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Abstract—The problem of the sine representation for the support function of centrally symmetric
convex bodies is studied. We describe a subclass of centrally symmetric convex bodies which is
dense in the class of centrally symmetric convex bodies. Also, we obtain an inversion formula for the
sine-transform.
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1. INTRODUCTION

The cosine representation of the support function of centrally symmetric convex bodies plays a
fundamental role in the integral geometry and in a number of related areas (see [2], [8] – [11], [17],
[21]). In this paper we study (in a dual sense) sine representation for the support function of centrally
symmetric convex bodies.

Denote by Rn (n ≥ 2) the n-dimensional Euclidean space. Let Sn−1 be the unit sphere in Rn

centered at the origin, and let λk be the spherical Lebesgue measure on Sk (λk(Sk) = σk). Denote by
Sω ⊂ Sn−1 the great (n− 2)-dimensional sphere with pole at ω ∈ Sn−1. The class of convex bodies
(nonempty compact convex sets) B that are symmetric with respect to the origin in Rn (the so-called
centered bodies) we denote by Bn

o , and the class of centrally symmetric convex bodies in Rn by Bn.
The most useful analytic description of a convex body is its support function (see [16]). The support

function H : Rn → (−∞,∞] of a convex body B is defined as follows:

H(B, x) = H(x) = sup
y∈B

⟨y, x⟩, x ∈ Rn.

Here and below ⟨·, ·⟩ denotes the Euclidean scalar product in Rn. The support function of B is positively
homogeneous and convex. Below, we consider the support function H(·) of a convex body as a function
defined on the unit sphere Sn−1 (because of the positive homogeneity of H(·)).

It is well known (see [16]) that a convex body B is uniquely determined by its support function, and B
is k-smooth if its support function H is k times continuously differentiable function on Sn−1. By Ck

c we
denote the class of even, k times continuously differentiable functions defined on Sn−1.

It is known (see [9], [8], [21]) that the support function H(·) of an origin symmetric convex body
B ∈ Bn

o which is a limit in the Hausdorff metric of zonotopes (a finite sum of line segments) has
the following representation:

H(ξ) =

∫
Sn−1

| ⟨ξ,Ω⟩ | m(dΩ), ξ ∈ Sn−1 (1.1)
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with an even measure m.
The following question arises naturally. Does the support function of any centered convex body have

a cosine representation?
It is known (see [9], [8], [17], [21]) that the support function H(·) of a sufficiently smooth origin

symmetric convex body B ∈ Bn
o has the following representation:

H(ξ) =

∫
Sn−1

| ⟨ξ,Ω⟩ | h(Ω)λn−1(dΩ), ξ ∈ Sn−1 (1.2)

with an even continuous function h(·) (not necessarily positive) defined on Sn−1.
Note that the function h in (1.2) is unique. Also, a body B whose support function has an integral

representation of the form (1.1) with a signed even measurem is a centered generalized zonoid. Ifm is
a measure on Sn−1, then the centered convex body B is a zonoid.

It follows from (1.2) that the class of generalized zonoids is dense in Bn. The right-hand side of (1.2)
is called the cosine-transform of h.

W. Weil [20] showed that a local characterization of zonoids does not exist. Later it was shown that in
even dimensions an equatorial characterization of zonoids exists (see [18], [11]), while in odd dimensions
an equatorial characterization of zonoids does not exist (see [15]). In [4] was defined a subclass of zonoids
admitting an equatorial characterization.

In the article, we consider a finite sum of (n− 2)-dimensional centered balls and their limits. Let
b = (r,Ω) be the (n− 2)-dimensional centered ball in Rn with radius r, and let Ω ∈ Sn−1 be the unit
vector normal to b. The support function of b has the form:

H(b, ξ) = r sin(ξ̂,Ω), ξ ∈ Sn−1. (1.3)

Here and below by (ξ̂,Ω) we denote the angle between two directions. Now we consider a finite sum
(Minkowski sum) of (n− 2)-dimensional centered balls in Rn. The support function of P , which is the
sum of bi = (ri,Ωi), i = 1,m, has the form:

H(P, ξ) =
m∑
i=1

ri sin(ξ̂,Ωi) =
m∑
i=1

ri
2
[sin(ξ̂,Ωi) + sin(ξ̂,−Ωi)], ξ ∈ Sn−1. (1.4)

We define the class of convex bodies D, the so-called diskoids, which are limits in the Hausdorff metric
of finite sums of (n− 2)-dimensional balls. For the support function of a centered diskoid the sum in
(1.4) becomes into an integral, and we have

H(ξ) =

∫
Sn−1

sin(ξ̂,Ω) υ(dΩ), ξ ∈ Sn−1, (1.5)

where υ is an even measure on Sn−1.
The following question arises naturally. Does the support function of any centered convex body have

a sine representation? In this article we prove the following theorem.

