ON AN EQUIVALENCY OF DIFFERENTIATION BASIS OF DYADIC RECTANGLES

G. A. KARAGULYAN, D. A. KARAGULYAN, AND M. H. SAFARYAN

ABSTRACT. The paper considers differentiation properties of rare basis of dyadic rectangles corresponding to an increasing sequence of integers $\{\nu_k\}$. We prove that the condition

$$\sup_{k} (\nu_{k+1} - \nu_k) < \infty$$

is necessary and sufficient for such basis to be equivalent to the full basis of dyadic rectangles.

1. INTRODUCTION

Let \mathcal{R} be the family of half-closed rectangles $[a, b) \times [c, d)$ in \mathbb{R}^2 and $\mathcal{Q} \subset \mathcal{R}$ be the family of half-closed squares in \mathbb{R}^2 . Then let $\mathcal{R}^{\text{dyadic}}$ be the family of dyadic rectangles of the form

(1)
$$\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right] \times \left[\frac{j-1}{2^m}, \frac{j}{2^m}\right], \quad i, j, n, m \in \mathbb{Z},$$

and $\mathcal{Q}^{\text{dyadic}}$ be the family of dyadic squares (n = m). We have $\mathcal{R}^{\text{dyadic}} \subset \mathcal{R}$ and $\mathcal{Q}^{\text{dyadic}} \subset \mathcal{Q}$. For a given rectangle $R \in \mathcal{R}$ we denote by len(R) the length of the bigger side of R.

Definition 1.1. A family of rectangles $\mathcal{M} \subset \mathcal{R}$ is said to be a differentiation basis (or simply basis), if for any point $x \in \mathbb{R}^2$ there exists a sequence of rectangles $R_k \in \mathcal{M}$ such that $x \in R_k$, k = 1, 2, ... and $len(R_k) \to 0$ as $k \to \infty$.

Let $\mathcal{M} \subset \mathcal{R}$ be a differentiation basis. For any function $f \in L^1(\mathbb{R}^2)$ we define

$$\delta_{\mathcal{M}}(x,f) = \lim_{\mathrm{len}(R)\to 0: x\in R\in\mathcal{M}} \left| \frac{1}{|R|} \int_{R} f(t)dt - f(x) \right|.$$

The integral of a function $f \in L^1(\mathbb{R}^2)$ is said to be differentiable at a point $x \in \mathbb{R}^2$ with respect to the basis \mathcal{M} , if $\delta_{\mathcal{M}}(x, f) = 0$. Consider classes of functions

$$\mathcal{F}(\mathcal{M}) = \{ f \in L(\mathbb{R}^2) : \delta_{\mathcal{M}}(x, f) = 0 \text{ almost everywhere } \}, \\ \mathcal{F}^+(\mathcal{M}) = \{ f \in L(\mathbb{R}^2) : f(x) \ge 0, \, \delta_{\mathcal{M}}(x, f) = 0 \text{ almost everywhere } \}.$$

Note that $\mathcal{F}(\mathcal{M})$ is the family of functions having almost everywhere differentiable integrals with respect to the basis \mathcal{M} .

²⁰¹⁰ Mathematics Subject Classification. 42B08,42B25.

Key words and phrases. dyadic rectangles, differentiation basis, rare basis.

2 G. A. KARAGULYAN, D. A. KARAGULYAN, AND M. H. SAFARYAN

Let $\Phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function. Denote by $\Phi(L)(\mathbb{R}^2)$ the class of measurable functions f defined on \mathbb{R}^2 such that $\Phi(|f|) \in L^1(\mathbb{R}^2)$. If Φ satisfies the Δ_2 -condition $\Phi(2x) \leq k\Phi(x)$, then $\Phi(L)$ turns to be an Orlicz space with the norm

$$||f||_{\Phi} = \inf\left\{c > 0: \int_{\mathbb{R}^2} \Phi\left(\frac{|f|}{c}\right) \le 1\right\}.$$

The following classical theorems determine the optimal Orlicz space, which functions have a.e. differentiable integrals with respect to the entire family of rectangles \mathcal{R} is the space

$$L(1 + \log L)(\mathbb{R}^2) \subset L^1(\mathbb{R}^2),$$

corresponding to the case $\Phi(t) = t(1 + \log^+ t)$ ([1]).

Theorem A (Jessen-Marcinkiewicz-Zygmund, [4]). $L(1 + \log L)(\mathbb{R}^2) \subset \mathcal{F}(\mathcal{R})$.

Theorem B (Saks, [7]). If

$$\Phi(t) = o(t \log t) \text{ as } t \to \infty,$$

then $\Phi(L)(\mathbb{R}^2) \not\subset \mathcal{F}(\mathcal{R})$. Moreover, there exists a positive function $f \in \Phi(L)(\mathbb{R}^2)$ such that $\delta_{\mathcal{R}}(x, f) = \infty$ everywhere.

