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Abstract— We demonstrate an enterprise Dynamic Thresholding 
System for data-agnostic management of monitoring flows. The 
dynamic thresholding based on data historical behavior enables 
adaptive and more accurate control of business environments 
compared to static thresholding. We manifest the main blocks of 
a complex analytical engine that is implemented in VMware 
vCenter Operations Manager as a principal foundation of the 
company’s data-driven anomaly detection.  
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I. INTRODUCTION 
Modern enterprise IT management becomes increasingly 
smart to proactively respond to the performance issues that 
complex infrastructures necessarily encounter. The manage-
ment based on expert knowledge utilization is no longer 
efficient. Monitoring and data measuring of the processes go-
verning the entire IT is a fundamental approach to gain 
insights from those sophisticated environments with compli-
cated interrelation between the constituent components. The 
history of this approach goes back to statistical process control 
[1]. Since contemporary business infrastructures are highly dy-
namic (and out of classical Gaussian normalcy domain [2]), 
static thresholding of processes and performance indicators 
become inadequate. Hence problem diagnostics dictates a soft 
control of IT environments ([3-14]). In this paper, we follow a 
path where anomaly detection is based on prediction of upper 
and lower dynamic thresholds (normalcy range) of categorized 
data that vary over time [15-19]. 

VMware’s vCenter Operations Manager (vC Ops) [20] is 
an industry-leading enterprise solution in area of IT 
management that encodes the bunker of monitoring data from 
customer IT system into a real knowledge for anomaly 
detection and problem root cause identification, as well as 
capacity planning for modern virtualized and cloud computing 
ecosystems. In this paper we introduce an enterprise data-
agnostic dynamic thresholding system (EDTS) that enables vC 
Ops to act as an atomistic anomaly detection and forecasting 
of monitoring flows. The data-agnosticism (indicates that data 
analysis and determination of its normalcy behavior is 
performed without knowing the essence of the underlying 
physical and business service processes) enables an universal 
platform for processing of very large data sets, at the same 
time, it can lead to a deadlock if the statistical methods are not 
sufficiently powerful to handle diversity of monitored data 
types. Our analysis of customer data over several years show 
that deficiency of data-agnosticism can be compensated by 
appropriate data categorization, since a specific data category 
statistically characterizes the underlying process and 

empowers an efficient construction of relevant normalcy 
bounds (dominant behavior) thus reliably controlling the flow. 
This concept leads to an EDTS based on data categorization 
realized in vC Ops. A simplified and specific realization of 
EDTS adjusted for IT environments is presented in Flowchart 
1. Although selection of the categories is adapted to some IT 
customer preferences, the overall approach is applicable 
widely (also out of the IT interests) with appropriate 
modification of categories and their definition parameters.  

Experimental results justify EDTS’s potential to 
effectively handle large infrastructures in terms of both 
accuracy and complexity. All ideas described in the sequel are 
filed as a patent [21]. 

 

 
Flowchart 1. A simplified principal scheme of EDTS. 

 
  EDTS sequentially utilizes different data categorization 
detectors that allow choosing the right algorithm for 
determination of data dynamic thresholds (DT’s). The 
categorization order or the hierarchy is important as different 
orders of iterative checking and identification will lead to 
different categories with differently specified normalcy states. 
The system presented in Flowchart 1 categorizes data as 
Multinomial, Transient, Semi-constant, Trendy, Sparse, High-
Variability or Low-Variability. In each of those cases the 
normalcy determination method is different. In all catego-
rization scenarios the data additionally is verified against 
periodicity for efficient construction of its normalcy bounds. 
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Moreover, in each of the majority of categorization scenarios 
data is processed by category-specific change detection 
procedures.  The functional meanings of the above mentioned 
detectors are as follows: 

Multinomial Data Detector searches for Multinomial 
data which takes only integer values after checking errors 
introduced by the monitoring apparatus. If data is identified as 
multinomial then DT determination module calculates specific 
for this category DT’s otherwise data transmits to the next 
detector. 

