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The paper considers the problem of approximation by translates of a fixed periodic function in the
framework of L2-convergence. Exact formulae for the principal terms of asymptotic expansions of
error are obtained. The paper proposes fast algorithms which are especially efficient while approx-
imating by even order splines and odd order ”modified splines”.

INTRODUCTION

The problem of approximation by translates of a fixed periodic function has been studied in

numerous papers (see, for instance, [1] — [3]). In [4], [5] an approach for approximations of

general form was developed, based on minimization of certain functionals. In particular, estimates

for periodic biorthogonal expansions and interpolations by translates on a finite interval were

obtained.

In the case, where the approximand function defined on a finite interval has no smooth periodic

continuation, the problem of acceleration of the rate of convergence arises. For trigonometric

approximation (that corresponds to translates of Dirichlet kernel) the acceleration can be reached

by a method due to A. N. Krylov, based on application of Bernoulli polynomials (see [6] — [8] and

section 1.3).

In the present paper we consider L2—convergence of polynomial-periodic approximations of
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sufficiently smooth on [-1,1] functions by translates of fixed periodic functions and obtain an

exact formula for the principal term of the corresponding asymptotic expansions. The suggested

approach is particular efficient for approximation by translates of even order splines and odd order

”modified splines”.

§1. BASIC FORMULAE

Our study is based on [4] — [8]. In this section we list some results from these papers we will need

below.

1.1. Results from [4] and [5]. Consider the orthonormal system
{

1√
2
eiπnx

}∞
n=−∞

in the space

L2(−1, 1) with norm || · ||. Let Z be the set of integers, and the sequence {θn}, θn ∈ |C be such that

the series

ω2
n =

∑
s∈Z

|θn+s(2N+1)|2 �= 0, N ≥ 1, n = 0,±1, . . . ,±N

converge. Then the finite system

{ϕn} = {ϕNn }, ϕn(x) =
1√
2ωn

∑
s∈Z

θn+s(2N+1)e
iπ(n+s(2N+1))x, n = 0,±1, . . . ,±N (1)

is orthonormal in L2(−1, 1). Consider the corresponding orthogonal expansion of a function f ∈

L2(−1, 1):

SN (f) =

N∑
n=−N

(f, ϕn)ϕn. (2)

Lemma 1. Let f ∈ L2(−1, 1) and fn = 1
2 (f, e

iπnx) be its Fourier coefficients. The following estimate holds

||f − SN (f)|| ≤ 4

 ∑
|n|>N

|fn|2
1/2

+ 2

(
N∑

n=−N
|fn|2

(
1− |θn|2

ω2
n

))1/2

. (3)

The next result is an immediate consequence of (3).

Theorem A. The condition

lim
N→∞

|θn|2
ω2
n

= 1, n = const

is necessary and sufficient for the || · ||-convergence SN(f)→ f (N →∞) for any f ∈ L2(−1, 1).
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The estimate (3) characterizes the rate of convergence SN (f)→ f in terms of Fourier coefficients

{fn}. The expansion (2) can be represented by the translates of the periodic function

b(x) =
∑
n∈Z

θne
iπnx.

The following formulae are effectively realized by computer integration and the Fourier fast trans-

formation (FFT):

ϕn(x) =
1

ωn(2N + 1)

N∑
s=−N

e
2iπns
2N+1 b

(
x− 2s

2N + 1

)
,

SN (f) =
1

(2N + 1)2

N∑
s=−N

csb

(
x− 2s

2N + 1

)
,

where

cs =

N∑
r=−N

µs−rf̃r, µk =

N∑
n=−N

e
2iπnk
2N+1 /ω2

n, f̃s =

∫ 1

−1
f(t)b

(
t− 2s

2N + 1

)
dt.

Now let the sequence {θn} =
{
θ

(
n

2N + 1

)}
be represented by Fourier transform

θ(λ) =

∫ ∞

−∞
e−iλxρ(x) dx. (4)

Assuming that ρ(x) ∈ L2 ∩ Cloc and
∑
k

|ρ((2N + 1)x + 2k)| < ∞, the function b(x) can be represented

by means of translations of ρ(x):

b(x) = (N + 1/2)
∑
r∈Z

ρ((2N + 1)x− 2r).

1.2. Bernoulli polynomials and approximation of functions of one variable ([6] — [8]).

We put

Ak = f (k)(1)− f (k)(−1), fn =
1

2

∫ 1

−1
f(x)e−iπnx dx.