Theorem 1.1. A centered convex body B is a diskoid if and only if the support function of B has
representation (1.5) with an even measure υ on Sn−1.

Note that the class of diskoids is a subset of the class of zonoids because any diskoid is a zonoid.
Also, there is a zonoid which is not a diskoid, for example a segment is not a diskoid. Thus we have: the
diskoids are nowhere dense in Bn.

Now we define the class of generalized diskoids (see also [21]). A centered convex body B is said to
be a generalized diskoid if its support function H admits the following representation:

H(ξ) =

∫
Sn−1

sin(ξ̂,Ω) υ(dΩ), ξ ∈ Sn−1 (1.6)

with a signed even measure m. A generalized diskoid can also be defined as follows (see also [19]): a
body B is a generalized diskoid if B + B1 = B2, where B1 ,B2 are diskoids.

In this article, we prove the following theorem which states that the class of generalized diskoids is
dense in Bn.
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Theorem 1.2. The support function H(·) of a sufficiently smooth origin symmetric convex body
B ∈ Bn

o has the following representation:

H(ξ) =

∫
Sn−1

sin(ξ̂,Ω)h(Ω)λn−1(dΩ), ξ ∈ Sn−1 (1.7)

with an even continuous function h(·) (not necessarily positive) defined on Sn−1. The function h
is unique.

The right-hand side of (1.7) is called the sine-transform of h and is denoted by (Qh)(·). Theorem
2.1 below shows that the measure υ in (1.6) (the function h in (1.7)) is unique. Hence the transform
Q : C∞

c −→ C∞
c is injective. The function h in (1.7) is called the generating density of the body B ∈ Bn

o .
Note, that the injectivity of the cosine-transform was proved by A. Aleksandrov [2].

Observe that Theorem 1.2 can be proved by using the expansion of h in the spherical harmonics (see
[3]). In this article, we prove the theorem by finding an inversion formula for transform (1.7).

Note that R. Schneider and R. Schuster [19], and S. Alesker [3] have proved several significant
results for sums of similar convex bodies and spherical harmonics. Also, note that the Minkowski class
Mb,GL(n), where b is a (n− 2)-dimensional centered ball, coincides with the class of zonoids. In [13] was
considered the sine-transform of isotropic measures and isoperimetric inequalities were established.
An inversion formula for the sine-transform. By R we denote the Radon transform on the sphere
(the Funk’s transform) defined by:

RF (ξ) =
1

σn−2

∫
Sξ

F (ω)λn−2(dω), ξ ∈ Sn−1 (1.8)

for F ∈ C∞
c . For n ≥ 3 an inversion formula for R was given by Helgason [14] (for n = 3 an inversion

formula was obtained by Minkowski and Blashke (see [9])). In [5] was considered the generalized Radon
transform on the sphere and was found an inversion formula (see also [6]). By Ξ we denote the transform
Ξ : C∞

c −→ C∞
c define by: Ξ = ((n− 1) + ∆), where ∆ is the Laplace-Beltrami operator on Sn−1.

The next theorem contains an inversion formula for the sine-transform.

Theorem 1.3. Let H(·) be the support function of a sufficiently smooth origin symmetric convex
body B ∈ Bn

o . Then h = Q−1H = 1
(n−2)σn−3

ΞR−2H is the solution of integral equation (1.7).

2. THE SINE REPRESENTATION FOR AN ORIGIN SYMMETRIC CONVEX BODY
Proof of Theorem 1.1. Necessity. Let B be a diskoid. Then there exists a sequencePm of finite sums

of (n− 2)-dimensional balls, which converges to B in the Hausdorff metric. To each Pm corresponds an
even measure υm with finite support on Sn−1 through (1.4). The sequence υm is uniformly bounded
in total variation norm because υm(Sn−1) < Cµ([K]), where C is a constant, K ∈ Bn

o is a convex body
containing B and µ([K]) is the invariant measure of hyperplanes intersecting K. Hence one can select
a subsequence υ′m, which weakly converges to an even measure υ on Sn−1, and the support function
H(B, ·) has the representation (1.5) with measure ν.
Sufficiency. Let the support function of B have the representation (1.5) with an even measure υ on Sn−1.
Then there exists a sequence of even measures υm with finite supports, which weakly converges to υ.
To each υm corresponds Pm (a finite sum of (n− 2)-dimensional balls) through (1.4). Then H(Pm, ·)
converges pointwise to H(B, ·). Also, it is known that pointwise convergence of a sequence of convex
functions implies the uniform convergence on each compact. Thus, we have that H(Pm, ·) converges
uniformly toH(B, ·) on Sn−1. Hence,Pm converges to B in the Hausdorff metric, and thus B is a diskoid.
Theorem 1.1 is proved.