Transient Data Detector looks for Transient Data which 
can be characterized as multimodal data. If data is identified as 
transient then DT calculation module performs DT calculation 
separately for each mode.  

Semi-Constant Data Detector checks the data against its 
“almost constant” behavior. If data is not semi-constant but its 
latest portion satisfies the category specifications after a global 
change, then DT construction module performs DT calculation 
for the latter. Piecewise constant data is from this category. 

Trendy Data Detector performs trend identification. If 
data is trendy then detector classifies trend as linear or non-
linear and DT determination module executes a special DT 
calculation algorithm. If data is not trendy but its latest portion 
can be selected as trendy (change occurred), then DT 
determination module performs calculations for that portion.  

Sparse Data Category Detector explores data gaps, their 
amount, and distribution in time. Data goes to the next 
detector for further analysis if overall gap duration is 
negligible. Data is classified as Sparse if gaps have uniform 
distribution in time. If gaps have some accumulation and 
remaining data is acceptable for further analysis then the 
selected portion goes to the next detector.    

Variability Detector categorizes data either High-
Variability or Low-Variability with specific DT calculation 
procedures. Before final categorization data passes through a 
change detection procedure for selection of the latest 
statistically stable portion for final DT determination.   

II. DATA CATEGORIZATION 
Multinomial Data Detector. This detector calculates some 
statistical parameters for comparison with the predefined 
measures. If the check is positive then data is classified as 
Multinomial Data. It is assumed that Multinomial data takes 
only integer values. Let    be the frequency of occurrences of 
the integer    

   
  
             

where   is the total number of integer values and   is the 
number of different integer values. Data is multinomial if it 
takes less than   different integer values and at least   of them 
have frequencies greater than parameter   .  

Some integer values with small cumulative percentages 
can be discarded. This can be done by sorting the percentages 
   in descending order and by defining the cumulative sum     

                        . 
Then, if             ,         the integer values 
             can be discarded.  

Transient Data Detector. Transient Data is categorized by 
multimodality, modal inertia, and randomness of modes 
appearing along the time axis. Transient Data must have at 
least two modes. Modal inertia means that data points in each 
mode must have some inertia and they can’t oscillate from one 
mode to the other “quickly”. Actually the inertia can be 
associated with the time duration that data points remain in the 
selected mode. Categorization is performed by calculation of 
some transition probabilities. We omit the relevant details 
from [21]. A similar technique is applied in Sparse Data 
Detector (see below).   

Figure 1 shows an example of a Transient Data. 

 
Figure 1. Example of a Transient Data. 

Semi-Constant Data Detector. Data is categorized as Semi-
Constant if  

            
where     stands for the interquartile range of data. If data is 
not from the required category but the latest enough long 
portion satisfies the condition then it is selected for further 
dynamic threshold determination as Semi-Constant Data. 

Figure 2 shows an example of Semi-Constant Data. 

 
Figure 2. Example of Semi-Constant Data. 

Trendy Data Detector. Different classical methods are 
known for trend determination. Mann-Kendall [22,23] test is 
appropriate for our purposes although other known tests are 
also possible to apply. The test categorizes data either Trendy 
or Non-Trendy. In case of Trendy Data further analysis 
categorizes the trend into linear and non-linear. Linearity can 
be checked by the well-known linear regression. If data is 
Linear-Trendy then DT determination module performs a 
specific DT calculation. If data is not Linear-Trendy but the 
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latest rather long portion of data has linear trend, then we 
select it for further DT determination. 
Sparse Data Detector explores data in terms of gaps. If the 
total percentage of gaps is higher than some limit and they 
have non-uniform distribution in time (it means that gaps have 
some localization in time) then gap clean up (data selection) 
procedure will return a regular data for further categorization. 
If gaps in data have uniform distribution in time then data 
belongs to a Sparse Data category. If gaps in data have 
extremely high percentage that further analysis is impossible. 
Data categorization is based on the following measures: 1) 
percentage of gaps, 2) transition probabilities for gap-to-gap, 
data-to-data, gap-to-data and data-to-gap. Probability cal-
culation is starting with data monitoring time (  ) estimation 
              ,            . Time intervals with  
          are normal data intervals while           are 
gaps.   is a parameter for gap definition. Let     be duration 
(in milliseconds, seconds, minutes, etc., but in the same 
measures as the monitoring time) of the  -th gapless data 
portion. For data without gaps we have only one such portion 
and         . The sum    ∑   