The following result is well known

Lemma 2. For any f(x) ∈ Cq+1[−1, 1], q ≥ −1,

fn =
(−1)n+1

2

q∑
k=0

Ak

(iπn)k+1
+

1

2(iπn)q+1

∫ 1

−1
f (q+1)(t)e−iπnt dt, n �= 0. (5)
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Using Lemma 2, the function f can be represented in the form

f(x) =

q∑
k=0

AkBk(x) + F (x), (6)

where F (x) is some 2-periodic and q times continuously differentiable function. The Bernoulli

polynomials Bk(x) have Fourier coefficients

Bk,n =

{
(−1)n+1

2(iπn)k+1 , for n �= 0

0, for n = 0,

and are determined by the recurrent relation

B0(x) =
x

2
, Bk(x) =

∫
Bk−1(x) dx, x ∈ [−1, 1], k = 1, 2, . . . ,

where the integration constant is determined from the condition

∫ 1

−1
Bk(t) dt = 0, k = 1, 2, · · · .

It follows from (6), that the Fourier coefficients of F (x) are

Fn = fn −
q∑

k=0

AkBk,n, n = 0,±1, · · · ,±N. (7)

The following formula is called polynomial-periodic approximation:

f(x) 
 fN (x) =

N∑
n=−N

Fne
iπnx +

q∑
k=0

AkBk(x). (8)

If f ∈ Cq+2[−1, 1], then Fn = O(n−q−2) as n→∞. Hence, we can expect faster convergence of fN to f

as N → ∞. To determine the numbers Ak (k = 0, · · · , q) we use (7). Replacing (7) by the following

system with nonsingular Vandermonde matrix

fns =

q∑
k=0

ÃkBk,ns , s = 1, . . . , q + 1, ni �= nj (i �= j), (9)

const N ≤ |ns| ≤ N, N →∞,

we get an error of order O(N−q−2), N →∞. The solution of system (9) was studied in [7], [8], where

it was shown, that the error |Ak − Ãk| is of order O(N−q+k−1) as N →∞.
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1.3. Polynomial-periodic approximation. As applied to expansions by translates of certain function,

this method can be described as follows. Let f ∈ Cq+1[−1, 1]. Consider the following approximating

formula, that corresponds to the expansion (6), and also called polynomial-periodic approximation

Sq
N (f) = SN

(
f(x)−

q∑
k=0

AkBk(x)

)
+

q∑
k=0

AkBk(x). (10)

Note that for the following choice

θn =

{
1, for |n| ≤ N,

0, for |n| > N,
(11)

(10) coincides with (8). In this case {ϕn(x)}Nn=−N coincides with the truncated Fourier system{
1√
2
eiπnx

}N
n=−N

(see Example 1 below).

We are interested in asymptotic L2—estimates for the error SqN (f)− f as N →∞. However, our

analysis does not touch the question of approximate determination of the jumps {Ak} by means

of (f, ϕn) in the general case (see 1.1).

§2. ASYMPTOTIC L2—ESTIMATES

Let f(x) be a function defined on [a, b], and let ω(δ, f) be its modulus of continuity

ω(δ, f) = sup|f(x1)− f(x2)|, x1, x2 ∈ [a, b], |x1 − x2| ≤ δ.

Let θn = θ
(

n
2N+1

)
. It is clear, that ωn = ω

(
n

2N+1

)
. Assuming that ω(x) �= 0 for x ∈ [−1/2, 1/2], we put

Φ(x) =
∑
s∈Z

(−1)sθ(x+ s)

(x+ s)q+2
, Φ̃(x) =

∑
s∈Z

′ (−1)sθ(x + s)

(x+ s)q+2
, Ψ(x) = 1− |θ(x)|2

ω2(x)
.

Here and below
∑′

s stands for the sum, that contains no term corresponding to s = 0. Observe

that Ψ(x) ≥ 0. From (1) and (2)

||f − SN (f)||2 = 2

N∑
n=−N

∑
r∈Z

∣∣∣∣∣fn+r(2N+1) −
θn+r(2N+1)

ω2
n

∑
s∈Z

θn+s(2N+1)fn+s(2N+1)

∣∣∣∣∣
2

=

= 2

N∑
n=−N

∑
r∈Z

|fn+r(2N+1)|2 − 2

N∑
n=−N

1

ω2
n

∣∣∣∣∣∑
r∈Z

θn+r(2N+1)fn+r(2N+1)

∣∣∣∣∣
2

. (12)
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After some easy calculation we obtain

||f − SN (f)||2 = 2

N∑
n=−N

Ψ

(
n

2N + 1

)
|fn|2 − 2

N∑
n=−N

1

ω2
n

∣∣∣∣∣∑
r∈Z

′
θn+r(2N+1)fn+r(2N+1)

∣∣∣∣∣
2

+

+2
∑
|n|>N

|fn|2 − 4 Re

(
N∑

n=−N

(
θnfn
ω2
n

∑
r∈Z

′
θn+r(2N+1)fn+r(2N+1)