The next theorem shows that the measure υ in (1.5) is unique (see also [13]).

Theorem 2.1. If υ is an even signed measure on Sn−1 with∫
Sn−1

sin(ξ̂,Ω) υ(dΩ) = 0 (2.1)

for all ξ ∈ Sn−1, then υ ≡ 0.
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Proof. We use expansions in spherical harmonics. LetQd be a spherical harmonic of order d. We multiply
(2.1) by Qd, integrate over Sn−1, and use Fubini theorem to obtain∫

Sn−1

(∫
Sn−1 sin(ξ̂,Ω) υ(dΩ)

)
Qd(ξ)λd−1(dξ)

=
∫
Sn−1

(∫
Sn−1 sin(ξ̂,Ω)Qd(ξ)λd−1(dξ)

)
υ(dΩ) = 0. (2.2)

Next, the Funk-Hecke formula states that (see [12])∫
Sn−1

sin(ξ̂,Ω)Qd(ξ)λd−1(dξ) = an,dQd(Ω), (2.3)

where an,d is a coefficient depending only on d and n, and an,d ̸= 0 if d is even. Thus, for all spherical
harmonics of order d we have ∫

Sn−1

Qd(Ω) υ(dΩ) = 0. (2.4)

Notice that if d is odd, then (2.4) is true because υ is an even measure. Using uniform approximation
of continuous functions on Sn−1, for every continuous g we obtain

∫
Sn−1 g(Ω) υ(dΩ) = 0. Taking into

account known results of integration theory we can conclude that this is possible only if υ ≡ 0. Theorem
2.1 is proved.

3. AN INVERSION FORMULA FOR THE SINE-TRANSFORM

Let B ∈ Bn
o be a convex body with sufficiently smooth boundary and with positive Gaussian curvature

at every point of the boundary ∂B. Let s(ω) be the point on ∂B, the outer normal of which is ω. Further,
let Ri(ω) be the i-th principal radii of curvature (i = 1, ..., n− 1) of ∂B at s(ω). k1(ω) · · · kn−1(ω) > 0,
where k1(ω), ..., kn−1(ω) signify the principal curvatures of ∂B at s(ω).

The concept of a flag in Rn, which naturally emerges in combinatorial integral geometry, will be of
importance below. A detailed account of the concept in R3 can be found in [1]. Here we consider the so-
called directed flags (below just a flag). A flag is a pair {g, e}, where g is a directed line containing
the origin O and e is an oriented hyperplane (a hyperplane with specified positive normal direction)
containing g. There are two equivalent representations of flags: (ω, φ) or (ξ,Φ), where ω ∈ Sn−1 is the
normal of e and φ is the planar direction in Sω that coincides with the direction of g, while ξ ∈ Sn−1 is
the spatial direction of g and Φ is the planar direction in Sξ that coincides with the normal of e.

Let ξ ∈ Sn−1 and Φ ∈ Sξ. ByB(Φ) we denote the projection of B onto the hyperplane with normal Φ
containing the origin O. Then for (n− 1)-dimensional volume of B(Φ) we have

Vn−1(B(Φ)) =
1

2

∫
Sn−1

| ⟨Φ, ω⟩ |
n−1∏
i=1

Ri(ω)λn−1(dω). (3.1)

By D(O, 1) we denote the n-dimensional ball of radius 1 centered at the origin. Now we write (3.1) for
the Minkowski sum B+ εD(O, 1) (ε > 0). Using the classical Steiner formula for volume we obtain

Vn−1(B(Φ) + εD(O, 1)) =

n−1∑
i=0

εi
(
n− 1

i

)
Wi(B(Φ)) =

1

2

∫
Sn−1

| ⟨Φ, ω⟩ |
n−1∏
i=1

(Ri(ω) + ε)λn−1(dω).(3.2)

Here Wi(B(Φ)) is the i-th quermassintegral of B(Φ) (see [16]). Comparing the orders of ε of both sides
of (3.2) we get the following formula

(n− 1)Wn−2(B(Φ)) =
1

2

∫
Sn−1

| ⟨Φ, ω⟩ |
n−1∑
i=1

Ri(ω)λn−1(dω). (3.3)

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 53 No. 6 2018



THE SINE REPRESENTATION OF CENTRALLY 311

Next, using the spherical coordinates ω = (ν, φ), where ν = (ξ̂, ω) is the polar angle measured from ξ
(the zenith direction) and φ ∈ Sξ, and applying the spherical cosine rule, we find

| ⟨ω,Φ⟩ |= sin ν | cos(φ̂,Φ) | . (3.4)

Now integrating (3.3) with respect Φ over Sξ and using (3.4) we obtain∫
Sn−2

(n− 1)Wn−2(B(Φ))λn−2(dΦ) =
1

2

∫
Sn−1

sin(ξ̂, ω)
n−1∑
i=1

Ri(ω)λn−1(dω)

∫
Sξ

| cos(φ̂,Φ) | λn−2(dΦ).

