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On weighted classes of harmonic functions
in the unit ball of R”"
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This article gives the main representation theorems for harmonic functions in the spaces b7 (B)
on the unit ball B in R". These spaces depend on a parameter function w and are arbitrarily
large. We receive the integral representation for the functions of 52 (B) over the unit ball.
The article also gives a representation connected with the natural isometry between b2(B)
and the ordinary space L? on the unit sphere, which is explicitly given in the form of an integral
operator along with its inversion.
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1. Introduction

This article gives the main representation theorems for arbitrarily large harmonic 5% (B)
spaces in the unit ball in R”, which are similar to the analytic spaces investigated in [1].

Section 2 is devoted to some preliminary notation and construction of Djrbashian’s
w-kernel [2] in the unit ball of R”. In section 3, we introduce the spaces 5% (B) and prove
some preliminary statements. Section 4 is devoted to the main integral representation
of b2(B) over the unit ball (Theorem 1) and to the orthogonal projection from L?(B)
to b2 (B) (Theorem 2). Note that for the particular case

1
w(t) = %(B) / W21 — ) dr
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the representation of Theorem 1 was obtained in [3] and for « =0 one can find this
representation also in [4]. Section 5 gives an integral representation of the considered
spaces b2(B) over the unit sphere. This leads to an isometry between the b2 (B) spaces
and the ordinary L*-space on the unit sphere, which has an explicit form of integral
operator along with its inversion (Theorems 3 and 4).

In this article, we shall frequently use some basic statements of the n-dimensional
theory of harmonic functions explicitly given in [4].

Note that for the one-dimensional case, i.e. in the unit disc, the basics of the theory of
arbitrarily large classes 42 of analytic functions were more exhaustively constructed
in [5,6].

2. Construction of the R-kernel
2.1. We start by giving the notations, which we use throughout the article.

B ={x € R" |x| < 1} is the open unit ball in R” and S = {x € R": |x| = 1} isits
boundary, i.e. S is the unit sphere in R”;

o is the normalized surface-area measure on S, so that o(S) = 1;

H,»(R") is the set of all complex-valued homogeneous harmonic polynomials of
degree m in R”;

H,(S) is the set of all spherical harmonics of degree m, i.e. the restrictions of
functions from H,,(R") on the sphere S;

P[f] denotes the Poisson integral of f:

1 — |x]?

& — x|

P[f](X)Z/SP(x, ) f(§)do(¢),  where P(x,{) = (M

We associate with each complex function f on [a, b] its total variation \/Z f defined by
\/Zf = sup { le\i] lf () —f (tj,l)|},where the supremum is taken over all N and over
all choices of {f;j} such thata =1 <t, <--- <ty =b.

Further, as in [4], by 2 we denote the class of functions w(¢) in [0, 1] such that
o(1) = w(1 — 0) and

(i) 0 <\/jw < oo forany § €0, 1);
(i) Ar = Ap(w) = — [y *da(r) # 0,00, k=0,1,...;
(iii) liggff/mﬂ > 1.

2.2. For a given w € Q we introduce the w-kernel

o0

Ry(x,3) = Y A Zi(x, ). )
k=0

LemMmA 1 The series in the right side of (2) converges absolutely and uniformly on the set
{(x,y) € R*": |x||y| < ¢, 0 < q < 1} and particularly on K x B, where K is an arbitrary
compact subset of B.
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Proof Let x=r¢, y=pn, where ¢,n € S. Taking into account that the function
Zi(x,y) is homogeneous by both variables, we obtain

| Z(x, )| = * 051 Zi(g, )| < FpFdy, 3)

where d, is the dimension of Hy(S). The property (i) of the parameter function w implies

[
lim sup /| Ay| < lim sup ' / *|dw(7)| < lim sup 1"/\/1 w=1.
k— 00 k—o00 0 k—o0 0

Along with (iii), this means that
lim \k/ |Ak| =1.
k—o00

The desired convergence follows from (3) in view of the estimate d; < Ck"2
from [4]. |

3. The spaces b2 (B)

3.1. For a given w € 2, we denote

dpto(x) = —dw(?) do(9),

where x = r¢ is the polar form of x € B (i.e. r = |x|, { € §), and define L% (B) as the
set of all du,-measurable functions in B for which

1/p
lully, = {f u(x)I” Iduw(X)I} <400, l=<p<oo.
B

We introduce 5% (B) as the harmonic subset of L?(B).
It turns out that for any fixed p the classes b% (B) can contain harmonic functions of -
arbitrary growth near the boundary.