))
. (13)

Theorem 1. The following three conditions

1◦. The function θ(x) is piecewise continuous, and the series

∑
s∈Z

|θ(x + s)|2 �= 0

converge uniformly on [−1/2, 1/2],

2◦. There exists a monotone on (−1/2, 0) as well as on (0, 1/2) and integrable on (−1/2, 1/2) function

τ(x) ≥ 0, such that Ψ(x)x−2q−4 ≤ τ(x),

3◦. f ∈ Cq+2[−1, 1], q ≥ −1,

imply

lim
N→∞

(2N + 1)2q+3||f − Sq
N (f)||2 = |Aq+1|2

π2q+4

(
22q+3

2q + 3
+

1

2

∫ 1/2

−1/2

(
1

x2q+4
− |Φ(x)|2

ω2(x)

)
dx

)
. (14)

Proof: We use the inequality

||f − Sq
N (f)|| = ||F − SN (F )|| ≤ ||F1 − SN (F1)||+ ||F2 − SN (F2)||, (15)

where (see Lemma 2)

F (x) = F1(x) + F2(x), F1(x) =
∑
n∈Z

′
F1,ne

iπnx, F1,n =
(−1)n+1

2

Aq+1

(iπn)q+2
, n �= 0,

F2(x) =
∑
n∈Z

′
F2,ne

iπnx, F2,n =
1

2(iπn)q+2

∫ 1

−1
f (q+2)(x)e−iπnx dx, n �= 0.

It is well-known (see, for instance, [10]), that |fn| ≤ const ω(|n|−1, f), hence

|F2,n| ≤ const ω(|n|−1, f (q+2))|n|−q−2. (16)
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According to Lemma 1 (tn = n
2N+1),

||F2 − SN (F2)|| ≤ 4

 ∑
|n|>N

|F2,n|2
1/2

+ 2

(
N∑

n=−N

′ |F2,n|2Ψ(tn)
)1/2

(17)

The first term on the right-hand side of (17) we estimate by means of (16):

∑
|n|>N

|F2,n|2 ≤ const

∞∑
n=N+1

ω2(n−1, f (q+2))

n2q+4
≤ const ω2(N−1, f (q+2))

(2N + 1)2q+3
. (18)

For the second term we have ([x] stands for the integer part of x)

N∑
n=−N

′ |F2,n|2Ψ(tn) ≤ const

(2N + 1)2q+4

[
√
N ]∑

n=−[√N ]

′ Ψ(tn)

t2q+4
n

ω2(|n|−1, f (q+2))+

+
const

(2N + 1)2q+4

∑
[
√
N ]<|n|≤N

Ψ(tn)

t2q+4
n

ω2(|n|−1, f (q+2)). (19)

Clearly, the assumptions of Theorem 1 imply integrability of Ψ(x)x−2q−4 on [−1/2, 1/2] and the

existence of the limit (see, for instance, [11])

lim
N→∞

1

2N + 1

N∑
n=−N

′
Ψ(tn)t

−2q−4
n =

∫ 1/2

−1/2
Ψ(x)x−2q−4 dx.

Therefore, the second summand in (19) can be estimated by

const
ω2([

√
N ]−1, f (q+2))

(2N + 1)2q+3

∫ 1/2

−1/2
Ψ(x)x−2q−4 dx.

Likewise, the first summand is majorized by

const

(2N + 1)2q+3

∫ [
√
N]

2N+1

− [
√
N]

2N+1

τ(x) dx,

which tends to zero as N →∞, because τ(x) is integrable. Thus,

lim
N→∞

(2N + 1)2q+3||F2 − SN (F2)||2 = 0,
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and therefore,

lim
N→∞

(2N + 1)2q+3||f − Sq
N (f)||2 = lim

N→∞
(2N + 1)2q+3||F1 − SN (F1)||2.

On the other hand, by (12)

(2N + 1)2q+3||F1 − SN (F1)||2 = |Aq+1|2
2π2q+4

1

(2N + 1)

 N∑
n=−N

′∑
r �=0

(tn + r)−2q−4+

+
N∑

n=−N

′
(
t−2q−4n − |Φ(tn)|2

ω2(tn)

)]
+O((2N + 1)−1), N →∞. (20)

Now we show that

x−2q−4 − |Φ(x)|2
ω2(x)

∈ L1(−1/2, 1/2),

and that for N →∞ the sums in (20) can be replaced by the corresponding integrals. We have

x−2q−4 − |Φ(x)|2
ω2(x)

=
Ψ(x)

x2q+4
− |Φ̃(x)|2

ω2(x)
− 2 Re

(
θ(x)Φ̃(x)

xq+2ω2(x)

)
. (21)

By assumptions 1◦ and 2◦ the functions |Φ̃(x)|2ω−2(x) and Ψ(x)x−2q−4 are integrable on the segment

[−1/2, 1/2]. The third term on the right-hand side of (21) can be majorized by

const
|Φ̃(x)x−q−2|

ω2(x)
≤ const(Ψ(x)x−2q−4)1/2 ≤ const(τ(x))1/2.

