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Abstract. The paper considers differentiation properties of rare basis
of dyadic rectangles corresponding to an increasing sequence of integers
{νk}. We prove that the condition

sup
k

(νk+1 − νk) <∞

is necessary and sufficient for such basis to be equivalent to the full basis
of dyadic rectangles.

1. Introduction

Let R be the family of half-closed rectangles [a, b) × [c, d) in R2 and
Q ⊂ R be the family of half-closed squares in R2. Then let Rdyadic be the
family of dyadic rectangles of the form

(1)

[
i− 1

2n
,
i

2n

)
×
[
j − 1

2m
,
j

2m

)
, i, j, n,m ∈ Z,

and Qdyadic be the family of dyadic squares (n = m). We have Rdyadic ⊂ R
and Qdyadic ⊂ Q. For a given rectangle R ∈ R we denote by len(R) the
length of the bigger side of R.

Definition 1.1. A family of rectanglesM⊂ R is said to be a differentiation
basis (or simply basis), if for any point x ∈ R2 there exists a sequence of
rectangles Rk ∈ M such that x ∈ Rk, k = 1, 2, . . . and len(Rk) → 0 as
k →∞.

Let M ⊂ R be a differentiation basis. For any function f ∈ L1(R2) we
define

δM(x, f) = lim sup
len(R)→0:x∈R∈M

∣∣∣∣ 1

|R|

∫
R

f(t)dt− f(x)

∣∣∣∣ .
The integral of a function f ∈ L1(R2) is said to be differentiable at a point
x ∈ R2 with respect to the basis M, if δM(x, f) = 0. Consider classes of
functions

F(M) = {f ∈ L(R2) : δM(x, f) = 0 almost everywhere },
F+(M) = {f ∈ L(R2) : f(x) ≥ 0, δM(x, f) = 0 almost everywhere }.

Note that F(M) is the family of functions having almost everywhere dif-
ferentiable integrals with respect to the basis M.
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Let Φ : R+ → R+ be a convex function. Denote by Φ(L)(R2) the class
of measurable functions f defined on R2 such that Φ(|f |) ∈ L1(R2). If Φ
satisfies the ∆2-condition Φ(2x) ≤ kΦ(x), then Φ(L) turns to be an Orlicz
space with the norm

‖f‖Φ = inf

{
c > 0 :

∫
R2

Φ

(
|f |
c

)
≤ 1

}
.

The following classical theorems determine the optimal Orlicz space, which
functions have a.e. differentiable integrals with respect to the entire family
of rectangles R is the space

L(1 + logL)(R2) ⊂ L1(R2),

corresponding to the case Φ(t) = t(1 + log+ t) ([1] ).

Theorem A (Jessen-Marcinkiewicz-Zygmund, [4]). L(1 + logL)(R2) ⊂
F(R).

Theorem B (Saks, [7]). If

Φ(t) = o(t log t) as t→∞,

then Φ(L)(R2) 6⊂ F(R). Moreover, there exists a positive function f ∈
Φ(L)(R2) such that δR(x, f) =∞ everywhere.

Such theorems are valid also for the basis Rdyadic. The first one trivially
follows from embedding L(1+logL)(R2) ⊂ F(R) ⊂ F(Rdyadic). The second
can be deduced from the following relation

F+(Rdyadic) = F+(R),

due to Zerekidze [9] (see also [10, 11]).
Let ∆ = {νk : k = 1, 2, . . .} be an increasing sequence of positive inte-

gers. This sequence generates the rare basis Rdyadic
∆ of dyadic rectangles of

the form (1) with n,m ∈ ∆. This kind of bases first considered in the papers
[8], [2], [3]. Stokolos [8] proved that the analogous of Saks theorem holds for

any basisRdyadic
∆ with an arbitrary ∆ sequence. That means L(1+logL)(R2)

is again the largest Orlicz space containing in F(Rdyadic
∆ ). G. A. Karagulyan

[5] proved some theorems, establishing an equivalency of some convergence
conditions for multiple martingale sequences, those in particular imply some
results of the papers [8], [2], [3].

In this paper we prove

Theorem. Let ∆ = {νk} ⊂ N be an increasing sequence of positive integers.
Then the condition

(2) sup
k∈N

(νk+1 − νk) <∞

is necessary and sufficient for the equality

F(Rdyadic
∆ ) = F(Rdyadic).
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2. Some definitions and key functions

Denote by E and E̊ the closure and the interior of a set E ⊂ R2 respec-
tively, IE denotes the indicator function of E. A set E ⊂ R2 is said to be
simple, if it can be written as a union of squares of the form[

i− 1

2n
,
i

2n

)
×
[
j − 1

2n
,
j

2n

)
.

