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Abstract. We prove the everywhere divergence of series
∞∑
n=0

ane
iρneinx,

and
∞∑
n=0

(−1)[ρn]an cosnx,

for sequences an and ρn satisfying some extremal conditions. These
results generalize some well known examples of everywhere diver-
gent power and trigonometric series.

1. Introduction

We consider power series

(1)
∞∑
n=0

cne
inx

with complex coefficients cn. In 1912 Luzin [8] constructed an example
of everywhere divergent series (1) with cn → 0. It was an answer
to Fatou’s problem [4], asking whether power series converge almost
everywhere, if cn → 0. Then in 1912 Steinhaus [11] proved that the
trigonometric series

(2)
∞∑
n=2

cosn(x+ log log n)

log n

is everywhere divergent. In 1916 Hardy and Littlewood [6] proved that
the power series

(3)
∞∑
n=1

n−ρeiαn logneinx, 0 < ρ ≤ 1

2
, α > 0.
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diverges for any x ∈ R. Many authors were interested in the problem
of possible upper bound for the coefficients of everywhere divergent
power series. In 1921 Neder [9] proved that if

(4) an ↓ 0,
∞∑
n=1

a2n =∞,

then there exists a power series (1), which is everywhere divergent
and cn = O(an). Note that the second condition in (4) is necessary
for almost everywhere divergence of series (1) according to Carleson’s
well known theorem ([2]). Generalizing Neder’s theorem Stechkin [10]
constructed an example of series (1), which real an imaginary parts
are everywhere divergent and cn = O(an), where an satisfies (4). Then
Herzog constructed an example of series

∞∑
n=1

an cosnx

with an ≥ 0, which is everywhere divergent. Dvoretzky and Erdos [3]
proved that if

|an| ≥ |an+1|,
∞∑
n=1

|an|2 =∞,

then there exists a sequence of numbers εn = 0 or 1, such that the
series

∞∑
n=1

εnane
inx

is everywhere divergent.
In 1985 Galstyan [5] proved that if a sequence an satisfies the con-

ditions (4), then there exists a sequence εn = 0 or 1, such that the
series

∞∑
n=1

εnan cosnx

diverges for any x ∈ R. It was the solution of a problem posed by
Ul’yanov [12] in 1964.

We denote by

∆xn = xn+1 − xn, ∆ 2xn = ∆xn+1 −∆xn.

the first and second order differences of a given sequence of numbers
xn, n = 1, 2, . . ..
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Theorem 1. If a sequence ρn, n = 1, 2, . . ., satisfies the conditions

(5) ∆2ρn ↓ 0,
∞∑
n=1

∆2ρn =∞,

and

(6) an ≥ c ·
√

∆2ρn, n = 1, 2, . . . , c > 0,

then the real and imaginary parts of the series

(7)
∞∑
n=0

ane
iρneinx,

diverge for any x ∈ R.

Theorem 2. If ρn, n = 1, 2, . . ., satisfies the conditions (5) and (6)
and an ↓ 0, then the series

(8)
∞∑
n=0

εnan cosnx, εn =
(−1)[ρn] + 1

2
,

diverges for any x ∈ R.

Remark 1. For a given number α ∈ R we shall use notation

α/2π = 2π
{ α

2π

}
,

where {x} denotes the fractional part of x. Note that in (5) and (6)
we may everywhere replace ∆ 2ρn with (∆ 2ρn)/2π.

Remark 2. Notice that the values of εn in (8) are 0 or 1. Without a
significant change in the proof of Theorem 2 one can deduce also the
everywhere divergence of series

∞∑
n=0

(−1)[ρn]an cosnx.

Remark 3. For given coefficients an, satisfying (4), we consider the
sequence

(9) ρ1 = 0, ρn =
n−2∑
k=0

(n− k − 1)a2k, n = 2, 3, . . . .

It is easy to check that

∆ 2ρn = a2n, n = 1, 2, . . .

and hence we have (5) and (6). Thus we conclude that for a given
sequence of coefficients (4), defining ρn by (9), we get series (7) and
(8) diverging at any point x ∈ R. So the theorems provide concrete
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examples of everywhere divergence trigonometric and power series with
coefficients having extremal rate. Moreover, the examples of series (2),
(3) and the series constructed in the papers [9, 7, 10, 5] may be imme-
diately deduced from the Theorems 1 or 2.

2. Auxiliary lemmas

Lemma 1. If b1 ≥ b2 ≥ . . . ≥ bm ≥ 0, then

(10)

(
n∑
j=1

bj

)2

≥
m∑
j=1

jb2j , n ≤ m ≤ n
√

2− 1.

Proof. Observe that

bi

n∑
j=i+1

bj ≥
n∑

j=i+1

b2j .

Thus, we get

∑
1≤i<j≤n

bibj =
n−1∑
i=1

(
bi

n∑
j=i+1

bj

)
≥

n∑
j=2

(j − 1)b2j

and therefore

(11)
n∑
j=1

b2j +
∑

1≤i<j≤n

bibj ≥
n∑
j=1

jb2j .

On the other hand we have

(12)

∑
1≤i<j≤n

bibj

≥ n(n− 1)

2
b2n

≥

(
n
√

2(n
√

2− 1)

2
− n(n+ 1)

2

)
b2n

≥
(
m(m+ 1)

2
− n(n+ 1)

2

)
b2n

= (n+ 1 + n+ 2 + . . .+m)b2n

≥
m∑

j=n+1

jb2j .