Such theorems are valid also for the basis $\mathcal{R}^{\text{dyadic}}$. The first one trivially follows from embedding $L(1+\log L)(\mathbb{R}^2) \subset \mathcal{F}(\mathcal{R}) \subset \mathcal{F}(\mathcal{R}^{\text{dyadic}})$. The second can be deduced from the following relation

$$\mathcal{F}^+(\mathcal{R}^{\mathrm{dyadic}}) = \mathcal{F}^+(\mathcal{R}),$$

due to Zerekidze [9] (see also [10, 11]).

Let $\Delta = \{\nu_k : k = 1, 2, ...\}$ be an increasing sequence of positive integers. This sequence generates the rare basis $\mathcal{R}_{\Delta}^{\text{dyadic}}$ of dyadic rectangles of the form (1) with $n, m \in \Delta$. This kind of bases first considered in the papers [8], [2], [3]. Stokolos [8] proved that the analogous of Saks theorem holds for any basis $\mathcal{R}_{\Delta}^{\text{dyadic}}$ with an arbitrary Δ sequence. That means $L(1+\log L)(\mathbb{R}^2)$ is again the largest Orlicz space containing in $\mathcal{F}(\mathcal{R}_{\Delta}^{\text{dyadic}})$. G. A. Karagulyan [5] proved some theorems, establishing an equivalency of some convergence conditions for multiple martingale sequences, those in particular imply some results of the papers [8], [2], [3].

In this paper we prove

Theorem. Let $\Delta = \{\nu_k\} \subset \mathbb{N}$ be an increasing sequence of positive integers. Then the condition

(2)
$$\sup_{k\in\mathbb{N}}(\nu_{k+1}-\nu_k)<\infty$$

is necessary and sufficient for the equality

$$\mathcal{F}(\mathcal{R}^{\mathrm{dyadic}}_{\Delta}) = \mathcal{F}(\mathcal{R}^{\mathrm{dyadic}}).$$

ON AN EQUIVALENCY OF DIFFERENTIATION BASIS OF DYADIC RECTANGLES3

2. Some definitions and key functions

Denote by \overline{E} and \mathring{E} the closure and the interior of a set $E \subset \mathbb{R}^2$ respectively, \mathbb{I}_E denotes the indicator function of E. A set $E \subset \mathbb{R}^2$ is said to be simple, if it can be written as a union of squares of the form

$$\left[\frac{i-1}{2^n},\frac{i}{2^n}\right)\times\left[\frac{j-1}{2^n},\frac{j}{2^n}\right).$$

If n is the minimal integer with this relation, then we write $wd(E) = 2^{-n}$. Note that if E is a dyadic rectangle, then wd(E) coincides with the length of the smaller side of E. If E is square, then len(E) = wd(E). Denote

$$(3) \quad E_{ij}(n) = \bigcup_{k=0}^{n-1} \left[\frac{i}{2}, \frac{i}{2} + \frac{1}{2^{k+1}} \right] \times \left[\frac{j}{2}, \frac{j}{2} + \frac{1}{2^{n-k}} \right],$$

$$(4) \quad F_{i,j}(n) = \left[\frac{i}{2}, \frac{i}{2} + \frac{1}{2^n} \right] \times \left[\frac{j}{2}, \frac{j}{2} + \frac{1}{2^n} \right]$$

$$= \bigcap_{k=0}^{n-1} \left[\frac{i}{2}, \frac{i}{2} + \frac{1}{2^{k+1}} \right] \times \left[\frac{j}{2}, \frac{j}{2} + \frac{1}{2^{n-k}} \right] \subset E_{ij}(n), \quad i, j =$$

and define the sets

(5)
$$E(n) = E_{00}(n) \cup E_{01}(n) \cup E_{10}(n) \cup E_{11}(n),$$

(6)
$$F(n) = F_{00}(n) \cup F_{01}(n) \cup F_{10}(n) \cup F_{11}(n) \subset E(n),$$

Introduce the functions

$$u(x,n) = (n+1)2^{n-2} \big(\mathbb{I}_{F_{00}(n)}(x) + \mathbb{I}_{F_{11}(n)}(x) - \mathbb{I}_{F_{10}(n)}(x) - \mathbb{I}_{F_{01}(n)} \big), \quad n \in \mathbb{N},$$

$$v(x) = \mathbb{I}_{[0,1/2) \times [0,1/2)}(x) + \mathbb{I}_{[1/2,1) \times [1/2,1)}(x) - \mathbb{I}_{[0,1/2) \times [1/2,1)}(x) - \mathbb{I}_{[1/2,1) \times [0,1/2)}(x).$$

0, 1,

Let $\omega \in \mathcal{Q}$ be an arbitrary square and ϕ_{ω} be the linear transformation of \mathbb{R}^2 taking ω onto unit square $[0,1)^2 \subset \mathbb{R}^2$. For an arbitrary function f(x) defined on $[0,1)^2$ and for a set $E \subset [0,1)^2$ we define

$$f_{\omega}(x) = f(\phi_{\omega}(x)), \quad E_{\omega} = (\phi_{\omega})^{-1}(E) \subset \omega.$$