  
     is the duration of 

gapless data where    is the count of gapless data portions. 
Let    be duration (in the same measure as   ) of the  -th 
gap. The sum   ∑   

  
    is the duration of all gaps in data 

and    is the count of gap portions. Obviously        
  . By   we define the percentage of gaps in data     

    
       . 

Now, by                 we define the probabilities of data-
to-data, data-to-gap, gap-to-gap and gap-to-data transitions, 
respectively  

        
 
  

 ,           ,  

        
     ,             

Data with gaps non-uniformly distributed in time can be 
specified by the condition 

{
    
     
     

                                                                                                                      

where the following values of parameters can be reasonably 
chosen        and         . The main reason for 
smallness of     and     is the smallness of the numbers    
and    while   and   are as big as   is assumed. Data from 
this category can be further processed via data selection 
procedure that will eliminate (if possible) concentration of 
gaps. This can be done as follows: calculate the total 
percentage of gaps in the series of data {  }   

     
                           and select the portion for which 
    . The selected data is ready for further analysis by 
sequential detectors.   

Data with gaps uniformly distributed in time (Sparse 
Data) can be specified by the condition (      ) 

{
        

     
     

 

The second and third conditions mean that gaps are uniform in 
time and technical cleanup is impossible. 

Data is useless for further analysis if             .   
Figure 3 shows an example of Sparse Data with the 

corresponding measures for categorization. 

 
Figure 3. Sparse Data. Here                       

                            . 
Variability Detector calculates variability indicators and 
categorize data into High-Variability or Low-Variability. 
Based on the absolute jumps   

  of data points  
  

            
the following measure   of variability is considered 

      {  
 }   

    
    {  }   

               {  }   
        

Then, if     then data is Low-Variability, otherwise High-
Variability. Figure 4 shows an example of Low-Variability 
data with    . 

 
Figure 4. Low-Variability data with     . 

III. CATEGORY-SPECIFIC DT DETERMINATION 
As we mentioned above, each data category preliminary 
passes through some period determination procedure which 
additionally categorizes data into Periodic and Non-Periodic.  
Details of this procedure are presented in [21]. We describe 
only a high level concept. The period determination is seeking 
similar patterns in the historical behavior of time series for 
setting the DT’s based on the discovered cyclical information. 
The algorithm consists of two main steps:  

1) Data Footprint calculation which provides with two-
dimensional distribution of time series based on some 
predefined frame. First, we calculate percentages of data in 
each cell of the frame and then we get the corresponding 
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distribution by taking cumulative sums of those percentages 
for each column of the frame. More specifically, the range of 
data (or the range of preliminary smoothed data) is divided 
into non-uniform parts by quantiles    with          , 
           , with some   and   . Evidently, the 
grid lines are dense where data is dense. For division of data 
into parts along the time axis two parameters             and 
                  are used.             is a basic 
parameter that defines the minimal length of possible cycle 
that can be found. Moreover, any cycle can be a factor only of 
the length of the            . Usual setting is           
       Parameter                   shows the number of 
subintervals (columns in the frame) that             must be 
divided. Actually this parameter is the measure of resolution. 
The bigger the value of                 , the more sensitive 
is the footprint of the historical data.  

2) Pattern recognition procedure which provides with 
Cyclochart of data by comparing different columns of the 
Footprint in terms of similarity. Figure 5 shows an example of 
a Cyclochart where y-axis shows the measure of confidence 
that data has some  -days cycle.  

 
Figure 5. Example of a Cyclochart. 