Finally, for any φ ∈ Sn−2 we have (see [4])∫
Sn−2

| cos(φ̂,Φ) | λn−2(dΦ) =
2σn−3

n− 2
.

Thus, we have proved the following theorem.

Theorem 3.1. Let B ∈ Bn
o be a convex body with sufficiently smooth boundary and with positive

Gaussian curvature. Then for ξ ∈ Sn−1 we have∫
Sξ

(n− 1)Wn−2(B(Φ))λn−2(dΦ) =
σn−3

(n− 2)

∫
Sn−1

sin(ξ̂, ω)

n−1∑
i=1

Ri(ω)λn−1(dω), (3.5)

where Wn−2(B(Φ)) is the (n− 2)-th quermassintegral of the projection of B onto the hyperplane
orthogonal to Φ ∈ Sξ.

It is known (see [16]) that in (n− 1)-dimensional space for Wn−2(B(Φ)) we have

(n− 1)Wn−2(B(Φ)) =

∫
Sn−2

H(B(Φ), u)λn−2(du) =

∫
SΦ

H(B, u)λn−2(du), (3.6)

where H(B(Φ), ·) is the support function of B(Φ) which is the restriction of the support function of B
onto SΦ. Let B ∈ Bn

o be a convex body. In [7] it was shown that

((n− 1) + ∆)H(B, ·) =
n−1∑
i=1

Ri(·), (3.7)

where ∆ is the Laplace-Beltrami operator on Sn−1. Substituting (3.6) and (3.7) into (3.5) we get∫
Sξ

[∫
SΦ

H(u)λn−2(du)

]
λn−2(dΦ) =

σn−3

(n− 2)

∫
Sn−1

sin(ξ̂, ω) [((n− 1) + ∆)H(ξ)]λn−1(dω). (3.8)

Thus, we have proved the following theorem.

Theorem 3.2. Let B ∈ Bn
o be a convex body with sufficiently smooth boundary and with positive

Gaussian curvature. Then for the support function H of B we have

R(RH)(ξ) = R2H(ξ) =
1

(n− 2)σn−3
Q(ΞH)(ξ) ξ ∈ Sn−1. (3.9)

Theorem 1.3 is a consequence of Theorem 3.2.

4. EXAMPLE OF A CONVEX BODY WITH SIGNED GENERATING DENSITY

In this section, we give an example of a sufficiently smooth origin symmetric convex body B ∈ B3
o

for which the solution of the equation takes also negative values. Let U be a ε neighborhood of a
point Ω0 ∈ S2 and g be a sufficiently smooth even function defined on S2 such that g(Ω) ≥ 1 for
Ω ∈ S2\{U ∪ {−U}} and g(Ω) ≤ −1 for Ω ∈ {U ∪ {−U}}.
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Consider the following function defined on R3

F (ξ) = |ξ|
∫
S2

sin(
−̂→
ξ ,Ω) g(Ω)λ2(dΩ), ξ ∈ R3\O, (4.1)

where |ξ| is the norm of ξ and
−→
ξ = ξ/|ξ|. Observe that F is positively homogeneous. Now we are going

to show that for sufficiently small ε the function F is also convex.
For the first order partial derivative of F we have

∂F (ξ)

∂ξ1
=

∫
S2

ξ1 − Ω1⟨ξ,Ω⟩

|ξ| sin(
−̂→
ξ ,Ω)

g(Ω)λ2(dΩ), ξ ∈ R3\O, (4.2)

where ξ = (ξ1, ξ2, ξ3) and Ω = (Ω1,Ω2,Ω3).
Next, for fixed ξ ∈ S2 and ψ ∈ Sξ we choose ξ as the zenith direction and ψ as the azimuth reference.

Then, for the second order derivative on direction ψ at ξ = (0, 0, 1), we have

∂2F (ξ)

∂2ξ1
|ξ=(0,0,1)=

∫
S2

sin2 φ

sin ν
g(Ω)λ2(dΩ), (4.3)

where (ν, φ) are the usual spherical coordinates of Ω on S2 based on the choice of ξ as the North Pole
and ψ as the reference direction on Sξ. It follows from (4.3) that for a sufficiently small ε for all ξ ∈ S2

we have ∂2F (ξ)
∂2ξ1

> 0. Therefore, the function F is convex, and there is an origin symmetric convex body

B ∈ B3
o for which F is the support function.
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