We have

(7)
$$\operatorname{supp}(u_{\omega}(x,n)) = F_{\omega}(n),$$

(8)
$$\operatorname{supp}(v_{\omega}(x)) = \omega,$$

(9)
$$|E_{\omega}(n)| = \frac{(n+1)|\omega|}{2^n}, \quad |F_{\omega}(n)| = \frac{|\omega|}{4^{n-1}},$$

(10)
$$\operatorname{wd}(E_{\omega}(n)) = \operatorname{wd}(F_{\omega}(n)) = \operatorname{wd}(\omega) \cdot 2^{-n}.$$

Simple calculations show that

(11)
$$\|u_{\omega}(x,n)\|_{1} = |E_{\omega}(n)| = \frac{n+1}{2^{n}} |\omega|,$$

(12)
$$||v_{\omega}(x)||_1 = |\omega|.$$

Then observe that, if $\omega \in \mathcal{Q}^{\text{dyadic}}$ is a dyadic square, then for any point $x \in E_{\omega}(n)$ there exists a dyadic rectangle $R(x) \in \mathcal{R}^{\text{dyadic}}$ with

(13)
$$\frac{1}{|R(x)|} \left| \int_{R(x)} u_{\omega}(x,n) dx \right| = \frac{n+1}{2}, \quad x \in R(x) \subset E_{\omega}(n),$$

(14) $\operatorname{wd}(R(x)) = \operatorname{wd}(\omega) \cdot 2^{-n}.$

besides this rectangle coincides with the $(\phi_{\omega})^{-1}$ -image of one of the representation rectangles from (3). Similarly, if $\omega \in \mathcal{D}$, then

(15)
$$\frac{1}{|R(x)|} \left| \int_{R(x)} v_{\omega}(x) dx \right| = 1, \quad x \in R(x) \subset \omega,$$

(16)
$$\operatorname{wd}(R(x)) = \frac{\operatorname{wd}(\omega)}{2}$$

for some square R(x) with $|R(x)| = |\omega|/4$. In this case R(x) coincides with one of the four squares forming ω .

3. Auxiliary Lemmas

The following simple lemma has been proved in [6].

Lemma 1. Let $Q \in \mathcal{Q}^{\text{dyadic}}$ be an arbitrary dyadic square, a function $f(x) = f(x_1, x_2) \in L^1(\mathbb{R}^2)$ satisfies the condition $\operatorname{supp} f(x) \subset Q$ and

(17)
$$\int_{\mathbb{R}} f(x_1, t) dt = \int_{\mathbb{R}} f(t, x_2) dt = 0, \quad x_1, x_2 \in \mathbb{R}$$

Then for any dyadic rectangle $R \in \mathcal{R}^{\text{dyadic}}$ satisfying $R \not\subset \mathring{Q}$ we have

(18)
$$\int_{R} f(x)dx = 0.$$

Proof. We suppose

$$Q = [\alpha_1, \beta_1) \times [\alpha_2, \beta_2), \quad R = [a_1, b_1) \times [a_2, b_2).$$

If $R \cap Q = \emptyset$, then (18) is trivial. Otherwise we will have either $[\alpha_1, \beta_1) \subset [a_1, b_1)$ or $[\alpha_2, \beta_2) \subset [a_2, b_2)$. In the first case, using (17), we get

$$\int_{R} f(x)dx = \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x_{1}, x_{2})dx_{1}dx_{2} = \int_{a_{2}}^{b_{2}} \int_{\alpha_{1}}^{\beta_{1}} f(x_{1}, x_{2})dx_{1}dx_{2}$$
$$= \int_{a_{2}}^{b_{2}} \left(\int_{\mathbb{R}} f(x_{1}, x_{2})dx_{1} \right) dx_{2} = 0.$$

The second case is proved similarly.

Lemma 2. Let *m* be a positive integer and *Q* be a dyadic square. Then for any simple set $E \subsetneq [0,1)^2$, there exists a finite family Ω of dyadic squares

 $\omega \subset Q$ such that

(19)
$$E_{\omega} \cap E_{\omega'} = \emptyset, \quad \omega \neq \omega',$$

(20)
$$\min_{\omega \in \Omega} \operatorname{wd}(\omega) = \operatorname{wd}(Q) \cdot (\operatorname{wd}(E))^m,$$

(21)
$$\left| Q \setminus \bigcup_{\omega \in \Omega} E_{\omega} \right| = |Q| \left(1 - |E|\right)^m.$$

Proof. Define a sequence of sets G_k , k = 1, 2, ..., m, with

(22)
$$Q = G_1 \supset G_2 \supset \ldots \supset G_m,$$

and finite families of dyadic squares $\Omega_k \subset \mathcal{D}, k = 1, 2, \dots, m+1$, such that

(23)
$$\operatorname{wd}(\omega) = \operatorname{wd}(Q) \cdot (\operatorname{wd}(E))^{k-1}, \quad \omega \in \Omega_k, \quad k = 1, 2, \dots, m+1,$$