To complete the proof, it remains to observe, that assumption 2◦ implies integrability of
√
τ(x) on

[−1/2, 1/2]. Theorem 1 is proved.

Given α (0 < α ≤ 1) we denote by Λα the class of functions f satisfying ω(δ, f) ≤ Cδα, where C

is a constant not depending on δ. It is well-known (see, for instance, [10]), that |fn| ≤ const|n|−α.

Theorem 2. The following four conditions:

1◦. The function θ(x) is piecewise continuous and the series
∑
s∈Z

|θ(x + s)|2 �= 0 converges uniformly

on [−1/2, 1/2],

2◦. lim
x→0

x−2q−3Ψ(x) = B,
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3◦. There exists a monotone on each of the intervals (−1/2, 0) and (0, 1/2) and integrable on

(−1/2, 1/2) function Ω(x) ≥ 0, such that

|(Ψ(x)x−2q−3 −B)x−1| ≤ Ω(x), (22)

lim
ε→+0

(ln ε)−1
∫
ε<|x|≤1/2

Ω(x)dx = 0, (23)

4◦. f (q+2) ∈ Λα, q ≥ −1

imply

lim
N→∞

(2N + 1)2q+3

ln(2N + 1)
||f − Sq

N (f)||2 = |Aq+1|2
π2q+4

B. (24)

Proof: We use the inequality (15), where the second term on the right-hand side we estimate by

means of Lemma 1. The first term on the right-hand side of (3) with fn = F2,n can be estimated

as done in the proof of Theorem 1 (see (18)). The second term in (3) with fn = F2,n we estimate

as follows
N∑

n=−N

′ |F2,n|2Ψ(tn) ≤ const

(2N + 1)2q+3

N∑
n=−N

′ |n|2q+3|F2,n|2 ≤

≤ const

(2N + 1)2q+3

N∑
n=−N

′ ω2(|n|−1, f (q+2))

|n| ≤ const

(2N + 1)2q+3

∞∑
n=−∞

′ 1

|n|1+2α
.

Thus,

lim
N→∞

(2N + 1)2q+3

ln(2N + 1)
||F2 − SN (F2)||2 = 0,

and therefore,

lim
N→∞

(2N + 1)2q+3

ln(2N + 1)
||f − Sq

N (f)||2 = lim
N→∞

(2N + 1)2q+3

ln(2N + 1)
||F1 − SN(F1)||2.

According to (13),

||F1 − SN (F1)||2 = 2

N∑
n=−N

′
Ψ(tn)|F1,n|2 − 2

N∑
n=−N

1

ω2
n

∣∣∣∣∣∑
r∈Z

′
θn+r(2N+1)F1,n+r(2N+1)

∣∣∣∣∣
2

+

+2
∑
|n|>N

|F1,n|2 − 4 Re

(
N∑

n=−N

′
(
θnF1,n

ω2
n

∑
r∈Z

′
θn+r(2N+1)F1,n+r(2N+1)

))
. (25)
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The second summand in (25) can be majorized by the third term, since

const

N∑
n=−N

′
Ψ(tn)

∑
r∈Z

′ |F1,n+r(2N+1)|2 ≤ const
∑
|n|>N

|F1,n|2.

It is easy to show, that the third summand in (25) is of order O((2N + 1)−2q−3), as N → ∞. The

majorant of the fourth summand in (25) can be estimated by the expression

const

N∑
n=−N

′ |F1,n|Ψ1/2(tn)

(∑
r∈Z0

′ |F1,n+r(2N+1)|2
)1/2

≤

≤ const

(2N + 1)q+1.5

N∑
n=1

1√
n

(∑
r∈Z

′ 1

(n+ r(2N + 1))2q+4

)1/2

≤ const

(2N + 1)2q+3.5

N∑
n=1

1√
n
≤ const

(2N + 1)2q+3
.