Further investigation of the Cyclochart categorizes data into 
Periodic or Non-Periodic. If data classifies as Periodic then 
the method provides with information on cycle length and 
outputs the frame columns in terms of similarity that are 
finally employed to quantify the time-based DT values.  
Figure 6 shows an example of a Periodic Data (blue curve) 
with the corresponding upper (red curve) and lower (green 
curve) DT’s. 

 
Figure 6. DT’s of a Periodic Data.  

Now we describe several category-specific DT 
construction mechanisms:   
DT’s of Multinomial Data. As mentioned, period 
determination investigates the cyclicality of data and classifies 
it into periodic and non-periodic categories. The general 
scheme for period determination in this case is specialized 
with the following modification while constructing the 
Footprint of data: instead of the percentages of data in every 
cell we are taking the values of    (see categorization of the 
Multinomial Data) in every column of the frame. If data is 
claimed Periodic then the normalcy set for similar columns 
are calculated as follows. Data points in similar columns are 
collected together and corresponding new values of the 
numbers    are calculated. If       ,      then the 
values            constitute the most probable set (normalcy 
set) of similar columns. If Multinomial Data is determined as 
Non-Periodic then the numbers    are calculated for all data 
points and normalcy set is determined similarly.  
DT’s of Semi-Constant Data.  For Semi-constant data every 
data point greater than       (quantile) or less than        is an 
outlier. If the percentage of outliers is greater than    
(     ), then we check for periodicity in outlier data by 
the procedure described above. For periodicity analysis data 
points equal to the median are excluded from the analysis. 
DT calculation for Non-Periodic Semi-Constant Data is 
performed separately for upper (for data points that are greater 
or equal to median) and lower (for data points that are less 
than or equal to median) parts of data. Since the process of 
obtaining of both upper and lower bounds are similar, we’ll 
explain the method only for the upper DT. The main principle 
is maximization of an objective function 

           
    

 

where     is a sensitivity parameter, for example      ; 
  is the percentage of data points within the median of data 
and any upper line higher than the median (see Figure 7);  

                                           
and   is the square of the area within data points and data 
median.  
 

 
Figure 7. Auxiliary drawing for the objective function. 
We consider two different approaches for determination of 

DT’s via maximization of the objective function: data range 
and data variability based. In the data-range-based analysis, 
we divide the range within median and maximum of data 
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(while determining the upper bound) into   parts and for each 
level calculate the values             of the objective 
function. Then, the level that corresponds to         gives 
the appropriate upper bound. Instead of dividing the range into 
equal parts it is reasonable also to divide the range of data by 
corresponding quantiles that will give unequal division 
according to the density of data points along the range. Here 
preliminary abnormality cleaning of data can be performed. 
For this, removal of data points with abnormal concentration 
in the given time window is performed. Abnormal 
concentration can be detected by the following procedure. For 
the given time window (for example     of data length), we 
calculate the percentage of data points with values higher than 
    -quantile. Then by moving this window along data, we 
calculate the corresponding percentages. Any percentage 
higher than the upper whisker indicates abnormal 
concentration and must be discarded from further calculation. 
We repeat the same abnormality cleaning procedure for data 
points lower than     -quantile.  

In the data-variability-based approach, we calculate the 
variability of data points    against median of data   

  (  
   ∑       

 

   
)
   

 

and consider the following set of upper lines  
[      ]            

For each level, we calculate the corresponding values    of the 
objective function as described above and, we take the level 
that corresponds to          as the appropriate upper DT. The 
following values can be used for    

                            
In case of periodic data the same procedure is applicable for 
each periodic column of the Footprint of data.  
DT’s of Transient Data can be obtained by similar procedure 
for each mode separately based on maximization of the 
objective function as we do it for      below.   
DT’s of Linear-Trendy Data. In case of Linear-Trendy Data, 
we perform decomposition of the original data       into the 
following form  

                
and perform DT calculation for     based on the following  
objective function 

             
     

 
    

 

where   is the square of the area limited by            and 
some lower and upper lines (see Figure 8),  

                   
and    is the fraction of data within upper and lower lines and 
  is a user defined parameter. Then we calculate standard 
deviation  of      and consider the following set of lower and 
upper lines 

[                   ]           
Next we calculate    and take the level corresponding to 
        . We use the following values for    

                            
 

 
Figure 8. Auxiliary drawing for definition of the objective 

function. 
 