(24)
$$G_k = \bigcup_{\omega \in \Omega_k} \omega, \quad k = 1, 2, \dots, m+1,$$

(25)
$$G_k = G_{k-1} \setminus \bigcup_{\omega \in \Omega_{k-1}} E_\omega = \bigcup_{\omega \in \Omega_{k-1}} (\omega \setminus E_\omega), \quad k = 2, \dots, m+1.$$

We do it by induction. For the first step of induction we take just $G_1 = Q$ and let Ω_1 consist of a single rectangle Q. Suppose we have already chosen the sets G_k and the families Ω_k for k = 1, 2, ..., p, satisfying (22)-(25). Set

$$G_{p+1} = G_p \setminus \bigcup_{\omega \in \Omega_p} E_\omega = \bigcup_{\omega \in \Omega_p} (\omega \setminus E_\omega)$$

From the induction hypothesis of (23) it follows that

$$\operatorname{wd}(\omega \setminus E_{\omega}) = \operatorname{wd}(\omega) \cdot \operatorname{wd}(E) = \operatorname{wd}(Q) \cdot (\operatorname{wd}(E))^p.$$

Hence we conclude that G_{p+1} is a union of dyadic squares with side lengths $\operatorname{wd}(Q) \cdot (\operatorname{wd}(E))^p$ and we define the family Ω_{p+1} as a collection of these squares. Thus we get G_{p+1} and Ω_{p+1} satisfying the conditions (22)-(25) for k = p + 1, that completes the induction process. Applying (11), (24) and (25) we obtain

$$|G_k| = |G_{k-1}| - \left| \bigcup_{\omega \in \Omega_{k-1}} E_{\omega} \right| = |G_{k-1}| - |E||G_{k-1}| = (1 - |E|)|G_{k-1}|$$

and therefore

(26)
$$|G_{m+1}| = (1 - |E|)^m |Q|.$$

Obviously the family of squares $\Omega = \bigcup_{k=1}^{m+1} \Omega_k$ satisfies the hypothesis of lemma. Indeed, suppose $\omega, \omega' \in \Omega$ are arbitrary squares. If $\omega, \omega' \in \Omega_k$ for some k, then according to (23) we have $\omega \cap \omega' = \emptyset$ and so (19). If $\omega \in \Omega_k$, $\omega' \in \Omega_{k'}$ and k < k', then

$$E_{\omega'} \subset \omega' \subset G_{k'},$$

$$E_{\omega} \subset G_k \setminus G_{k+1} \Rightarrow E_{\omega} \cap G_{k'} = \emptyset.$$

Thus we again get (19). The condition (20) immediately follows from (23), and (21) follows from (26) and from the relation

$$\left| \bigcup_{\omega \in \Omega} E_{\omega} \right| = \left| \bigcup_{k=1}^{m+1} \bigcup_{\omega \in \Omega_k} E_{\omega} \right| = \left| \bigcup_{k=1}^{m+1} G_k \setminus G_{k+1} \right| = |Q \setminus G_{m+1}| = |Q|(1 - (1 - |E|)^m)$$

Lemma 3. Let L > 1 be a positive integer and let $Q \in \mathcal{D}$ be a dyadic square. Then there exist a function $f \in L^{\infty}(\mathbb{R}^2)$ and numbers $\alpha(L) \in \mathbb{N}, \beta(L) > 0$, depended on L such that

(27)
$$\operatorname{supp} f \subset Q$$

(28)
$$||f||_{\infty} \le \beta(L),$$

(29)
$$|\operatorname{supp} f| \le \frac{2|Q|}{\beta(L)},$$

(30)
$$\operatorname{wd}(\operatorname{supp} f) \ge \operatorname{wd}(Q) \cdot 2^{-\alpha(L)},$$

(31)
$$\int_{R} f(x)dx = 0, \quad R \in \mathcal{R}^{\text{dyadic}}, \quad R \not\subset \mathring{Q},$$

and for any point $x \in Q$ there exists a rectangle $R(x) \subset Q$ satisfying

(32)
$$\operatorname{wd}(R(x)) \ge \operatorname{wd}(Q) \cdot 2^{-\alpha(I)}$$

(33)
$$\frac{1}{|R(x)|} \left| \int_{R(x)} f(t) dt \right| \ge L$$

Proof. Let n = 2L and denote

(34)
$$\alpha(L) = n(2^{n} + 1), \quad \beta(L) = (n+1)2^{n-2},$$

(35) $m = m(L) = \left[\frac{2^{n}(\ln(n+1) + (n-2)\ln 2)}{n+1}\right] + 1 < 2^{n}.$

Let E = E(n) be the set defined in (5). We have $|E(n)| = (n+1)/2^n$ and wd $(E(n)) = 2^{-n}$. Applying Lemma 2, we may find family Ω of dyadic squares $\omega \subset Q$ with properties (19)-(21). Set

