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Abstract
In this article for n-dimensional convex body D the relation between the chord length distribution function and the dis-

tribution function of the distance between two random points in D was found. Also the relation between their moments was
found.
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1. Introduction

The integral geometric concepts such as the distribution of the chord length, the distribution of the
distance between two random points in a convex body D and many others carry some information about
D. In this article the relation between the chord length distribution function and the distribution function
of the distance between two random points uniformly distributed in a convex body was found. By Rn

we denote the n-dimensional Euclidean space (here we assume that n > 2, for case n = 2 see [1]).
Let D ⊂ Rn be a compact convex set (convex body) with boundary ∂D. By Vn (D) we denote the n-
dimensional volume of D. By Sn−1 we denote the unit sphere in Rn centered at the origin O and let eO,ξ
be the hyperplane containing O and normal to ξ ∈ Sn−1. By Gn we denote the set of all lines in Rn.
We use the usual parametrization of a line γ = (ω,P): where ω ∈ Sn−1 is the direction of γ and P is the
intersection point of γ and eO,ω. By [D] we denote the set of lines intersecting D. In Gn we consider the
invariant measure (with respect to the group of Euclidean motions) µ (·). It is known that the element dγ
of the measure, up to a constant, has the following form ([2], [4], [6])

dγ = dωdP, (1.1)

here dω and dP are elements of the Lebesgue measure on the sphere and the hyperplane, respectively.
By χ (γ) we denote the length of a chord D∩ γ. We consider γ as a random line intersecting D with nor-

malized measure
dγ

µ ([D])
. The distribution function Fχ (u) of χ (γ) is called the chord length distribution
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function of D. Thus we have
Fχ (u) =

1
µ ([D])

∫
[D]
I{χ(γ)<u}dγ. (1.2)

Now let Q1 = (x1, ..., xn) ,Q2 = (y1, ...,yn) be random independent points uniformly distributed in D
and denote by d distace between Q1 and Q2. By Fd (t) we denote the distribution function of d. We have

Fd(t) =
1

Vn (D)2

∫
{(Q1,Q2):|Q1−Q2|<t,Qi∈D,i=1,2}

dQ1dQ2, t ∈ R1, (1.3)

here dQi (i = 1, 2) is the usual Lebesgue’s measure in Rn.

2. Main results

Now we present the main results. The following theorem describes the relation between Fχ (t) and Fd (t).

Theorem 2.1. Let D be a convex body. We have the following relation between Fχ (t) and Fd (t)

Fd (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
(n− 1)Vn (D)2

(
−
tn+1

n+ 1
+

(n− 1)Vn (D)Vn−1
(
Sn−1

)
tn

nVn−1 (∂D)Vn−2 (Sn−2)
+

tn

n

∫t
0
Fχ (u)du−

1
n

∫t
0
unFχ (u)du

)
. (2.1)

Also in the article was found the following relation.

Theorem 2.2. Let D be a convex body. The following relation between the k-th moment of the distance between
two random points and the moments of the chord length distribution of D is valid

Edk =
Vn−1 (∂D)Vn−2

(
Sn−2

)
Eχn+k+1

(n− 1) (n+ k) (n+ k+ 1)Vn (D)2 . (2.2)

3. Preliminary results

In this section we need to prove the following lemmas.

Lemma 3.1. For the invariant measure of the lines intersecting D we have

µ ([D]) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
2 (n− 1)

. (3.1)

Proof of lemma 3.1. By definition we have

µ ([D]) =

∫
[D]
dγ =

∫
[D]
dωdP =

1
2

∫
Sn−1

dω

∫
Dω

dP =

1
2

∫
Sn−1

Vn−1 (Dω)dω (3.2)
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where Dω is the orthogonal projection of D onto hyperplane eO,ω. In this article, we consider a
convex body D with positive Gaussian curvature at every point of ∂D. For ξ ∈ Sn−1 we denote by s (ξ)
the point on ∂D the outer normal of which is ξ. It is known that (see [3], [5])

Vn−1 (Dω) =
1
2

∫
∂D

| cos (̂ω, ξ)|ds (ξ) , (3.3)

here ds (ξ) is the element of n− 1-dimensional Lebesgue’s measure on ∂D. Substituting (3.3) into (3.2)
and using the Fubini’s theorem we obtain