Figures 9 shows an example of Linear-Trendy Data with the 
corresponding DT’s. 

 
Figure 9. Linear-Trendy Data with the corresponding DT’s.  

DT’s of Sparse Data. For period determination procedure, we 
put                   [            

                     
] . If data is 

classified as Periodic then DT calculation is performed 
according to the found cycles otherwise DT’s can be 
determined based on the utilization of the objective function. 
DT’s of High- and Low-Variability Data. First data is 
checked for periodicity by setting different preliminary para-
meters while calculating the Footprint of data – less sensitive 
for High-Variability data, then DT determination is performed 
based on cycles or objective function utilization.  
Figure 10 shows an example of Low-Variability Data with the 
corresponding normalcy bounds. 

 
Figure 10. Data from Figure 4 with upper and lower DT’s. 
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IV. SYSTEM VALIDATION  
The results obtained for a specific customer data by EDTS are 
presented below. Note that Figures 6, 9, and 10 are also real 
enterprise examples. We selected some 3215 monitoring 
metrics with one month length and applied the categorization 
procedures. Table 1 shows the distribution along different data 
categories and Table 2 indicates the count of periodic and non-
periodic data. In particular, for semi-constant data we observe 
the following picture. From 532 metrics (see Table 1) 267 
have percentage of outliers less than 15% and they are claimed 
as non-periodic without any further checking. The remaining 
235 metrics are checked for periodicity and in 212 cases 
periods are found. It is worth noting that results obtained for 
the specific customer data can’t be in any manner generalized 
to other cases. The graphs below demonstrate several 
snapshots from the product with monitored time series data 
and their adaptively updated DT’s by EDTS. We observe 
reliably detected DT’s, data changes, periods, and relevant 
out-of-normal areas (yellow) reported as alarms. 

Table 1. Distribution along the categories. 
Data Category Count (Percentage) 

of Metrics in the  
Category 

Multinomial 724 (22.5%) 
Trendy 165 (5.1%) 
Semi-Constant 532 (16.5%) 
Transient 102 (3.2%) 
Sparse 88 (2.7%) 
Low-Variability 826 (25.7%) 
High-variability 669 (20.8%) 
Corrupted 109 (3.4%) 

Table 2. Count of periodic and non-period data. 
Periodic Non-Periodic Corrupted Overall  

1511 1595 109 3512 
 

V. RELATED WORK 
In terms of our application, the performance of EDTS is 
estimated according to users experience on indicative and 
missed alarms, as well as the generated noise level that the 
useful information is embedded in. In this context, our 
categorization techniques allow achieving essentially better 
trade-off between the produced recommendation (alarm) noise 
and its accuracy in problem indication. That  would not be 
possible with classical parametric approaches including 
Fourier transform, discrete Fourier transform [24-28], Prony’s 
method [29,30]) as well as with other common purpose 
enterprise algorithms (including our algorithm of Section III 
that produces DT’s based on data footprint even when cyclical 
patterns are not discovered). Moreover, the categorization in 
terms of those specific classes enables an efficient root cause 
analysis [31,32] based on the abnormality events (DT 
violation alarms) space that our system outputs. Furthermore, 
[19] reports about reliably predicted root causes of suddenly 
occurring influential outages at large enterprise infrastructures. 
This method relies on historically analyzed mutual impact 
factors of out-of-DT events. 

Note that EDTS handles only structured monitoring data. 
For the unstructured data sets (like log files) we have 
developed a graph-based approach [33,34] that extracts the 
dominating correlation pattern between the main event types 
in data as dynamic normalcy structure and applies it to 
identification of “large”/abnormal deviations from that 
structure to determine  performance anomalies.   

Finally, we refer the reader to the papers [35,36] which 
outline the approaches and trends of the area of anomaly 
detection up to the recent days. 
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