If n is the minimal integer with this relation, then we write wd(E) = 2−n.
Note that if E is a dyadic rectangle, then wd(E) coincides with the length
of the smaller side of E. If E is square, then len(E) = wd(E). Denote

Eij(n) =
n−1⋃
k=0

[
i

2
,
i

2
+

1

2k+1

)
×
[
j

2
,
j

2
+

1

2n−k

)
,(3)

Fi,j(n) =

[
i

2
,
i

2
+

1

2n

)
×
[
j

2
,
j

2
+

1

2n

)
(4)

=
n−1⋂
k=0

[
i

2
,
i

2
+

1

2k+1

)
×
[
j

2
,
j

2
+

1

2n−k

)
⊂ Eij(n), i, j = 0, 1,

and define the sets

E(n) = E00(n) ∪ E01(n) ∪ E10(n) ∪ E11(n),(5)

F (n) = F00(n) ∪ F01(n) ∪ F10(n) ∪ F11(n) ⊂ E(n),(6)

Introduce the functions

u(x, n) = (n+ 1)2n−2
(
IF00(n)(x) + IF11(n)(x)− IF10(n)(x)− IF01(n)

)
, n ∈ N,

v(x) = I[0,1/2)×[0,1/2)(x) + I[1/2,1)×[1/2,1)(x)− I[0,1/2)×[1/2,1)(x)− I[1/2,1)×[0,1/2)(x).

Let ω ∈ Q be an arbitrary square and φω be the linear transformation of
R2 taking ω onto unit square [0, 1)2 ⊂ R2. For an arbitrary function f(x)
defined on [0, 1)2 and for a set E ⊂ [0, 1)2 we define

fω(x) = f(φω(x)), Eω = (φω)−1(E) ⊂ ω.

We have

supp (uω(x, n)) = Fω(n),(7)

supp (vω(x)) = ω,(8)

|Eω(n)| = (n+ 1)|ω|
2n

, |Fω(n)| = |ω|
4n−1

,(9)

wd (Eω(n)) = wd (Fω(n)) = wd(ω) · 2−n.(10)

Simple calculations show that

‖uω(x, n)‖1 = |Eω(n)| = n+ 1

2n
|ω|,(11)

‖vω(x)‖1 = |ω|.(12)
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Then observe that, if ω ∈ Qdyadic is a dyadic square, then for any point
x ∈ Eω(n) there exists a dyadic rectangle R(x) ∈ Rdyadic with

1

|R(x)|

∣∣∣∣∫
R(x)

uω(x, n)dx

∣∣∣∣ =
n+ 1

2
, x ∈ R(x) ⊂ Eω(n),(13)

wd(R(x)) = wd(ω) · 2−n.(14)

besides this rectangle coincides with the (φω)−1-image of one of the repre-
sentation rectangles from (3) . Similarly, if ω ∈ D, then

1

|R(x)|

∣∣∣∣∫
R(x)

vω(x)dx

∣∣∣∣ = 1, x ∈ R(x) ⊂ ω,(15)

wd(R(x)) =
wd(ω)

2
.(16)

for some square R(x) with |R(x)| = |ω|/4. In this case R(x) coincides with
one of the four squares forming ω.

3. Auxiliary lemmas

The following simple lemma has been proved in [6].

Lemma 1. LetQ ∈ Qdyadic be an arbitrary dyadic square, a function f(x) =
f(x1, x2) ∈ L1(R2) satisfies the condition supp f(x) ⊂ Q and∫

R
f(x1, t)dt =

∫
R
f(t, x2)dt = 0, x1, x2 ∈ R.(17)

Then for any dyadic rectangle R ∈ Rdyadic satisfying R 6⊂ Q̊ we have

(18)

∫
R

f(x)dx = 0.

Proof. We suppose

Q = [α1, β1)× [α2, β2), R = [a1, b1)× [a2, b2).

If R ∩Q = ∅, then (18) is trivial. Otherwise we will have either [α1, β1) ⊂
[a1, b1) or [α2, β2) ⊂ [a2, b2). In the first case, using (17) , we get∫

R

f(x)dx =

∫ b2

a2

∫ b1

a1

f(x1, x2)dx1dx2 =

∫ b2

a2

∫ β1

α1

f(x1, x2)dx1dx2

=

∫ b2

a2

(∫
R
f(x1, x2)dx1

)
dx2 = 0.