Thus, we have

lim
N→∞

(2N + 1)2q+3

ln(2N + 1)
||f − Sq

N (f)||2 = 2 lim
N→∞

(2N + 1)2q+3

ln(2N + 1)

N∑
n=−N

′ |F1,n|2Ψ(tn) =

=
|Aq+1|2
π2q+4

lim
N→∞

1

2 ln(2N + 1)

N∑
n=−N

′ Ψ(tn)

t2q+3
n

1

n
. (26)

To complete the proof, it remains to show, that the last limit on the right-hand side of (26) equals

B. We have

lim
N→∞

(
1

2 ln(2N + 1)

N∑
n=−N

′ Ψ(tn)

t2q+3
n

1

n
−B

)
= lim

N→∞
1

2 ln(2N + 1)

N∑
n=1

(
Ψ(tn)

t2q+3
n

−B

)
1

n
+

+ lim
N→∞

1

2 ln(2N + 1)

N∑
n=1

(
Ψ(−tn)
t2q+3
n

−B

)
1

n
. (27)

First we show, that the first limit on the right-hand side of (27) is equal to zero. Setting λ(x) =

Ψ(x)x−2q−3 −B, we obtain

1

2 ln(2N + 1)

N∑
n=1

λ(tn)

n
=

1

2 ln(2N + 1)

[
√
N ]∑

n=1

λ(tn)

n
+

1

2 ln(2N + 1)

N∑
n=[

√
N ]+1

λ(tn)

n
≤
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≤ const ω

(
[
√
N ]

2N + 1
, λ

)
+

1

2(2N + 1) ln(2N + 1)

N∑
n=[

√
N ]+1

Ω(tn) ≤

≤ const ω

(
[
√
N ]

2N + 1
, λ

)
+

const

ln(2N + 1)

∫ 1/2

[
√
N ]

2N+1

Ω(x) dx.

Likewise it can be proved, that the second limit on the right-hand side of (27) also is equal to

zero. Theorem 2 is proved.

Theorem 3. The following three conditions

1◦. The function θ(x) is piecewise continuous and the series
∑
s∈Z

|θ(x + s)|2 �= 0 converges uniformly

on [−1/2, 1/2],

2◦. For some α < q + 1.5 there exists the limit

lim
x→0

Ψ(x)x−2α = C, (28)

3◦. f ∈ Cq+2[−1, 1], q ≥ −1

imply

lim
N→∞

(2N + 1)2α||f − Sq
N (f)||2 = C

2π2q+2

∑
n∈Z

′ 1

n2q+2−2α

∣∣∣∣∫ 1

−1
f (q+1)(x)e−iπnx dx

∣∣∣∣2 . (29)

Proof: In view of (13),

||f − Sq
N(f)||2 = ||F − SN (F )||2 = 2

N∑
n=−N

′
Ψ(tn)|Fn|2 − 2

N∑
n=−N

1

ω2
n

∣∣∣∣∣∑
r∈Z

′
θn+r(2N+1)Fn+r(2N+1)

∣∣∣∣∣
2

+

+2
∑
|n|>N

|Fn|2 − 4 Re

(
N∑

n=−N

′
(
θnFn
ω2
n

∑
r∈Z

′
θn+r(2N+1)Fn+r(2N+1)

))
, (30)

where (see Lemma 2)

Fn =
εn

2(iπn)q+1
, εn =

∫ 1

−1
f (q+1)(x)e−iπnx dx, n �= 0.

Likewise in Theorem 2, it can be proved, that the second and third terms on the right-hand side

of (30) are of order O((2N + 1)−2q−3), as N → ∞. The last term on the right-hand side of (30) is

majorized by the expression

const

(2N + 1)q+2

N∑
n=−N

′ |Fn|Ψ1/2(tn) ≤ const

(2N + 1)q+1.5+α
.

11



Therefore

lim
N→∞

(2N + 1)2α||f − Sq
N (f)||2 = 2 lim

N→∞
(2N + 1)2α

N∑
n=−N

′ |Fn|2Ψ(tn) =

=
1

2π2q+2
lim

N→∞

N∑
n=−N

′
Ψ(tn)t

−2α
n

|εn|2
n2q+2−2α .

Now we show that

lim
N→∞

N∑
n=−N

′
Ψ(tn)t

−2α
n

|εn|2
n2q+2−2α = C

∑
n∈Z

′ |εn|2
n2q+2−2α .

Denoting

Ψ̃(x) = x−2αΨ(x), Ψ̃(0) = C,

and taking into account that Ψ̃(x) is continuous near the point x = 0, we obtain∣∣∣∣∣C ∑
n∈Z

′ |εn|2
n2q+2−2α −

N∑
n=−N

′
Ψ̃(tn)

|εn|2
n2q+2−2α

∣∣∣∣∣ =

=

∣∣∣∣∣∣
N∑

n=−N

′ (
Ψ̃(0)− Ψ̃(tn)

) |εn|2
n2q+2−2α + C

∑
|n|>N

|εn|2
n2q+2−2α

∣∣∣∣∣∣ ≤

≤
[
√
N ]∑

n=−[√N ]

′ ω
(

n
2N+1 , Ψ̃

)
n2q+4−2α + const

∑
|n|>[

√
N ]

n−2q−4+2α ≤

≤ ω

(
[
√
N ]

2N + 1
, Ψ̃

)∑
n∈Z

′
n−2q−4+2α + const

∑
|n|>[

√
N ]

n−2q−4+2α.

