$
$$= \frac{nV(B)}{2} \frac{\Gamma(n/2+m)\Gamma(\alpha+1)}{\Gamma(n/2+m+\alpha+1)},$$

and denoting the corresponding kernel by R_{α} , we have

$$R_{\alpha}(x,y) = \frac{2}{nV(B)} \sum_{m=0}^{\infty} \frac{\Gamma(n/2 + m + \alpha + 1)}{\Gamma(n/2 + m)\Gamma(\alpha + 1)} Z_m(x,y).$$

Thus, in the considered case, formula (11) takes the form

$$u(x) = \frac{2}{nV(B)} \int_{B} u(y) \left(\sum_{m=0}^{\infty} \frac{\Gamma(n/2 + m + \alpha + 1)}{\Gamma(n/2 + m)\Gamma(\alpha + 1)} Z_{m}(x, y) \right) (1 - |y|^{2})^{\alpha} dV(y),$$

i.e. coincides with that of [3].

We suppose that for any $x \in B$ the Poisson kernel P(x, y) is harmonically extended to \overline{B} as follows:

$$P(x,y) = \frac{1 - |x|^2 |y|^2}{(1 - 2x \cdot y + |x|^2 |y|^2)^{n/2}},$$

where \cdot denotes the usual Euclidean inner product. To obtain an expression of R_{α} by means of the Poisson kernel P, we use some well-known facts from the theory of fractional integro-differentiation in the Riemann–Liouville sense. The primitive of $f \in L^1(0,1)$ of order $\alpha > 0$ is defined as

$$D^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - \tau)^{\alpha - 1} f(\tau) d\tau.$$

The derivative of order α is defined to be

$$D^{\alpha}f(t) = \frac{\mathrm{d}^{p}}{\mathrm{d}t^{p}} \left\{ D^{-(p-\alpha)}f(t) \right\},\,$$

where the integer p is deduced by the inequalities $p-1 < \alpha \le p$. Using the simple equality

$$D^{\alpha+1}t^{\gamma} = \frac{\Gamma(1+\gamma)}{\Gamma(\gamma-\alpha)}t^{\gamma-\alpha-1},$$

we find that

$$\begin{split} &\sum_{m=0}^{\infty} \frac{\Gamma(n/2 + m + \alpha + 1)}{\Gamma(n/2 + m)} Z_m(x, y) = \sum_{m=0}^{\infty} D^{\alpha + 1} \left(t^{n/2 + m + \alpha} Z_m(x, y) \right) \Big|_{t=1} \\ &= D^{\alpha + 1} \left(\sum_{m=0}^{\infty} t^{n/2 + m + \alpha} Z_m(x, y) \right) \Big|_{t=1} = D^{\alpha + 1} \left(\sum_{m=0}^{\infty} t^{n/2 + \alpha} Z_m(tx, y) \right) \Big|_{t=1} \\ &= D^{\alpha + 1} \left(t^{n/2 + \alpha} P(tx, y) \right) \Big|_{t=1}. \end{split}$$

Thus

$$R_{\alpha}(x,y) = \frac{2}{n\Gamma(\alpha+1)V(B)} D^{\alpha+1} \left(t^{n/2+\alpha} P(tx,y) \right) \Big|_{t=1}.$$

When α is a nonnegative integer, the operator $D^{\alpha+1}$ is obtained from the usual derivation, and this allows to calculate $R_{\alpha}(x,y)$ in an explicit form. Particularly, for $\alpha=0$ this calculation results in the formula

$$R_0(x,y) = \frac{2}{nV(B)} \frac{d}{dt} \left(t^{n/2} P(tx,y) \right) \Big|_{t=1} = \frac{nP(x,y) + 2(d/dt) P(tx,y) \Big|_{t=1}}{nV(B)},$$

which coincides with that of [4] in view of

$$2\frac{\mathrm{d}}{\mathrm{d}t}P(tx,y)\bigg|_{t=1} = \frac{\mathrm{d}}{\mathrm{d}t}P(tx,ty)\bigg|_{t=1}.$$

4.3. The right-hand side integral of (11) defines the orthogonal projection of $L^2_{\omega}(B)$ onto its subspace $b^2_{\omega}(B)$, i.e. the following assertion is true.

Theorem 2 The operator

$$Q_{\omega}[u](x) = \int_{B} u(y)R_{\omega}(x,y) \,\mathrm{d}\mu_{\omega}(y), \quad u \in L^{2}_{\omega}(B), \ x \in B,$$

is the orthogonal projection of $L^2_{\omega}(B)$ onto $b^2_{\omega}(B)$.