(36)
$$G = \bigcup_{\omega \in \Omega} E_{\omega}(n), \quad G_1 = Q \setminus G.$$

According to (21), (34) and (35), we have

$$|G_1| = (1 - |E(n)|)^m |Q| = \left(1 - \frac{n+1}{2^n}\right)^m |Q| < \frac{|Q|}{\beta(L)}$$

From (20) and (35) it follows that

$$G_1 = \bigcup_{\omega \in \Omega_1} \omega,$$

where Ω_1 is a family of squares with

(37)
$$\min_{\omega \in \Omega_1} \operatorname{wd}(\omega) = \min_{\omega \in \Omega} \operatorname{wd}(\omega) = \operatorname{wd}(Q) \cdot (\operatorname{wd}(E(n)))^m \ge \operatorname{wd}(Q) \cdot 2^{-n \cdot 2^n}.$$

Define

$$f(x) = \sum_{\omega \in \Omega} u_{\omega}(x, n) + \beta(L) \sum_{\omega \in \Omega_1} v_{\omega}(x) = g(x) + g_1(x).$$

Clearly this function satisfies (27) and (28). Then, we have

$$\operatorname{supp} g = \bigcup_{\omega \in \Omega} F_{\omega}(n) \subset G, \quad \operatorname{supp} g_1 = G_1$$
$$\operatorname{supp} f = \operatorname{supp} g \bigcup \operatorname{supp} g_1.$$

,

This together with (9) and (36) implies

$$|\operatorname{supp} f| = \bigcup_{\omega \in \Omega} |F_{\omega}(n)| + |G_1| = \frac{1}{(n+1)2^{n-2}} \sum_{\omega \in \Omega} |E_{\omega}(n)| + |G_1|$$
$$= \frac{1}{(n+1)2^{n-2}} |G| + |G_1| \le \frac{2|Q|}{\beta(L)}$$

and therefore we get (29). Using (37), we obtain

$$\operatorname{wd}(\operatorname{supp} g) \ge \min_{\omega \in \Omega} \operatorname{wd}(\omega) \cdot \operatorname{wd}(F(n)) = \operatorname{wd}(Q) \cdot 2^{-n(2^n+1)} = \operatorname{wd}(Q) \cdot 2^{-\alpha(L)},$$

$$\operatorname{wd}(\operatorname{supp} g_1) \ge \min_{\omega \in \Omega_1} \operatorname{wd}(\omega) \ge \operatorname{wd}(Q) \cdot 2^{-n \cdot 2^n} > \operatorname{wd}(Q) \cdot 2^{-\alpha(L)},$$

and therefore we get (30). The condition (31) follows from Lemma 1, since f(x) satisfies the condition (17) according the definitions of functions $u_{\omega}(x,n)$ and $v_{\omega}(x)$. To prove (33) we take an arbitrary point $x \in Q$. We have either $x \in G$ or $x \in G_1$. In the first case we will have $x \in E_{\omega}(n)$ for some square $\omega \in \Omega$. By (13) there exists a dyadic rectangle R = R(x), $x \in R \subset E_{\omega}(n)$, such that

$$\frac{1}{|R|} \left| \int_R f(t) dt \right| = \frac{1}{|R|} \left| \int_R u_\omega(t, n) dt \right| = \frac{n+1}{2} > L.$$

In the second case from (15) we obtain

$$\frac{1}{|R|} \left| \int_{R} f(t) dt \right| = \frac{\beta(L)}{|R|} \left| \int_{R} v_{\omega}(t) dt \right| \ge 2^{n} > L$$

for some square R = R(x), $x \in R \subset \omega$. Obviously in any case R(x) satisfies (32). Lemma is proved.

Proof of Theorem. Necessity : Let $\Delta = \{\nu_k\}$ be a sequence with

(38)
$$\gamma = \sup_{k \in \mathbb{N}} (\nu_{k+1} - \nu_k) < \infty,$$

and suppose conversely, we have

$$\mathcal{F}(\mathcal{R}^{\mathrm{dyadic}}_{\Delta}) \setminus \mathcal{F}(\mathcal{R}^{\mathrm{dyadic}}) \neq \varnothing.$$

That means there exists a function $f \in L^1(\mathbb{R}^2)$ such that

- (39) $\delta_{\mathcal{R}^{\text{dyadic}}_{\Lambda}}(x, f) = 0 \text{ a.e.},$
- (40) $\overline{\delta_{\mathcal{R}^{\text{dyadic}}}(x,f)} > \alpha, \quad x \in E,$

where $\alpha > 0$ and |E| > 0. According to (39) for any $x \in \mathbb{R}^2$ one can chose a number $\delta(x) > 0$ such that the conditions

$$x \in R \in \mathcal{R}_{\Delta}^{\text{dyadic}}, \quad \text{len}(R) < \delta(x),$$

imply

(41)
$$\left|\frac{1}{|R|}\int_{R}f - f(x)\right| < \frac{\alpha}{2}.$$

For some $\delta > 0$ the set $F = \{x \in E : \delta(x) \ge \delta\} \subset E$ has positive measure. Then, using the representation