We have used the fact, that the assumption f ∈ C(q+2) implies |εn| ≤ const|n|−1. It remains to observe,

that the series
∑
n∈Z

′
n−2q−4+2α converges for α < q + 1.5. Theorem 3 is proved.

§3. SPECIAL CASES AND NUMERICAL RESULTS

In this section we consider examples, that illustrate the results of §2.

Example 1. The simplest case (see also (11)) corresponds to the classical Fourier system

θ(x) =

{
1, for |x| ≤ 1/2,

0, for |x| > 1/2.

12



All conditions of Theorem 1 are fulfilled, and on [−1/2, 1/2] we have Φ(x) = x−q−2. According to

(14),

lim
N→∞

(2N + 1)q+1.5||f − Sq
N(f)|| = |Aq+1|a(q), (31)

where

a(q) =
2q+1

πq+2

√
2

2q + 3
.

Thus, we have an exact asymptotic estimate of L2—error for the Fourier—Bernoulli method (see [7],

[8]). The following table contains numerical values of a(q) for various values of q.

q −1 0 1 2 3 4 5

a(q) 0.4501 0.1654 0.0816 0.0439 0.0246 0.0142 0.0083

Table 1. Numerical values of the constant a(q) for various values of q.

Example 2.

θ(x) =

{
coss π

2x, for |x| ≤ 1,

0, for |x| > 1,
s > 0.

We have

ω2(x) = cos2s
π

2
x+ sin2s

π

2
x, Ψ(x) =

sin2s π
2x

cos2s π
2x+ sin2s π

2x
. (32)

It is clear, that the condition 1◦ of Theorem 1 is fulfilled. We have

Ψ(x)x−2q−4 ≤ const x2s−2q−4. (33)

The function on the right-hand side of (33) is monotone on each of the intervals (−1/2, 0) and

(0, 1/2) and integrable on (−1/2, 1/2) for s > q+1.5. Hence the condition 2◦ of Theorem 1 is fulfilled.

Besides, for 0 < x < 1/2,

Φ(x) = θ(x)x−q−2 − θ(x − 1)(x− 1)−q−2 = x−q−2 coss
π

2
x− (x− 1)−q−2 sins

π

2
x,

and for −1/2 < x < 0,

Φ(x) = θ(x)x−q−2 − θ(x + 1)(x+ 1)−q−2 = x−q−2 coss
π

2
x− (x+ 1)−q−2 sins

π

2
x.

13



According to Theorem 1

lim
N→∞

(2N + 1)q+1.5||f − Sq
N (f)|| = |Aq+1|b1(q, s), (34)

where

b21(q, s) =
1

π2q+4

(
22q+3

2q + 3
+

∫ 1/2

0

(
x−2q−4 − |Φ(x)|2

ω2(x)

)
dx

)
.

The numerical values of the constant b1(q, s) for some values of s and q are presented on Fig. 1.

Comparison with Table 1 shows, that for even values of q (lower diagrams, Fig. 1) the values of

constant b1(q, s) are always greater, than the corresponding values of a(q), and if s increases, then

b1(q, s) approaches a(q). Thus, for even values of q the classical choice of θ(x) in Example 1 leads

to more effective interpolation, than that of in Example 2.

Fig. 1. Numerical values of the constant b1(q, s) for various values of s and q.

For odd values of q (upper diagrams, Fig. 1) the situation is different. The values of constant

b1(q, s) first rapidly decrease (if s increases) up to some minimal value, and then increase up to the

values of constant a(q). Comparison with the results of Table 1 shows, that for greater values of

s the values of b1(q, s) becomes less, than a(q). Such behaviour of b1(q, s) with sharply expressed

minimum allows to find an optimal value of the parameter s for fixed odd values of q. The optimal

values of the parameter s determined by means of MATHEMATICA 3.0 are given in Table 2.

14



q s b1(q, s)
a(q)

b1(q,s)

−1 1.17501 0.318887 1.4

1 3.68683 0.015286 5.3

3 6.26922 0.001880 13.1

5 8.83021 0.000234 35.4

Table 2. Optimal values of the parameter s and constant b1(q, s).

The last column in Table 2 describes the efficiency of optimal interpolation relative to the

classical case (see example 1). Note that the optimal value of the parameter s increases with q.