Proof As $L^2_{\omega}(B) = b^2_{\omega}(B) \oplus (b^2_{\omega}(B))^{\perp}$, any $u \in L^2_{\omega}(B)$ is written in the form $u = u_1 + u_2$, where $u_1 \in b^2_{\omega}(B)$ and $u_2 \in (b^2_{\omega}(B))^{\perp}$. Hence $Q_{\omega}[u] = Q_{\omega}[u_1] + Q_{\omega}[u_2]$, where $Q_{\omega}[u_1] = u_1$ by Theorem 1. On the other hand,

$$Q_{\omega}[u_2](x) = \int_{B} u_2(y) R_{\omega}(x, y) \,\mathrm{d}\mu_{\omega}(y) = \langle u_2, R_{\omega}(x, \cdot) \rangle_{\omega} = 0,$$

where $\langle \cdot, \cdot \rangle_{\omega}$ is the inner product of $L^2_{\omega}(B)$, since due to Lemma 1 for a fixed $x \in B$ the function $R_{\omega}(x,y)$ is harmonic by y in a domain containing \overline{B} , and u_2 is orthogonal to $b^2_{\omega}(B)$. Thus $Q_{\omega}[u] = u_1$, i.e. Q_{ω} is the orthogonal projector $L^2_{\omega}(B) \mapsto b^2_{\omega}(B)$.

5. Representation over the sphere

5.1. We start by the following assertion proved in [6].

PROPOSITION 5 Let $\tilde{\omega} \in \Omega$ be continuously differentiable in [0, 1) and such that $\tilde{\omega}(t) \setminus \tilde{\omega}(1) = 0$ and $\tilde{\omega}(0) = 1$. Further, let ω be the Volterra square of $\tilde{\omega}$, i.e.

$$\omega(t) = -\int_{t}^{1} \tilde{\omega}\left(\frac{t}{\sigma}\right) d\tilde{\omega}(\sigma), \quad 0 < t < 1.$$
 (15)

Then $\omega \in \Omega$ and

$$\Delta_m(\omega) = [\Delta_m(\tilde{\omega})]^2, \quad m \ge 0. \tag{16}$$

Further, we denote the norm in $L^p(S)$ by $\|\cdot\|_p$ and prove

Proposition 6 Let $u \in b^2_{\omega}(B)$ and $u(x) = \sum p_k(x)$ be its homogeneous expansion. Then

$$||u||_{2,\omega}^2 = \sum_{k=0}^{\infty} |\Delta_k(\omega)| ||p_k||_2^2.$$

Proof For any $r \in (0,1)$

$$\int_{B(r)} |u(y)|^2 d\mu_{\omega}(y) = \int_0^r d\omega(\rho^2) \left(\sum_{k=0}^{\infty} p_k(\rho \zeta) \sum_{s=0}^{\infty} \overline{p}_s(\rho \zeta) \right) d\sigma(\zeta)$$

$$= \sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \int_0^r \rho^{k+s} d\omega(\rho^2) \int_S p_k(\zeta) \overline{p}_s(\zeta) d\sigma(\zeta)$$

$$= \sum_{k=0}^{\infty} \int_0^r \rho^{2k} d\omega(\rho^2) \int_S |p_k(\zeta)|^2 d\sigma(\zeta)$$

$$= \sum_{k=0}^{\infty} \int_0^{r^2} t^k d\omega(t) \int_S |p_k(\zeta)|^2 d\sigma(\zeta).$$

Letting $r \to 1 - 0$ we get

$$||u||_{2,\omega}^2 = \int_B |u(y)|^2 d\mu_\omega(y) = \sum_{k=0}^\infty |\Delta_k(\omega)| ||p_k||_2^2.$$

On the basis that $L^2(S) = \bigoplus_{m=0}^{\infty} \mathcal{H}_m(S)$, we prove

PROPOSITION 7 Let $f \in L^2(S)$ and let $f = \sum p_m$ be its spherical harmonic expansion (i.e. $p_m \in \mathcal{H}_m(S)$) and the sum converges in $L^2(S)$). Then the following formulas are true for homogeneous harmonic polynomials $p_m(x)$:

$$p_m(x) = \int_S f(\zeta) Z_m(x, \zeta) \, d\sigma(\zeta).$$

Proof For any fixed $x = r\eta \ (r \ge 0, \ \eta \in S)$

$$p_{m}(x) = r^{m} p_{m}(\eta) = r^{m} \int_{S} p_{m}(\zeta) Z_{m}(\eta, \zeta) \, d\sigma(\zeta)$$

$$= r^{m} \int_{S} \left(\sum_{k=0}^{\infty} p_{k}(\zeta) \right) Z_{m}(\eta, \zeta) \, d\sigma(\zeta) = r^{m} \int_{S} f(\zeta) Z_{m}(\eta, \zeta) \, d\sigma(\zeta)$$

$$= \int_{S} f(\zeta) Z_{m}(x, \zeta) \, d\sigma(\zeta).$$

where the third equality follows by the orthogonality of the spherical harmonics of different degrees.