µ ([D]) =
1
4

∫
Sn−1

∫
∂D

| cos (̂ω, ξ)|ds (ξ)dω =

1
4

∫
∂D

∫
Sn−1

| cos (̂ω, ξ)|dωds (ξ) . (3.4)

For any ξ ∈ Sn−1 we have (see [3])∫
Sn−1

| cos (̂ω, ξ)|dω =
2Vn−2

(
Sn−2

)
n− 1

(3.5)

thus

µ ([D]) =
1
4

∫
∂D

∫
Sn−1

| cos (̂ω, ξ)|dωds (ξ) =
Vn−2

(
Sn−2

)
2 (n− 1)

∫
∂D

ds (ξ) =

Vn−1 (∂D)Vn−2
(
Sn−2

)
2 (n− 1)

. (3.6)

For a line γ intersecting a convex body D we have the following lemma.

Lemma 3.2. Let χ (γ) be the length of the chord D∩ γ. We have∫
[D]
χ (γ)dγ =

Vn (D)Vn−1
(
Sn−1

)
2

. (3.7)

Proof of lemma 3.2. By definition we have (γ = (ω,P))∫
[D]
χ (γ)dγ =

1
2

∫
Sn−1

dω

∫
Dω

χ (ω,P)dP. (3.8)

For any ω ∈ Sn−1 it is obvious that χ (ω,P)dP is the element of n-dimensional volume of D, hence
the integrating by dP over Dω we get Vn (D).∫

[D]
χ (γ)dγ =

1
2

∫
Sn−1

dω

∫
Dω

χ (ω,P)dP =
Vn (D)

2

∫
Sn−1

dω =

Vn (D)Vn−1
(
Sn−1

)
2

. (3.9)

It is known that a pair of points Q1,Q2 in Rn can be represented by the line γ = (ω,P) passing
through the points and pair of one dimensional coordinates (t1, t2) (see [6]). Thus

(Q1,Q2) = (γ, t1, t2) = (ω,P, t1, t2). (3.10)
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Lemma 3.3. The Jacobian of the transform (3.10) is

dQ1dQ2 = |t1 − t2|
n−1dt1dt2dωdP. (3.11)

Proof of lemma 3.3. For a fixed Q1 we represent Q2 by polar coordinates with respect to Q1. It is known
that

dQ2 = rn−1drdω (3.12)

where r = |Q1 −Q2| and ω is the direction of Q2 −Q1. For a fixed ω the point Q1 can be represented
by P and t1. Thus

dQ1 = dt1dP (3.13)

and by multiplying (3.12) and (3.13) and taking into account that r = |t1 − t2| we get

dQ1dQ2 = |t1 − t2|
n−1dt1dt2dωdP. (3.14)

4. Proof of theorem 2.1

By definition of the distribution function we have

Fd (t) = Pr {d < t} =
1

Vn (D)2

∫
d<t

dQ1dQ2. (4.1)

Using (3.11) from lemma 3.3 we get

Fd (t) =
1

Vn (D)2

∫
[D]

∫
|t1−t2|<t

|t1 − t2|
n−1dt1dt2dγ. (4.2)

We represent the integral by the form∫
[D]

∫
|t1−t2|<t

|t1 − t2|
n−1dt1dt2dγ =

∫
[D]
I{χ(γ)>t}J1 (t) + I{χ(γ)<t}J1 (t)dγ (4.3)

where
J1 (t) =

∫
|t1−t2|<t

|t1 − t2|
n−1dt1dt2. (4.4)

After calculating J1 we obtain that

J1 (t) =
−2tn+1

n+ 1
+

2tn

n
χ (γ) (4.5)

for χ (γ) > t and

J1 (t) =
2 (χ (γ))n+1

n (n+ 1)
(4.6)

for χ (γ) < t.