For s = q + 1.5 from (32) we have (see also Theorem 2)

B = lim
x→0

Ψ(x)x−2q−3 = (π/2)2q+3.

Thus, the conditions 1◦ and 2◦ of Theorem 2 are satisfied. Besides, we have

∣∣∣∣Ψ(x)x−2q−3 −B

x

∣∣∣∣ ≤ const x,

and hence the condition 3◦ is satisfied. So, by Theorem 2

lim
N→∞

(2N + 1)q+1.5√
ln(2N + 1)

||f − Sq
N (f)|| = |Aq+1|b2(q),

where

b2(q) =
1

2q+1

√
1

2π
.

The Table 3 contains numerical values of b2(q) for some values of q.

q −1 0 1 2 3 4 5

b2(q) 0.3989 0.1995 0.0997 0.0499 0.0249 0.0125 0.0062

Table 3. Numerical values of b2(q) for −1 ≤ q ≤ 5.
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Finally, for s < q + 1.5 we have (see also Theorem 3)

C = lim
x→0

Ψ(x)x−2s =
(π
2

)2s
.

Therefore, for α = s all conditions of Theorem 3 are satisfied, and hence

lim
N→∞

(2N + 1)2s||f − Sq
N (f)||2 = π2s−2q−22−2s−1

∑
n∈Z

′ 1

n2q+2−2s

∣∣∣∣∫ 1

−1
f (q+1)(x)e−iπnx dx

∣∣∣∣2 . (36)

So, for odd values of q and an optimal choice of the parameter s, we get more sharp algorithm as

compared with the classical trigonometric approximation (Example 1).

Example 3. Consider the case, where

θn+r(2N+1)

ω2
n

=

(∑
r∈Z

(n+ r(2N + 1))−2q−4
)−1/2

(−1)n+r
(n+ r(2N + 1))q+2

, (37)

for n+ r(2N + 1) �= 0 and θ0 = 1, θr(2N+1) = 0 for r �= 0. By Theorem 1

||f − Sq
N (f)|| = o((2N + 1)−q−1.5), N →∞.

Now we present a more exact estimate, displaying the principal term of ||f − SqN (f)||.

Teorem 4. Let f (q+2) ∈ Λα, α > 1/2, q ≥ −1, and θn be a sequence from (37). Then

lim
N→∞

(2N + 1)2q+4||f − Sq
N (f)||2 = ζ(2q + 4)

π2q+4

(
|Aq+1|2 + 2

∫ 1

−1
|f (q+2)(z)|2dz −

∣∣∣∣∫ 1

−1
f (q+2)(z) dz

∣∣∣∣2
)
, (38)

where ζ(s) =
∞∑
r=1

r−s is the Riemann function.

Proof: It is easy to check, that

lim
N→∞

(2N + 1)2q+4||F1 − SN (F1)||2 = |Aq+1|2ζ(2q + 4)

π2q+4
.

Therefore,

lim
N→∞

(2N + 1)2q+4||f − Sq
N (f)||2 = lim

N→∞
(2N + 1)2q+4||F2 − SN (F2)||2 + |Aq+1|2ζ(2q + 4)

π2q+4
.

We use (13) with

fn = F2,n =
δn

2(iπn)q+2
, δn =

∫ 1

−1
f (q+2)(x)e−iπnx dx, n �= 0.
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Like in the proof of Theorem 2, the second term on the right-hand side of (13) for fn = F2,n is

majorized by the third term, for which we have the estimate

∑
|n|>N

|F2,n|2 ≤ const
∑
|n|>N

|δn|2
n2q+4

≤ const
∑
|n|>N

n−2q−2α−4 ≤ const

(2N + 1)2q+3+2α
.

The last term on the right-hand side of (13) for fn = F2,n is majorized by the expression

const
N∑

n=−N

′

 |δn|
|n|q+2

Ψ1/2(tn)

(∑
r∈Z

′ |δn+r(2N+1)|2
(n+ r(2N + 1))2q+4

)1/2
 ≤

≤ const

(2N + 1)q+2

N∑
n=−N

′ |n|−α
(∑
r∈Z

′
(n+ r(2N + 1))−2q−4−2α

)1/2

≤

≤ const

(2N + 1)2q+4+α

N∑
n=1

n−α ≤ const

(2N + 1)2q+3+2α
.

Therefore,

lim
N→∞

(2N + 1)2q+4||f − Sq
N (f)||2 =

=
1

2π2q+4
lim

N→∞
(2N + 1)2q+4

N∑
n=−N

′ Ψ(tn)

t2q+4
n

|δ|2 + |Aq+1|2ζ(2q + 4)

π2q+4
.