$$F = \bigcup_{j \in \mathbb{Z}} \left\{ x \in F \colon \frac{j\alpha}{2} \le f(x) < \frac{(j+1)\alpha}{2} \right\},\$$

we find a set

(42)
$$G = \left\{ x \in F : \frac{j_0 \alpha}{2} \le f(x) < \frac{(j_0 + 1)\alpha}{2} \right\} \subset F$$

having positive measure. Combining (40), (41) and (42), we will have

(43)
$$\delta_{\mathcal{R}^{\text{dyadic}}}(x, f) > \alpha, \quad x \in G,$$

(44)
$$\left|\frac{1}{|R|}\int_{R}f - f(x)\right| < \frac{\alpha}{2}, \text{ if } x \in R \cap G, R \in \mathcal{R}_{\Delta}^{\text{dyadic}}, \text{len}(R) < \delta,$$

(45)
$$\sup_{x,y\in G} |f(x) - f(y)| \le \frac{\alpha}{2}.$$

Since almost all points of G are density points, we may fix $x_0 \in G$ with

$$\lim_{\mathrm{len}(R)\to 0, \, x_0\in R\in\mathcal{R}^{\mathrm{dyadic}}} \frac{|R\cap G|}{|R|} = 1.$$

Using this relation and (43), we find a rectangle

$$R' = \left[\frac{p-1}{2^n}, \frac{p}{2^n}\right) \times \left[\frac{q-1}{2^m}, \frac{q}{2^m}\right),$$

such that

(46)
$$x_0 \in R' \in \mathcal{R}^{\text{dyadic}}, \quad \text{len}(R') < \delta_{\mathcal{R}}$$

(47)
$$\left|\frac{1}{|R'|}\int_{R'}f - f(x_0)\right| > \alpha,$$

(48)
$$|R' \cap G| > (1 - 4^{-\gamma})|R'|,$$

where γ is the number (38). Besides, we may suppose

(49)
$$\nu_{k_t-1} < n \le \nu_{k_t}, \quad \nu_{k_s-1} < m \le \nu_{k_s},$$

for some integers t, s. This and (38) imply that R' is a union of rectangles of the form

$$\left[\frac{i-1}{2^{\nu_{k_t}}},\frac{i}{2^{\nu_{k_t}}}\right) \times \left[\frac{j-1}{2^{\nu_{k_s}}},\frac{j}{2^{\nu_{k_s}}}\right) \in \mathcal{R}_{\Delta}^{\text{dyadic}},$$

and from (47) it follows that at least for one of these rectangles, say R'', we have

(50)
$$\left|\frac{1}{|R''|}\int_{R''}f-f(x_0)\right| > \alpha.$$

From (38) and (49) we get

$$|R''| = \frac{1}{2^{\nu_{k_t} + \nu_{k_s}}} \ge \frac{1}{2^{\nu_{k_t} + \nu_{k_s} - \nu_{k_t - 1} - \nu_{k_s - 1}}} \cdot \frac{1}{2^{n+m}} \ge |R'| \cdot 4^{-\gamma}.$$

From this and (48) we obtain $R'' \cap G \neq \emptyset$. Take a point $x_1 \in R'' \cap G$. From (45) and (50) we get

(51)
$$\left| \frac{1}{|R''|} \int_{R''} f - f(x_1) \right| > \left| \frac{1}{|R''|} \int_{R''} f - f(x_0) \right| - |f(x_1) - f(x_0)| > \frac{\alpha}{2}.$$

On the other hand we have $x_1 \in R'' \cap G$, $R'' \in \mathcal{R}^{\text{dyadic}}_{\Delta}$, $\text{len}(R'') \leq \text{len}(R') < \delta_0$, and therefore by (44) we obtain

$$\left|\frac{1}{|R''|}\int_{R''}f-f(x_1)\right|<\alpha/2.$$

The last relation together with (51) gives a contradiction, which completes the proof of the first part of our theorem.

Sufficiency: Now we suppose (2) doesn't hold, that means there exists a sequence of integers $p_k \nearrow \infty$ such that

(52)
$$\lim_{k \to \infty} (\nu_{p_k+1} - \nu_{p_k}) = \infty.$$

Using this relation, we may find sequences of integers L_k and l_k , k = 1, 2, ..., such that

(53)
$$l_{k+1} > l_k + \alpha(L_k), \quad k = 1, 2, \dots,$$

(54)
$$\nu_{p_k} < l_k < l_k + \alpha(L_k) < \nu_{p_k+1}, \quad k = 1, 2, \dots,$$

(55)
$$L_{k+1} > 2^k \cdot (\beta(L_k) + k) \quad k = 1, 2, \dots,$$

where $\alpha(L)$ and $\beta(L)$ are the constants taken from Lemma 3. Applying Lemma 3 for the numbers $L = L_k$, $l = l_k$ and for the square

$$Q = Q_{ij}^{k} = \left[\frac{i-1}{2^{l_k}}, \frac{i}{2^{l_k}}\right) \times \left[\frac{j-1}{2^{l_k}}, \frac{j}{2^{l_k}}\right), \quad 1 \le i, j \le 2^{l_k},$$

we get functions $f_{ij}^k(x)\in L^\infty(\mathbb{R}^2)$ satisfying the conditions