PropPOSITION | For any fixed p € [1,00) the sum | J
functions harmonic in B.

wea DL (B) coincides with the set of all

Proof Evidently, it is sufficient to show that € contains functions of any rate of
decrease as t — 1 — 0. Indeed, if ™ in [0, 1] then

1 1 !
Ak:_/ tkdw(t)z‘/ do) = (1 -2 \/ o
0 1—¢ 1—¢
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for any ¢ € (0, 1). Therefore, by (i)

. k k 1 _
llgg.}f,/mg >(1—¢) \/1,,3“’— 1 —e¢,

and the passage ¢ — 0 gives (iii).

For any fixed x € B, the mapping u+~> u(x) is a linear functional over b2 (B). The

following proposition shows that this is a continuous functional.

ProPOSITION 2 For any function u € b?(B) and any point x € B

lu(x)| < 2" (/1 |d (z2)|>_l/p|| I
u S 0] ull . -
(1 = 1xD" 7 X\ 2 !

Proof The following estimates obviously are true for the Poisson’s kernel (1):

1 — |x)? 1+ |x| 2
P = .
(X, ;) |§ — x|n = (1 _ |x|)n—1 = (1 _ |x|)nfl

4)

Let x € B and |x| < R < 1. Using the subharmonicity of the function |u(Rx)|’ in the

neighbourhood of the ball B and (4), we get

2

RO < /S (RO P, ©) o)) = oy

/S (R do(2).

The integral means M(R) = [, |u(R¢)|P do(¢) is nondecreasing in R. Hence

[R ' o) /S (RO do(g) < /R 1 < /S (i) do@))mw(ﬂn

=[Pl <
R<|x|<1

By (5) and (6)

1 —1
(RN < ﬁ ( /R |dw(r2)|) lt,.

and the change of a variable Rx+—> x gives

|u(x)| < 2 ( / 1 |d (t2)|)_l/p|| [
U\ —_— [0 u .
TR = xR e

Taking R = (1 4 |x])/2 we come to our assertion.

)

(6)
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For a multi-index s = (sy,...,s,) (Where s; are nonnegative integers), the partial
differentiation operator D* is usually defined as D} ...D". Using this definition and
the Cauchy inequalities for harmonic functions, we come to

CoROLLARY 1  For any multi-index s there is a constant C = C(s) such that

=1/p

C l
|D*u(x)| < (1~ e </( |dw(l2)l) el -

3+Ix[)/4

Proof Applied for the ball B(x) = {y: |y — x| < (1 — |x|)/2}, the Cauchy inequalities
give
CyM(x)

|DS”(X)| = m ) (7

where M (x) = max,ep) u(y). By Proposition 2, for any y € B(x)

()| < —2 ( f L (z2)|)_l/p||un
RN s 1y @ o
(1= 1yD" D7 X2 !

Besides, the inequalities 1 — [y| > (1 — |x|)/2 and (1 + [y])/2 < (3 + |x|)/4 obviously
follow from y € B(x), and taking the maximum over all y € B(x) we get

M) H@n=1)/p </1 do 2)|)—1/p|| |
X S PN Y w(t u Lw*
(1= |xD" 7 \J g 41014 !

Our statement follows from (7) and the last inequalities. |
ProrosiTiION 3 For any 1 < p < oo, b’ (B) is a closed subset of L’ (B).

Proof  Suppose |lu; — ul|, , — 0 as j— oo, where u; is a sequence of functions in b?(B)
and u € L?(B). We shall show that u is equivalent to some function harmonic on B,
with respect to the measure .

Let K € B be a compact. Proposition 2 implies that there exists a constant
C = C(K, p,w) such that

max [u(x)| < Cllull,,
xekK

for any u € b%(B). Hence |u;(x) — ux(x)| < Cllu; — uill,,,, for any x € K and j, k. The
sequence u; is fundamental in 7 (B), and hence u; converges uniformly on compact sub-
sets of B to a function v harmonic on B. Besides, u; — u in L. Therefore, by Riesz’
theorem there exists a subsequence of u; converging to u pointwise almost everywhere
in B, with respect to p,. Thus, u=v almost everywhere in B, and u € b (B). |

COROLLARY 2 bP(B) is a Banach space.
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3.2. The next assertion states the continuity of p-dilatation in b2 (B).
Prorosition 4 Let u € b?(B) and uy(x) = u(ox). Then ||luy — ull, , — 0 as o — 1 0.