Theorem 3 The mapping $f \mapsto R_{\tilde{\omega}}[f]$, where

$$R_{\tilde{\omega}}[f](x) = \int_{S} f(\zeta) R_{\tilde{\omega}}(x,\zeta) \, d\sigma(\zeta),$$

is a linear isometry from $L^2(S)$ to $b_{\omega}^2(B)$.

Proof First, observe that the considered mapping is evidently linear. Next, suppose $f = \sum p_m$ as in Proposition 7. Then obviously

$$R_{\tilde{\omega}}[f](x) = \int_{S} f(\zeta) R_{\tilde{\omega}}(x,\zeta) \, d\sigma(\zeta) = \int_{S} f(\zeta) \sum_{m=0}^{\infty} \Delta_{m}^{-1}(\tilde{\omega}) Z_{m}(x,\zeta) \, d\sigma(\zeta)$$
$$= \sum_{m=0}^{\infty} \Delta_{m}^{-1}(\tilde{\omega}) \int_{S} f(\zeta) Z_{m}(x,\zeta) \, d\sigma(\zeta) = \sum_{m=0}^{\infty} \Delta_{m}^{-1}(\tilde{\omega}) p_{m}(x). \tag{17}$$

According to Proposition 6 and (16)

$$\|R_{\tilde{\omega}}[f]\|_{2,\omega}^{2} = \sum \Delta_{m}(\omega) \|\Delta_{m}^{-1}(\tilde{\omega})p_{m}\|_{2}^{2} = \sum \|p_{m}\|_{2}^{2} = \|f\|_{2}^{2}.$$

It remains to show that the range of values of the mapping $f \mapsto R_{\tilde{\omega}}[f]$ is the whole space $b_{\omega}^2(B)$. To prove this, suppose $u \in b_{\omega}^2(B)$ and $u(x) = \sum q_k(x)$. If $p_k(x) = \Delta_k(\tilde{\omega})q_k(x)$, then

$$\sum \|p_k\|_2^2 = \sum \|\Delta_k(\tilde{\omega})q_k\|_2^2 = \sum \Delta_k(\omega)\|q_k\|_2^2 = \|u\|_{2,\omega}^2$$

due to Proposition 6 and (16). Hence, the function $f = \sum p_k$ belongs to $L^2(S)$. As in (17), we obtain $R_{\tilde{\omega}}[f](x) = \sum \Delta_m^{-1}(\tilde{\omega})p_m(x)$, and therefore $R_{\tilde{\omega}}[f](x) = u(x)$.

Further, we denote $h^p(B)$ the ordinary harmonic Hardy space, i.e. the class of functions u harmonic in B and such that

$$||u||_{h^p} = \sup_{0 \le r < 1} ||u_r||_p < \infty.$$

Besides, we consider the operator

$$L_{\tilde{\omega}}[u](x) = -\int_0^1 u(tx) \,\mathrm{d}\tilde{\omega}(t).$$

Theorem 4 Let $f \in L^2(S)$ and $u = R_{\tilde{\omega}}[f]$. Then

- (a) $L_{\tilde{\omega}}[u] = P[f],$
- (b) the mapping $u \mapsto L_{\tilde{\omega}}[u]$ is a linear isometry of $b_{\tilde{\omega}}^2(B)$ onto $h^2(B)$.

Proof Let $f = \sum p_m$, and $u(x) = \sum q_m(x)$ be the homogeneous expansion of u in the unit ball. Then

$$q_m(x) = \Delta_m^{-1}(\tilde{\omega})p_m(x) \tag{18}$$

in accordance with (17). Further, it is known that P[f] has the homogeneous expansion $P[f](x) = \sum p_k(x)$. Therefore, by (18) and Proposition 7

$$P[f](x) = \sum_{k=0}^{\infty} \Delta_k(\tilde{\omega}) q_k(x) = -\sum_{k=0}^{\infty} q_k(x) \int_0^1 t^k d\tilde{\omega}(t)$$
$$= -\sum_{k=0}^{\infty} \int_0^1 q_k(tx) d\tilde{\omega}(t) = -\int_0^1 \left(\sum_{k=0}^{\infty} q_k(tx)\right) d\tilde{\omega}(t)$$
$$= -\int_0^1 u(tx) d\tilde{\omega}(t) = L_{\tilde{\omega}}[u](x).$$

This proves (a). For accomplishing the proof, it suffices to observe that the mapping $f \mapsto P[f]$ is a linear isometry of $L^2(S)$ onto $h^2(B)$, and consequently (b) follows from Theorem 3 and (a).

Remark It is well known that for $f \in L^2(S)$ the function P[f] has a nontangential limit $f(\zeta)$ at almost every point $\zeta \in S$. Thus, it is natural to identify f and P[f] and to say that the operators L_{ω} and R_{ω} are mutually inverse.