- (56) $\operatorname{supp} f_{ij}^k \subset Q_{ij}^k,$
- (57) $\|f_{ij}^k\|_{\infty} \le \beta(L_k),$

(58)
$$|\operatorname{supp} f_{ij}^k| \le \frac{2|Q_{ij}^k|}{\beta(L_k)},$$

(59)
$$\operatorname{wd}(\operatorname{supp} f_{ij}^k) \ge 2^{-l_k - \alpha(L_k)},$$

(60)
$$\int_{R} f_{ij}^{k}(x) dx = 0, \quad R \in \mathcal{R}^{\text{dyadic}}, \quad R \not\subset \mathring{Q}_{ij}^{k},$$

10 G. A. KARAGULYAN, D. A. KARAGULYAN, AND M. H. SAFARYAN

and for any point $x \in Q_{ij}^k$ there exists a dyadic rectangle $R_k(x) \subset Q_{ij}^k$ with

(61)
$$\operatorname{wd}(R_k(x)) \ge 2^{-l_k - \alpha(L_k)},$$

(62)
$$\frac{1}{|R_k(x)|} \left| \int_{R_k(x)} f_{ij}^k(t) dt \right| \ge L_k.$$

Define the function

$$F_k(x) = \sum_{i,j=1}^{2^{\prime_k}} f_{ij}^k(x).$$

From the relations (56)-(62) we conclude

(63) $|\operatorname{supp} F_k| \le \frac{2}{\beta(L_k)},$

(64)
$$\operatorname{wd}(\operatorname{supp} F_k) \ge 2^{-l_k - \alpha(L_k)},$$

(65)
$$||F_k||_{\infty} \le \beta(L_k),$$

(66)
$$\int_{R} F_{k}(x) dx = 0, \quad R \in \mathcal{R}^{\text{dyadic}}, \quad \text{len}(R) \ge 2^{-l_{k}},$$

and for any point $x\in[0,1)^2$ there exists a dyadic rectangle $R_k(x)\subset[0,1)^2$ such that

(67)
$$2^{-l_k} > \operatorname{len}(R_k(x)) \ge \operatorname{wd}(R_k(x)) \ge 2^{-l_k - \alpha(L_k)},$$

(68)
$$\frac{1}{|R_k(x)|} \left| \int_{R_k(x)} F_k(t) dt \right| \ge L_k$$

Denote

(69)
$$F(x) = \sum_{k=1}^{\infty} \frac{F_k(x)}{2^k}.$$

From (63) and (54) it follows that $||F_k||_1 \leq 2$ and so $||F||_1 \leq 2$. Let $x \in [0,1)^2$ be an arbitrary point. From the relations (53) and (67) we get $\operatorname{len}(R_k(x)) \geq 2^{-l_{k+1}} \geq 2^{-l_j}$ if j > k. Thus, using (66), we obtain

(70)
$$\int_{R_k(x)} F_j(t)dt = 0, \quad j > k$$

On the other hand the relations (65) and (55) imply

(71)
$$\left|\frac{1}{|R_k(x)|} \int_{R_k(x)} \sum_{j=1}^{k-1} \frac{F_j(t)}{2^j} dt\right| \le \beta(L_{k-1}) < \frac{L_k}{2}, \quad k \ge 2.$$

From (68), (70) and (71) we get the inequality

$$\left|\frac{1}{|R_k(x)|} \int_{R_k(x)} F(t) dt\right| \ge \frac{1}{|R_k(x)|} \left| \int_{R_k(x)} F_k(t) dt \right| - \frac{L_k}{2} > \frac{L_k}{2},$$

which yields

(72)
$$\lim_{\mathrm{len}(R)\to 0, x\in R\in\mathcal{R}^{\mathrm{dyadic}}} \left|\frac{1}{|R|} \int_{R} F(t) dt\right| = \infty, \quad x\in[0,1)^{2}.$$

Now take an arbitrary rectangle $R \in \mathcal{R}_{\Delta}^{\text{dyadic}}$. We have

(73)
$$len(R) = 2^{-\nu_k} \ge wd(R) = 2^{-\nu_t}.$$

r

From (66) we get

(74)
$$\int_{R} F_{j}(t)dt = 0 \text{ if } l_{j} \ge \nu_{k}.$$

On the other hand if $l_j < \nu_k$, then from (54) it follows that

$$l_j + \alpha(L_j) < \nu_k$$

and therefore by (64) we get

(75)
$$\operatorname{wd}(\operatorname{supp}(F_j)) \ge 2^{-l_j - \alpha(L_j)} \ge 2^{-\nu_k}.$$