Proof For any § € (0,1)
|wg—wm;wstémex>—uompduax)
1
+2p/.L/Uu@v@?4-WUOPkkﬂo}dw05 (8)
b S

since (a+ b)Y’ < 27(a” + b") (a,b > 0). Further m(o) = [ |u(or¢)|” do(¢) is nondecreas-
ing and m(p) < m(1) since |u(x)}” is subharmonic. Hence by (8)

it =l = [ 1u0) = P o) +2% [ P ).
sB B\SB

It remains to see that the right-hand side of this inequality can be made arbitrarily small
by taking § and then p close enough to 1. |

It is well known that any function harmonic in a domain containing B can be
uniformly approximated on B by harmonic polynomials. Using this fact, one can
prove the following corollary of Proposition 4.

CoROLLARY 3 Harmonic polynomials are dense in b? (B).

4. Representation over the ball

4.1. Let u(x) be a harmonic function in the unit ball of the space R". The following
homogeneous expansion is well known:

u(x) =Y pu(x), ©)
k=0

where p € H,,(R") and the series (9) is absolutely and uniformly convergent on compact
subsets of the ball.

Let Z,,(¢,n) (€ S, n€S) be the zonal harmonic of degree m. Then Z,(¢,n) =
Zn(n,0), Z,,(¢,-) € H,,(S) and the following representation is true:

m@:ﬂwwa@mm (10)

The theorem below gives the main representation formulas in b2 (B) spaces.

THeOREM 1 Let u € b2 (B). Then

uw=ﬁm»mwww4n.m3. (11)
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Proof Let pr € Hy(S). Then

/B PR, ) dp( ) = /B pk(y)<ZZm(x’y)) drta(y)

m=0 Am
1
=Y 5 [ 2o dua) (12)
0 Am B
If ¢,n € S and x = r¢, y = pn, then by homogeneity of the functions p,(y) and Z,,(x, y)
[ 517031 d10s) = = [ " " Ze. ) ) dot

|
== [ 5ot [ pinzaten dot.

The last integral vanishes for m # k by orthogonality and is equal to pi(¢) for m=k in
accordance to (10). Hence

1
/ PN Zi(x,¥) dp(¥) = —*pi(©) / o™ do(p?)
B 0
1
- / 15 dolt) = Appi(). (13)
0
By (12) and (13),
/B ()R ) it 1) = pi(0). (14)

Further, let u,(x) = u(ox) (0 < ¢ < 1). By the uniform convergence of the expansion
u(ox) = " pi(ox) in B and by (14)

) = 30 ) = Y0 [ PR3 i)
k=0 k=0 B

-/ (Z Q"pk(y))Rwu,y) du(n = [ (Zpk(gy))Rw(x,y) d12o()
B B\ k=0

k=0

= /B (V)R (X, ) drte( ).

By Proposition 4, the passage ¢ — 0 leads to the desired assertion. |

4.2. Consider the special case

1
w(f) = nvs) V2(B)/ D=1 — o)dr.
t
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Let x = r¢, where r = |x|, ¢ € S. Using the expression of the volume element in polar
coordinates (see, for instance, [7]), we get

dpte(x) = —dw(r?)do(?) = —o' (%) 2r dr do(?)
=nV (B (1 = *)*drdo(?) = (1 — P)*dV(x).

Thus, in the considered case b7 (B) consists of all harmonic functions « in B, which
satisfy

1/p
llullp, o = (/ |u()P(1 — IXIz)“dV(X)) < 0.
B
We denote this space by 52 (B). Further,

1 B 1
Ay = —/ " da(r) A )/ N — ) de
0 2 0

_nV(B) (/2 +mI(«+1)
2 Tm24+mta+l)’

and denoting the corresponding kernel by R,, we have

2 &Tm2+m+a+1)
nV(B) = T(n/2 + m)[(a + 1)

Ry(x,y) = Zn(x, ).

Thus, in the considered case, formula (11) takes the form

2 NC(n/2+m+a+1) a2
w0 = | u(y)(mgr(n e l)zmoc,y))(l YAV ()

i.e. coincides with that of [3].
We suppose that for any x € B the Poisson kernel P(x, y) is harmonically extended to
B as follows:

1 — [x][y?
(1=2x-y+|xy]?)