The second case is proved similarly. �

Lemma 2. Let m be a positive integer and Q be a dyadic square. Then for
any simple set E  [0, 1)2, there exists a finite family Ω of dyadic squares
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ω ⊂ Q such that

Eω ∩ Eω′ = ∅, ω 6= ω′,(19)

min
ω∈Ω

wd(ω) = wd(Q) · (wd(E))m,(20) ∣∣∣∣∣Q \ ⋃
ω∈Ω

Eω

∣∣∣∣∣ = |Q| (1− |E|)m .(21)

Proof. Define a sequence of sets Gk, k = 1, 2, . . . ,m, with

(22) Q = G1 ⊃ G2 ⊃ . . . ⊃ Gm,

and finite families of dyadic squares Ωk ⊂ D, k = 1, 2, . . . ,m+ 1, such that

wd(ω) = wd(Q) · (wd(E))k−1, ω ∈ Ωk, k = 1, 2, . . . ,m+ 1,(23)

Gk =
⋃
ω∈Ωk

ω, k = 1, 2, . . . ,m+ 1,(24)

Gk = Gk−1 \
⋃

ω∈Ωk−1

Eω =
⋃

ω∈Ωk−1

(ω \ Eω) , k = 2, . . . ,m+ 1.(25)

We do it by induction. For the first step of induction we take just G1 = Q
and let Ω1 consist of a single rectangle Q. Suppose we have already chosen
the sets Gk and the families Ωk for k = 1, 2, . . . , p, satisfying (22) -(25) . Set

Gp+1 = Gp \
⋃
ω∈Ωp

Eω =
⋃
ω∈Ωp

(ω \ Eω) .

From the induction hypothesis of (23) it follows that

wd (ω \ Eω) = wd(ω) · wd(E) = wd(Q) · (wd(E))p.

Hence we conclude that Gp+1 is a union of dyadic squares with side lengths
wd(Q) · (wd(E))p and we define the family Ωp+1 as a collection of these
squares. Thus we get Gp+1 and Ωp+1 satisfying the conditions (22) -(25) for
k = p + 1, that completes the induction process. Applying (11) , (24) and
(25) we obtain

|Gk| = |Gk−1| −

∣∣∣∣∣∣
⋃

ω∈Ωk−1

Eω

∣∣∣∣∣∣ = |Gk−1| − |E||Gk−1| = (1− |E|) |Gk−1|

and therefore

(26) |Gm+1| = (1− |E|)m |Q|.

Obviously the family of squares Ω = ∪m+1
k=1 Ωk satisfies the hypothesis of

lemma. Indeed, suppose ω, ω′ ∈ Ω are arbitrary squares. If ω, ω′ ∈ Ωk for
some k, then according to (23) we have ω ∩ ω′ = ∅ and so (19) . If ω ∈ Ωk,
ω′ ∈ Ωk′ and k < k′, then

Eω′ ⊂ ω′ ⊂ Gk′ ,

Eω ⊂ Gk \Gk+1 ⇒ Eω ∩Gk′ = ∅.
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Thus we again get (19) . The condition (20) immediately follows from (23) ,
and (21) follows from (26) and from the relation∣∣∣∣∣⋃
ω∈Ω

Eω

∣∣∣∣∣ =

∣∣∣∣∣
m+1⋃
k=1

⋃
ω∈Ωk

Eω

∣∣∣∣∣ =

∣∣∣∣∣
m+1⋃
k=1

Gk \Gk+1

∣∣∣∣∣ = |Q \Gm+1| = |Q|(1−(1− |E|)m).