Thus, using simple properties of dyadic rectangles, we conclude that

(76)
$$l_j < \nu_k, R \not\subset \operatorname{supp}(F_j) \Rightarrow R \cap \operatorname{supp}(F_j) = \emptyset.$$

Consider the sets

$$G_{1} = \{x \in [0, 1)^{2} : \delta_{\mathcal{R}}(x, F_{k}) = 0, \ k = 1, 2, \ldots\},\$$

$$G_{2} = \bigcup_{k=1}^{\infty} \bigcap_{j: l_{j} \ge \nu_{k}}^{\infty} \left([0, 1)^{2} \setminus \operatorname{supp} (F_{j}) \right),\$$

$$G = G_{1} \cap G_{2}.$$

Since $F_k(x)$ is bounded, the equality $\delta_{\mathcal{R}}(x, F_k) = 0$ holds almost everywhere and so $|G_1| = 1$. From (63) it follows that $|G_2| = 1$ and therefore we get |G| = 1. Take an arbitrary point $x \in G$. We have

(77)
$$x \notin \operatorname{supp}(F_j), \quad j > k_0,$$

for some k_0 . Consider the rectangle $R \in \mathcal{R}^{\text{dyadic}}_{\Delta}$ such that $x \in R$. Suppose we have (73) and $k > k_0$. Then form (76) and (77) we get

(78)
$$R \cap \operatorname{supp}(F_j) = \emptyset, \text{ if } j > k_0 \text{ and } l_j < \nu_k.$$

From (74) and (78) we conclude

$$\frac{1}{|R|} \int_R F(t) dt = \sum_{j=1}^{k_0} \frac{1}{2^j \cdot |R|} \int_R F_j(t) dt.$$

Thus we obtain

(79)
$$\lim_{\operatorname{len}(R)\to 0, x\in R\in\mathcal{R}_{\Delta}^{\operatorname{dyadic}}} \frac{1}{|R|} \int_{R} F(t) dt = \sum_{j=1}^{k_{0}} \frac{F_{j}(x)}{2^{j}}.$$

On the other hand (77) implies

(80)
$$F(x) = \sum_{j=1}^{k_0} \frac{F_j(x)}{2^j}$$

From (72), (79) and (80) we conclude the relation $F \in \mathcal{F}(\mathcal{R}^{\text{dyadic}}_{\Delta}) \setminus \mathcal{F}(\mathcal{R}^{\text{dyadic}})$, which completes the proof of the theorem. \Box

12 G. A. KARAGULYAN, D. A. KARAGULYAN, AND M. H. SAFARYAN

References

- [1] M. Guzman, Differentiation of integrals in \mathbb{R}^n , Springer-Verlag (1975).
- [2] P. A. Hagelstein, A note on rare maximal functions. Colloq. Math. 95 (2003), no. 1, 49–51.
- [3] K. Hare and A. Stokolos, A. On weak type inequalities for rare maximal functions, Colloq. Math., 83 (2000), no. 2, 173–182.
- B. Jessen, J. Marcinkiewicz, A. Zygmund, Note of differentiability of multiple integrals, Fund. Math., 25(1935), 217–237.
- [5] G. A. Karagulyan, On equivalency of martingales and related problems, Izvestia NAN Armenii (English translation in Journal of Contemporary Mathematical Analysis), 48(2013), No 2, 51–65.
- [6] G. A. Karagulyan, D. A. Karagulyan, On characterization of extremal sets of differentiation of integrals in ℝ², J. of Cont. Math. Analysis, 49, no. 6, 83–108 (2014).
- S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math., 22(1934), 257–261.
- [8] A. Stokolos, On weak type inequalities for rare maximal function in ℝⁿ, Colloq. Math., 104(2006), no. 2, 311–315.
- T. Sh. Zerekidze, Convergence of multiple Fourier-Haar series and strong differentiability of integrals, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 76 (1985), 80–99.(Russian)
- [10] T. Sh. Zerekidze, On some subbases of a strong differential basis, Semin. I. Vekua Inst. Appl. Math. Rep. 35 (2009), 31–33.
- [11] T. Sh. Zerekidze, On the equivalence and nonequivalence of some differential bases, Proc. A. Razmadze Math. Inst. 133 (2003), 166–169.

INSTITUTE OF MATHEMATICS OF ARMENIAN NATIONAL ACADEMY OF SCIENCE, BAGHRAMIAN AVE. 24/5, 0019, YEREVAN, ARMENIA *E-mail address*: g.karagulyan@yahoo.com

INSTITUTE OF MATHEMATICS OF ARMENIAN NATIONAL ACADEMY OF SCIENCE, BAGHRAMIAN AVE. 24/5, 0019, YEREVAN, ARMENIA *E-mail address*: davidkar@yahoo.com

INSTITUTE OF MATHEMATICS OF ARMENIAN NATIONAL ACADEMY OF SCIENCE, BAGHRAMIAN AVE. 24/5, 0019, YEREVAN, ARMENIA *E-mail address:* mher.safaryan@gmail.com