It remains to prove, that

lim
N→∞

N∑
n=−N

′ Ψ(tn)

t2q+4
n

|δn|2 = 2ζ(2q + 4)
∑
n∈Z

′ |δn|2. (39)

By the arguments of the proof of Theorem 3, the series on the right-hand side of (39) converges,

because |δn|2 ≤ |n|−2α, α > 1/2. Hence,

lim
N→∞

(2N + 1)2q+4||f − Sq
N(f)||2 =

ζ(2q + 4)

π2q+4

∑
n∈Z

′ |δn|2 + |Aq+1|2ζ(2q + 4)

π2q+4
.

An application of Parseval equality completes the proof of Theorem 4.
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Example 4. Consider the function

θ(x) =

(
sinπx

πx

)m

, (40)

where m ≥ 1 is an integer. This is the well-known case of B—splines, for which supp(ρ(x)) ∈ [−m,m].

We have

θ(x + s) =
(−1)sm sinm πx

πm(x + s)m
, ω2(x) =

sin2m πx

π2m

∑
s∈Z

(x+ s)−2m,

Ψ(x) = x2m
∑
s∈Z

′
(x+ s)−2m

(
1 + x2m

∑
s∈Z

′
(x+ s)−2m

)−1
. (41)

Besides,

Ψ(x)x−2q−4 ≤ const x2m−2q−4.

Thus, for m ≥ q + 2 all conditions of Theorem 1 are fulfilled. After some simplification, from (14)

we obtain

lim
N→∞

(2N + 1)q+1.5||f − Sq
N (f)|| = |Aq+1|c1(q,m),

where

c21(q,m) = π−2q−4
(

22q+3

2q + 3
+

∫ 1/2

0

(
x−2q−4 − (

∑
s∈Z(−1)s(m+1)(x+ s)−m−q−2)2∑

s∈Z(x+ s)−2m

)
dx

)
.

Fig. 2. The values of constant c1(q,m) for −1 ≤ q ≤ 2 and 2 ≤ m ≤ 8.
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The Figures 1 and 2 are similar. As in Example 2, for even values of q (lower diagrams in

Fig. 2) the values of constant c1(q,m) exceed than the corresponding values of a(q), and c1(q,m)

approaches a(q) as m increases. For odd values of q (upper diagrams in Fig. 2) c1(q,m) is less than

a(q), and again approaches a(q) as m increases.

It follows from (41), that (see Theorem 3)

C = lim
x→0

Ψ(x)x−2m =
∑
s∈Z

′
s−2m = 2ζ(2m).

Hence, for m ≤ q + 1 and α = m all conditions of Theorem 3 are fulfilled. By (29)

lim
N→∞

(2N + 1)2m||f − Sq
N (f)||2 = ζ(2m)

π2q+2

∑
n∈Z

′ 1

n2q+2−2m

∣∣∣∣∫ 1

−1
f (q+2)(x)e−iπnx dx

∣∣∣∣2 .
It is easy to check, that the function (40) generates a sequence satisfying (37) for odd values of q.

In this case the assertion of Theorem 4 remains valid for Example 4.

Example 5. Consider the function

θ(x) =

(
sinπx

πx

)m

cosπx, (42)

where m ≥ 1 is an integer. It is clear, that supp ρ(x) ∈ [−m− 1,m+ 1]. For m ≥ q + 2 all conditions of

Theorem 1 are fulfilled, and from (14) we obtain

lim
N→∞

(2N + 1)q+1.5||f − Sq
N (f)|| = |Aq+1|d1(q,m), (43)

where

d21(q,m) = π−2q−4
(

22q+3

2q + 3
+

∫ 1/2

0

(
x−2q−4 − (

∑
s∈Z(−1)s(m+2)(x + s)−m−q−2)2∑

s∈Z(x+ s)−2m

)
dx

)
.

The numerical values of d1(q,m) for various values of q and m are presented in Fig. 3.
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Fig. 3. The values of constant d1(q,m) for various values of q and m.

Finally, for m < q + 2 all conditions of Theorem 3 are satisfied, and from (29) we obtain

lim
N→∞

(2N + 1)2m||f − Sq
N (f)||2 = ζ(2m)

π2q+2

∑
n∈Z

′ 1

n2q+2−2m

∣∣∣∣∫ 1

−1
f (q+2)(x)e−iπnx dx

∣∣∣∣2 . (44)

For even values of q the condition (37) is fulfilled, and Theorem 4 can be applied.

In fact, by means of choice of the spline as in Example 4 (for odd q ≥ −1) and “modified spline”

as in Example 5 (for odd q ≥ 0), we obtain fast algorithms of high accuracy based on functions

with local supports.
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