�

Lemma 3. Let L > 1 be a positive integer and let Q ∈ D be a dyadic
square. Then there exist a function f ∈ L∞(R2) and numbers α(L) ∈
N, β(L) > 0, depended on L such that

supp f ⊂ Q,(27)

‖f‖∞ ≤ β(L),(28)

|supp f | ≤ 2|Q|
β(L)

,(29)

wd(supp f) ≥ wd(Q) · 2−α(L),(30) ∫
R

f(x)dx = 0, R ∈ Rdyadic, R 6⊂ Q̊,(31)

and for any point x ∈ Q there exists a rectangle R(x) ⊂ Q satisfying

wd(R(x)) ≥ wd(Q) · 2−α(L),(32)

1

|R(x)|

∣∣∣∣∫
R(x)

f(t)dt

∣∣∣∣ ≥ L.(33)

Proof. Let n = 2L and denote

α(L) = n(2n + 1), β(L) = (n+ 1)2n−2,(34)

m = m(L) =

[
2n(ln(n+ 1) + (n− 2) ln 2)

n+ 1

]
+ 1 < 2n.(35)

Let E = E(n) be the set defined in (5) . We have |E(n)| = (n + 1)/2n

and wd(E(n)) = 2−n. Applying Lemma 2, we may find family Ω of dyadic
squares ω ⊂ Q with properties (19) -(21) . Set

(36) G =
⋃
ω∈Ω

Eω(n), G1 = Q \G.

According to (21) , (34) and (35) , we have

|G1| = (1− |E(n)|)m |Q| =
(

1− n+ 1

2n

)m
|Q| < |Q|

β(L)

From (20) and (35) it follows that

G1 =
⋃
ω∈Ω1

ω,

where Ω1 is a family of squares with

(37) min
ω∈Ω1

wd(ω) = min
ω∈Ω

wd(ω) = wd(Q) · (wd(E(n)))m ≥ wd(Q) · 2−n·2n .
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Define

f(x) =
∑
ω∈Ω

uω(x, n) + β(L)
∑
ω∈Ω1

vω(x) = g(x) + g1(x).

Clearly this function satisfies (27) and (28) . Then, we have

supp g =
⋃
ω∈Ω

Fω(n) ⊂ G, supp g1 = G1,

supp f = supp g
⋃

supp g1.

This together with (9) and (36) implies

|supp f | =
⋃
ω∈Ω

|Fω(n)|+ |G1| =
1

(n+ 1)2n−2

∑
ω∈Ω

|Eω(n)|+ |G1|

=
1

(n+ 1)2n−2
|G|+ |G1| ≤

2|Q|
β(L)

and therefore we get (29) . Using (37) , we obtain

wd(supp g) ≥ min
ω∈Ω

wd(ω) · wd(F (n)) = wd(Q) · 2−n(2n+1) = wd(Q) · 2−α(L),

wd(supp g1) ≥ min
ω∈Ω1

wd(ω) ≥ wd(Q) · 2−n·2n > wd(Q) · 2−α(L),

and therefore we get (30) . The condition (31) follows from Lemma 1,
since f(x) satisfies the condition (17) according the definitions of func-
tions uω(x, n) and vω(x). To prove (33) we take an arbitrary point x ∈ Q.
We have either x ∈ G or x ∈ G1. In the first case we will have x ∈ Eω(n)
for some square ω ∈ Ω. By (13) there exists a dyadic rectangle R = R(x),
x ∈ R ⊂ Eω(n), such that

1

|R|

∣∣∣∣∫
R

f(t)dt

∣∣∣∣ =
1

|R|

∣∣∣∣∫
R

uω(t, n)dt

∣∣∣∣ =
n+ 1

2
> L.

In the second case from (15) we obtain

1

|R|

∣∣∣∣∫
R

f(t)dt

∣∣∣∣ =
β(L)

|R|

∣∣∣∣∫
R

vω(t)dt

∣∣∣∣ ≥ 2n > L

for some square R = R(x), x ∈ R ⊂ ω. Obviously in any case R(x) satisfies
(32) . Lemma is proved. �

Proof of Theorem. Necessity : Let ∆ = {νk} be a sequence with

(38) γ = sup
k∈N

(νk+1 − νk) <∞,

and suppose conversely, we have

F(Rdyadic
∆ ) \ F(Rdyadic) 6= ∅.

That means there exists a function f ∈ L1(R2) such that

δRdyadic
∆

(x, f) = 0 a.e.,(39)

δRdyadic(x, f) > α, x ∈ E,(40)
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where α > 0 and |E| > 0. According to (39) for any x ∈ R2 one can chose
a number δ(x) > 0 such that the conditions

x ∈ R ∈ Rdyadic
∆ , len(R) < δ(x),

imply

(41)

∣∣∣∣ 1

|R|

∫
R

f − f(x)

∣∣∣∣ < α

2
.