5.2. In the special case mentioned in section 4, Theorems 3 and 4 take the following forms.

Theorem 5 Let $u(x) \in b_{\alpha}^{2}(B)$ $(\alpha > -1)$. Then the function

$$\varphi(x) = \frac{\Gamma((n+\alpha+1)/2)}{\Gamma(n/2)\Gamma((\alpha+1)/2)} \int_0^1 u(tx)t^{(n/2)-1} (1-t)^{(\alpha-1)/2} dt$$

belongs to $h^2(B)$ and the following integral representation is true:

$$u(x) = \int_{S} \varphi(\zeta) T_{\alpha}(x, \zeta) \, d\sigma(\zeta),$$

where

$$T_{\alpha}(x,\zeta) = \sum_{k=0}^{\infty} \frac{\Gamma(n/2)\Gamma(k+(n+\alpha+1)/2)}{\Gamma((n+\alpha+1)/2)\Gamma(k+n/2)} Z_k(x,\zeta).$$

Proof In Theorems 3 and 4 we put

$$\tilde{\omega}(t) = \frac{\Gamma((n+\alpha+1)/2)}{\Gamma(n/2)\Gamma((\alpha+1)/2)} \int_{t}^{1} \tau^{n/2-1} (1-\tau)^{(\alpha-1)/2} d\tau,$$

where the coefficient before the integral is chosen to provide $\tilde{\omega}(0) = 1$ in Proposition 5. It is clear that $\tilde{\omega}(t)$ satisfies all the required conditions. Arguing as above, we see that the corresponding $R_{\tilde{\omega}}$ is equal to T_{α} . Hence, it remains to show that $b_{\omega}^2(B) = b_{\alpha}^2(B)$. The latter will be proved if we show that the Volterra square ω of $\tilde{\omega}$ satisfies the relation $\omega'(t) \approx (1-t)^{\alpha}$. Indeed, denoting

$$c = \frac{\Gamma((n+\alpha+1)/2)}{\Gamma(n/2)\Gamma((\alpha+1)/2)},$$

we have

$$\begin{split} \omega'(t) &= -\int_{t}^{1} \tilde{\omega}' \left(\frac{t}{\sigma}\right) \tilde{\omega}'(\sigma) \, d\sigma \\ &= -c^{2} \int_{t}^{1} \left(\frac{t}{\sigma}\right)^{(n/2)-1} \left(1 - \frac{t}{\sigma}\right)^{(\alpha-1)/2} \sigma^{(n/2)-1} (1 - \sigma)^{(\alpha-1)/2} \frac{d\sigma}{\sigma} \\ &= -c^{2} t^{(n/2)-1} \int_{t}^{1} \left(1 - \frac{t}{\sigma}\right)^{(\alpha-1)/2} (1 - \sigma)^{(\alpha-1)/2} \frac{d\sigma}{\sigma} \\ &= -c^{2} t^{(n/2)-1} \int_{0}^{1} \left(\frac{(1 - t)(1 - \tau)}{1 - (1 - t)\tau}\right)^{(\alpha-1)/2} \left((1 - t)\tau\right)^{(\alpha-1)/2} \frac{(1 - t)d\tau}{1 - (1 - t)\tau} \\ &\approx (1 - t)^{\alpha} \int_{0}^{1} (1 - \tau)^{(\alpha-1)/2} \tau^{(\alpha-1)/2} \, d\tau \approx (1 - t)^{\alpha}. \end{split}$$

References

- [1] Petrosyan, A.I., 2005, On A_o^p spaces in the unit ball of \mathbb{C}^n . Journal of Analysis and Applications, 3(1), 47–53.
- [2] Djrbashian, M.M., 1975, Theory of factorization and boundary properties of functions meromorphic in the disc, In: *Proceedings of the ICM*, Vancouver, B.C., 1974, Vol. 2, pp. 197–202 (USA).
- [3] Djrbashian, A.E. and Shamoian, F.A., 1988, Topics in the Theory of A_{α}^{p} Spaces (Leipzig: Teubner Verlag).
- [4] Axler, Sheldon, Bourdon, Paul and Ramsey, Wade, 2001, *Harmonic Function Theory* (New York, Inc.: Springer-Verlag).
- [5] Jerbashian, A.M., 2002, Weighted Classes of Regular Functions Area Integrable Over the Unit Disc, Preprint 2002-01, Institute of Mathematics, National Ac. of Sci. of Armenia, Yerevan. Available at: http://math.sci.am/People/ArmenJerbashianPubl.html (accessed 2 June 2005).
- [6] Jerbashian, A.M., 2005, On the theory of weighted classes of area integrable regular functions. Complex Variables, 50, 155–183.
- [7] Rudin, Walter, 1987, Real and Complex Analysis (London: McGraw-Hill).