P(x,y) = Tk

where - denotes the usual Euclidean inner product. To obtain an expression of R,
by means of the Poisson kernel P, we use some well-known facts from the theory
of fractional integro-differentiation in the Riemann—Liouville sense. The primitive
of f € L'(0,1) of order a > 0 is defined as

—a _ 1 ' a—1
Df () —@/00— 0 () dr.
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The derivative of order « is defined to be

d?
Df () =35 { D70 (),

where the integer p is deduced by the inequalities p — 1 < a < p. Using the simple
equality

Da+lt)/ — F(l + )/) tyfafl’
Iy —a)

we find that

o o0
ST mrat D), S e (e, )],

m=0 F(H/?_ + m) m=0
00 00
— Doz-H (Z [n/2+m+ozZm(x’y)> — Dot+1 <Z tn/2+aZm([x’ y))
m=0 =1 m=0 =1

o)
Thus

2

B = e 7B

petl (tn/2+°‘P(lx, J’)) it:l ’

When « is a nonnegative integer, the operator D*T! is obtained from the usual
derivation, and this allows to calculate R,(x,y) in an explicit form. Particularly,
for o =0 this calculation results in the formula

_ nP(x,y)+ 2(d/do)P(1x, y)| _,

_ 2 dop
Ro(x,y) = ("2 P(1x, y)) B WV B) ,

nV(B)dt

which coincides with that of [4] in view of

= %P(lx, 1y)

d
2—P
T (tx,y)

=1 t=1

4.3. The right-hand side integral of (11) defines the orthogonal projection of L2(B)
onto its subspace b2(B), i.e. the following assertion is true.

THEOREM 2 The operator

0, [ul(x) = /B u(P)R,(x,»)dp(y), ue L2(B), x € B,

is the orthogonal projection of L*(B) onto b*(B).
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Proof As L2(B) = b2(B) ® (b2(B))*, any u € L2(B) is written in the form u = u; + us,

where u; € b(B) and u; € (b2(B))*". Hence Q,[u] = Q,[u1] + Qulua], where Q,[u1] = u;
by Theorem 1. On the other hand,

0, [1:](x) = fB 12(7)Ro((5. ) At ) = [, Ry(x. ), =

where (-, ), is the inner product of L2(B), since due to Lemma 1 for a fixed x € B the
function R,(x, y) is harmonic by y in a domain containing B, and u, is orthogonal to
b2 (B). Thus Q,[u] = u, i.e. Q, is the orthogonal projector L2(B)— b>(B). [ |

5. Representation over the sphere

5.1. We start by the following assertion proved in [6].

ProrosiTioN 5 Let @ € Q be continuously differentiable in [0, 1) and such that &(t) \,
(1) = 0 and ©(0) = 1. Further, let w be the Volterra square of @, i.e.

bt
w(t):—/ d)(;)d&)(o), 0<1<l. (15)
t
Then we Q and

Ap(@) = [Ap(@), m >0, (16)

Further, we denote the norm in L”(S) by || - ||, and prove

PROPOSITION 6  Let u € b (B) and u(x) = " pr(x) be its homogeneous expansion. Then
o0
lll3. =D 1AK@)I pill3.
k=0
Proof For any r € (0,1)

/B O A0 = [ dw(p>(2pk(pc>2p (pc)) do(2)

s=0

> /0 o) [ pop©doto

§=

v

\

02F dw(p?) /S | pi(9)1* do(Q)

=
Il

0

o0

-y / o) [ o) do).
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Letting r — 1 — 0 we get

o = [ MOIP da) = 3 1@l o
k=0

On the basis that L*(S) = @5_, Hm(S), we prove

PrOPOSITION 7 Let f € L*(S) and let f =Y p be its spherical harmonic expansion (i.e.
Pm € Hp(S) and the sum converges in L*(S)). Then the following formulas are true for
homogeneous harmonic polynomials p,,(x):

D) = /S 1 Zun(x. ) do ().

Proof For any fixed x =rn (r >0, n€5S)

Pin(X) = " po(n) = 1" /S (O Zn(n, ©)do(2)
=7 A(;Pk(C))Zm(U, C) dU(C) =r /;f (;)Zm(n, é-) dO'(;‘)

— fs S ©)Zn(x, §) da(0).

where the third equality follows by the orthogonality of the spherical harmonics of
different degrees. |

THEOREM 3 The mapping f — R[f' ], where
Rl 100 = [ £ ©Ra(x. ) doc)
s

is a linear isometry from L*(S) to bi(B).