For some δ > 0 the set F = {x ∈ E : δ(x) ≥ δ} ⊂ E has positive measure.
Then, using the representation

F =
⋃
j∈Z

{
x ∈ F :

jα

2
≤ f(x) <

(j + 1)α

2

}
,

we find a set

(42) G =

{
x ∈ F :

j0α

2
≤ f(x) <

(j0 + 1)α

2

}
⊂ F

having positive measure. Combining (40) , (41) and (42) , we will have

δRdyadic(x, f) > α, x ∈ G,(43) ∣∣∣∣ 1

|R|

∫
R

f − f(x)

∣∣∣∣ < α

2
, if x ∈ R ∩G, R ∈ Rdyadic

∆ , len(R) < δ,(44)

sup
x,y∈G

|f(x)− f(y)| ≤ α

2
.(45)

Since almost all points of G are density points, we may fix x0 ∈ G with

lim
len(R)→0, x0∈R∈Rdyadic

|R ∩G|
|R|

= 1.

Using this relation and (43), we find a rectangle

R′ =

[
p− 1

2n
,
p

2n

)
×
[
q − 1

2m
,
q

2m

)
,

such that

x0 ∈ R′ ∈ Rdyadic, len(R′) < δ,(46) ∣∣∣∣ 1

|R′|

∫
R′
f − f(x0)

∣∣∣∣ > α,(47)

|R′ ∩G| > (1− 4−γ)|R′|,(48)

where γ is the number (38) . Besides, we may suppose

(49) νkt−1 < n ≤ νkt , νks−1 < m ≤ νks ,

for some integers t, s. This and (38) imply that R′ is a union of rectangles
of the form [

i− 1

2νkt
,
i

2νkt

)
×
[
j − 1

2νks
,
j

2νks

)
∈ Rdyadic

∆ ,
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and from (47) it follows that at least for one of these rectangles, say R′′, we
have

(50)

∣∣∣∣ 1

|R′′|

∫
R′′
f − f(x0)

∣∣∣∣ > α.

From (38) and (49) we get

|R′′| = 1

2νkt+νks
≥ 1

2νkt+νks−νkt−1−νks−1
· 1

2n+m
≥ |R′| · 4−γ.

From this and (48) we obtain R′′ ∩G 6= ∅. Take a point x1 ∈ R′′ ∩G. From
(45) and (50) we get

(51)

∣∣∣∣ 1

|R′′|

∫
R′′
f − f(x1)

∣∣∣∣ > ∣∣∣∣ 1

|R′′|

∫
R′′
f − f(x0)

∣∣∣∣− |f(x1)− f(x0)| > α

2
.

On the other hand we have x1 ∈ R′′ ∩G, R′′ ∈ Rdyadic
∆ , len(R′′) ≤ len(R′) <

δ0, and therefore by (44) we obtain∣∣∣∣ 1

|R′′|

∫
R′′
f − f(x1)

∣∣∣∣ < α/2.

The last relation together with (51) gives a contradiction, which completes
the proof of the first part of our theorem.

Sufficiency: Now we suppose (2) doesn’t hold, that means there exists
a sequence of integers pk ↗∞ such that

(52) lim
k→∞

(νpk+1 − νpk) =∞.

Using this relation, we may find sequences of integers Lk and lk, k = 1, 2, . . .,
such that

lk+1 > lk + α(Lk), k = 1, 2, . . . ,(53)

νpk < lk < lk + α(Lk) < νpk+1, k = 1, 2, . . . ,(54)

Lk+1 > 2k · (β(Lk) + k) k = 1, 2, . . . ,(55)

where α(L) and β(L) are the constants taken from Lemma 3. Applying
Lemma 3 for the numbers L = Lk, l = lk and for the square

Q = Qk
ij =

[
i− 1

2lk
,
i

2lk

)
×
[
j − 1

2lk
,
j

2lk

)
, 1 ≤ i, j ≤ 2lk ,

we get functions fkij(x) ∈ L∞(R2) satisfying the conditions

supp fkij ⊂ Qk
ij,(56)

‖fkij‖∞ ≤ β(Lk),(57)

|supp fkij| ≤
2|Qk

ij|
β(Lk)

,(58)

wd(supp fkij) ≥ 2−lk−α(Lk),(59) ∫
R

fkij(x)dx = 0, R ∈ Rdyadic, R 6⊂ Q̊k
ij,(60)
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and for any point x ∈ Qk
ij there exists a dyadic rectangle Rk(x) ⊂ Qk

ij with

wd(Rk(x)) ≥ 2−lk−α(Lk),(61)

1

|Rk(x)|

∣∣∣∣∫
Rk(x)

fkij(t)dt

∣∣∣∣ ≥ Lk.(62)

Define the function

Fk(x) =
2lk∑
i,j=1

fkij(x).