Fd (t) =
1

Vn (D)2

∫
[D]

(
I{χ(γ)>t}

(
−2tn+1

n+ 1
+

2tn

n
χ (γ)

)
+

I{χ(γ)<t}

(
2 (χ (γ))n+1

n (n+ 1)

))
dγ. (4.7)
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Now we denote by J2, J3, J4 the following integrals

J2 (t) =

∫
[D]
I{χ(γ)>t}dγ, (4.8)

J3 (t) =

∫
[D]
I{χ(γ)>t}χ (γ)dγ, (4.9)

J4 (t) =

∫
[D]
I{χ(γ)<t} (χ (γ))

n+1 dγ. (4.10)

Easy to notice (using (3.1) from lemma 3.1) that

J2 (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
2 (n− 1)

(1 − Fχ (t)) . (4.11)

To calculate J3 we change it the following way

J3 (t) =

∫
[D]
I{χ(γ)>t}χ (γ)dγ =

∫
[D]

(
1 − I{χ(γ)<t}

)
χ (γ)dγ =

Vn (D)Vn−1
(
Sn−1

)
2

−

∫
[D]
I{χ(γ)<t}χ (γ)dγ (4.12)

(see (3.7) from lemma 3.2) then denote

J5 (t) =

∫
[D]
I{χ(γ)<t}χ (γ)dγ (4.13)

and calculate it instead. First we calculate the derivative of J5 and then intergrate from 0 to t (J5 (0) = 0).
Using the first mean value theorem for definite integrals we have

d

dt
J5 (t) = lim

∆t→0

J5 (t+∆t) − J5 (t)

∆t
= lim
∆t→0

1
∆t

∫
[D]
I{t6χ(γ)<t+∆t}χ (γ)dγ =

lim
∆t→0

Vn−1 (∂D)Vn−2
(
Sn−2

)
t (Fχ (t+∆t) − Fχ (t))

2 (n− 1)∆t
=

Vn−1 (∂D)Vn−2
(
Sn−2

)
2 (n− 1)

tfχ (t) (4.14)

and after integrating that we get

J5 (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
2 (n− 1)

(
tFχ (t) −

∫t
0
Fχ (u)du

)
. (4.15)

For J3 we have

J3 (t) =
Vn (D)Vn−1

(
Sn−1

)
2

−

Vn−1 (∂D)Vn−2
(
Sn−2

)
2 (n− 1)

(
tFχ (t) −

∫t
0
Fχ (u)du

)
. (4.16)

Using the same technique we can calculate J4 and get that

J4 (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
2 (n− 1)

(
tn+1Fχ (t) − (n+ 1)

∫t
0
unFχ(u)du

)
. (4.17)
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After substituting (4.11), (4.16), (4.17) into (4.7) finally we obtain that

Fd (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
(n− 1)Vn (D)2

(
−
tn+1

n+ 1
+

(n− 1)Vn (D)Vn−1
(
Sn−1

)
tn

nVn−1 (∂D)Vn−2 (Sn−2)
+

tn

n

∫t
0
Fχ (u)du−

1
n

∫t
0
unFχ (u)du

)
. (4.18)

�

Differentiating the distribution function Fd (t) we get the following expression for the density function
fd (t) of d

fd (t) =
Vn−1 (∂D)Vn−2

(
Sn−2

)
(n− 1)Vn (D)2

(
−tn +

(n− 1)Vn (D)Vn−1
(
Sn−1

)
tn−1

Vn−1 (∂D)Vn−2 (Sn−2)
+

tn−1
∫t

0
Fχ (u)du

)
. (4.19)

Note that in R2 formula (4.19) first was found in [1]. Now we are going to prove theorem 2.2.

5. Proof of theorem 2.2

We can prove that theorem by just putting the (4.19) in moments formula

Edk =

∫∞
−∞ tkfd (t)dt (5.1)

but we will do that by the following way

Edk =
1

Vn (D)2

∫
Q1,Q2∈D

|Q1 −Q2|
kdQ1dQ2 =

1

Vn (D)2

∫
[D]

∫χ(γ)
0

∫χ(γ)
0

|t1 − t2|
n+k−1dt1dt2dγ =

2

Vn (D)2 (n+ k) (n+ k+ 1)

∫
[D]

(χ (γ))n+k+1 dγ =

Vn−1 (∂D)Vn−2
(
Sn−2

)
Eχn+k+1

(n− 1) (n+ k) (n+ k+ 1)Vn (D)2 . (5.2)

�
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