Proof First, observe that the considered mapping is evidently linear. Next, suppose
f =>_pm as in Proposition 7. Then obviously

Ralf 1(x) = fs £ ©Ra(x, 0 do(0) = fS F© A7 (@)Zn(x, 0 do@)
m=0

=Y A @) /S £ ©Zn(6, 0 do@) = 3 A7 @)pm(v). a7
0

m=| m=0

According to Proposition 6 and (16)

[R50 = D An(@IAL @pwl3 =D Il = 111 13-



964 A. I. Petrosyan

It remains to show that the range of values of the mapping /' +— Ry[f ] is the whole space
b2 (B). To prove this, suppose u € b2 (B) and u(x) = Y qi(x). If pr(x) = Ar(@)qi(x), then

D Upell3 =D 1A@)gell; = Y Ac@)ligellz = llul3,
due to Proposition 6 and (16). Hence, the function / = Y pi belongs to L*(S). As in
(17), we obtain Rg[f](x) =) Aml(a))pm(x) and therefore Rg[f ](x) = u(x). [ |
Further, we denote /#”(B) the ordinary harmonic Hardy space, i.e. the class of

functions ¥ harmonic in B and such that

llully = sup |lull, < oo.

0<r<l

Besides, we consider the operator

1
La[u](x) = — /0 u(tx) da(t).

THEOREM 4 Let [ € L*(S) and u = Ry[f]. Then

(@) Lalul = P[],
(b) the mapping u> Lg[u] is a linear isometry of b%(B) onto h*(B).

Proof Letf =) pnm, and u(x) =Y ¢,,(x) be the homogeneous expansion of u in the
unit ball. Then

gm(x) = A,;l(fb)Pm(X) (18)

in accordance with (17). Further, it is known that P[ /] has the homogeneous expansion
P[f1(x) = >_ pi(x). Therefore, by (18) and Proposition 7

o0 1
PLAIG) = ZAk(a»qk(x) = [ rdat
k=0 0

1 00
- 9 d D — . b d ~
k;;/o qr(tx) do(t) fo (;qk(n)) a(f)
1
=— / u(1x) dé(r) = Lg[u](x).
0

This proves (a). For accomplishing the proof, it suffices to observe that the mapping
[+~ P[f]is a linear isometry of L*(S) onto 4*(B), and consequently (b) follows from
Theorem 3 and (a). u

Remark 1t is well known that for f/ € L*(S) the function P[f] has a nontangential
limit f(¢) at almost every point ¢ € S. Thus, it is natural to identify f and P[f] and
to say that the operators L, and R, are mutually inverse.
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5.2. In the special case mentioned in section 4, Theorems 3 and 4 take the following
forms.

THEOREM 5 Let u(x) € b2(B) (o > —1). Then the function

I
o) = M((n+a+1)/2) A u(x)t (1 — e gy

L(n/2)0((« +1)/2)

belongs to h*(B) and the following integral representation is true:
) = [ §OT.(x.0)dot0),

where

To(x,¢) = i T(n/2)0(k + (n +a + 1)/2)

N1+ a £ D/2)F Gk +nj2) K0

k=0
Proof In Theorems 3 and 4 we put

1
a0 — L +a+ D)

n/2—1 _ \(a=1)/2
BCPRCENE)

where the coefficient before the integral is chosen to provide @(0) = 1 in Proposition 5.
It is clear that () satisfies all the required conditions. Arguing as above, we see that
the corresponding R; is equal to 7,. Hence, it remains to show that »%(B) = b>(B).
The latter will be proved if we show that the Volterra square w of @ satisfies the relation
@' (1) < (1 — 1)*. Indeed, denoting

oo '(n4+a+1)/2)
T T(n/2)T (o + 1)/2)°

we have

(1) = — f, 1 c?)’(é)[u’(a) do

1 2)-1 12
_ —C2/ (1)(11/ ) (1 _£>(rx )/ O'(n/2)_1(] _ O,)(oz—l)/2g
t o o

g

1 -1/2
:_czlm/z)—l/ (1_£>(“ / (l_a)wfl)/zd"
' o o

1 (@=1)/2
_ 2.nj2)— (I-01-1) _ @12 (1 —10ndr
—— 1f0 < e (=00 " s

1
= (- t)“/ (1 — 1)@ D202 4 < (1 — 1), u
0
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