From the relations (56) -(62) we conclude

|suppFk| ≤
2

β(Lk)
,(63)

wd(suppFk) ≥ 2−lk−α(Lk),(64)

‖Fk‖∞ ≤ β(Lk),(65) ∫
R

Fk(x)dx = 0, R ∈ Rdyadic, len(R) ≥ 2−lk ,(66)

and for any point x ∈ [0, 1)2 there exists a dyadic rectangle Rk(x) ⊂ [0, 1)2

such that

2−lk > len(Rk(x)) ≥ wd(Rk(x)) ≥ 2−lk−α(Lk),(67)

1

|Rk(x)|

∣∣∣∣∫
Rk(x)

Fk(t)dt

∣∣∣∣ ≥ Lk.(68)

Denote

(69) F (x) =
∞∑
k=1

Fk(x)

2k
.

From (63) and (54) it follows that ‖Fk‖1 ≤ 2 and so ‖F‖1 ≤ 2. Let
x ∈ [0, 1)2 be an arbitrary point. From the relations (53) and (67) we
get len(Rk(x)) ≥ 2−lk+1 ≥ 2−lj if j > k. Thus, using (66) , we obtain

(70)

∫
Rk(x)

Fj(t)dt = 0, j > k.

On the other hand the relations (65) and (55) imply

(71)

∣∣∣∣∣ 1

|Rk(x)|

∫
Rk(x)

k−1∑
j=1

Fj(t)

2j
dt

∣∣∣∣∣ ≤ β(Lk−1) <
Lk
2
, k ≥ 2.

From (68) , (70) and (71) we get the inequality∣∣∣∣ 1

|Rk(x)|

∫
Rk(x)

F (t)dt

∣∣∣∣ ≥ 1

|Rk(x)|

∣∣∣∣∫
Rk(x)

Fk(t)dt

∣∣∣∣− Lk
2
>
Lk
2
,

which yields

(72) lim sup
len(R)→0, x∈R∈Rdyadic

∣∣∣∣ 1

|R|

∫
R

F (t)dt

∣∣∣∣ =∞, x ∈ [0, 1)2.
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Now take an arbitrary rectangle R ∈ Rdyadic
∆ . We have

(73) len(R) = 2−νk ≥ wd(R) = 2−νt .

From (66) we get

(74)

∫
R

Fj(t)dt = 0 if lj ≥ νk.

On the other hand if lj < νk, then from (54) it follows that

lj + α(Lj) < νk

and therefore by (64) we get

(75) wd(supp (Fj)) ≥ 2−lj−α(Lj) ≥ 2−νk .

Thus, using simple properties of dyadic rectangles, we conclude that

(76) lj < νk, R 6⊂ supp (Fj)⇒ R ∩ supp (Fj) = ∅.
Consider the sets

G1 = {x ∈ [0, 1)2 : δR(x, Fk) = 0, k = 1, 2, . . .},

G2 =
∞⋃
k=1

∞⋂
j: lj≥νk

(
[0, 1)2 \ supp (Fj)

)
,

G = G1 ∩G2.

Since Fk(x) is bounded, the equality δR(x, Fk) = 0 holds almost everywhere
and so |G1| = 1. From (63) it follows that |G2| = 1 and therefore we get
|G| = 1. Take an arbitrary point x ∈ G. We have

(77) x 6∈ supp (Fj), j > k0,

for some k0. Consider the rectangle R ∈ Rdyadic
∆ such that x ∈ R. Suppose

we have (73) and k > k0. Then form (76) and (77) we get

(78) R ∩ supp (Fj) = ∅, if j > k0 and lj < νk.

From (74) and (78) we conclude

1

|R|

∫
R

F (t)dt =

k0∑
j=1

1

2j · |R|

∫
R

Fj(t)dt.

Thus we obtain

(79) lim
len(R)→0, x∈R∈Rdyadic

∆

1

|R|

∫
R

F (t)dt =

k0∑
j=1

Fj(x)

2j
.

On the other hand (77) implies

(80) F (x) =

k0∑
j=1

Fj(x)

2j
.

From (72) , (79) and (80) we conclude the relation F ∈ F(Rdyadic
∆ ) \

F(Rdyadic), which completes the proof of the theorem. �
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