ON CLASSES OF EVERYWHERE DIVERGENT POWER SERIES 5

Combining the formula

(13)

(
n∑
j=1

bj

)2

=
n∑
j=1

b2j + 2
∑

1≤i<j≤n

bibj.

with the inequalities (11) and (12), we get (10). �

Lemma 2. If b1 ≥ b2 ≥ . . . ≥ bm ≥ 0, 15 ≤ n ≤ m, and

(14) c1 =
m∑
j=1

jb2j , c2 =

(
m∑

j=n+1

(j − n)b2j

)
then

(15)
n∑
j=1

jb2j ≥
(c1 − c2)2

9c1
.

Proof. Denote

(16) c =
n∑
j=1

jb2j .

We have

(17) b2n =
2b2n

n(n+ 1)

n∑
j=1

j ≤ 2

n(n+ 1)

n∑
j=1

jb2j ≤
2c

n2
.

If c < c1 ≤ 2c, then (15) is trivial. So we may suppose c1 > 2c. Since
n ≥ 15 there exists an integer p such that

(18) n ≤ n

√
c1
2c
≤ p ≤ 11n

10

√
c1
2c
.

Using the relations (14), (16), (17) and (18), we obtain

(19)

c1 − c2 = c+ n

m∑
j=n+1

b2j

≤ c+
2c(p− n)

n
+ n

m∑
j=p+1

b2j

≤ 2cp

n
+
nc1
p
≤ 11

10

√
2c1c+

√
2c1c < 3

√
c1c,

where we assume
m∑

j=p+1

b2j = 0

if p ≥ m. After simple calculations from (19) we get (15). �
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Lemma 3. If a sequence xn satisfies the conditions (5) and l ≥ 0 is
an arbitrary integer, then there exist integers p and q, q > p > l, such
that

0 < (xj)/2π <
π

50
, p ≤ j ≤ q,(20)

q∑
j=p

√
∆ 2xj > 10−3.(21)

Proof. Define the sequence of integers nk satisfying

(22) ∆xnk < 2πk ≤ ∆xnk+1.

Since ∆ 2xk → 0, there exists a number k0, such that

(23) ∆ 2xnk−1
< π · 10−7, nk−1 > l, k > k0.

For a fixed integer k > k0 we consider the sequence

(24) γn =

nk−1∑
j=n

(j − n+ 1)∆ 2xj, nk−1 < n < nk.

We also assume γnk = 0. Observe that, if

(25) γn < 3π, nk−1 < n < nk − 1000,

then

(26)

γn−1 − γn =

nk−1∑
j=n−1

∆ 2xj

≤1001 ·∆ 2xnk−1
+

1

1000

nk−1∑
j=n+999

(j − n+ 1)∆ 2xj

≤1001 · π · 10−7 + γn · 10−3 <
π

300
.

From (24) and (25) we also get

(27) ∆ 2xnk ≤
2γn

(nk − n)2
≤ 6π

1000(nk − n)
<

π

100(nk − n)
.

Define the integers p, q, nk−1 < p < q < nk, satisfying

(28)
γq+1 + α < 2π ≤γq + α,

γp + α ≤ 2π +
π

100
<γp−1 + α.

where

(29) α = (xnk)/2π.
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From (26) and (28) we obtain

γq ≤ γq+1 +
π

300
< 2π − α +

π

300
,

γp ≥ γp−1 −
π

300
≥ 2π − α +

π

100
− π

300
= 2π − α +

2π

300
.

Using these estimates and the inequalities (10) and (15), we get

(30)

(
q∑
j=p

√
∆ 2xj

)2

>
(γp − γq)2

9γq
> 10−6.

It is easy to verify, that for any numbers n < m we have

(31)

xn − xnk = −
nk−1∑
j=n

∆xj

=

nk−1∑
j=n

(j − n+ 1)∆ 2xj − (nk − n)∆xnk

= γn − (nk − n)∆xnk .

Since ∆xnk+1 −∆xnk = ∆ 2xnk , from (22) it follows that

(32) ∆ xnk = 2πk − θ∆ 2xnk , 0 ≤ θ ≤ 1.

Substituting this in (31), we obtain

xn − xnk = γn + θ(nk − n)∆ 2xnk − 2πk(nk − n),

which implies

(33) xn = α + γn + θ(nk − n)∆ 2xnk mod 2π,

where α is defined in (29). From (27), (33) and (28) it follows that

(xn)/2π ∈ [0, π/50], p ≤ n ≤ q,

and this completes the proof. �

Lemma 4. If

(34) x 6= π

2
mod 2π,

then there exists an integer ν = ν(x) > 10, such that

(35) #{k ∈ N : n < k ≤ n + ν, | cos kx| ≥ sin(π/20)} ≥ 3ν

5

for any n = 1, 2, . . ..
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Proof. If x/2π = 0 (35) is immediate. Consider the case if x/2π is a
rational number and

(36) x =
2πq

p
mod 2π, q < p,

where p, q ∈ N are coprime numbers. We denote

Gp =

{
2πk

p
, k = 1, 2, . . . , p

}
,(37)

∆ =

(
9π

20
,
11π

20

)
∪
(

29π

20
,
31π

20

)
.(38)

It is well known that

(39) {(kx)/2π : k = n+ 1, n+ 2, . . . , n+ p} = Gp,

for any n ∈ N. We suppose ν(x) = p. To prove (35) for x defined in
(36), it is enough to show that

(40) #(Gp ∩∆) ≤ 2p

5
, p 6= 4.

The case p = 4 is excluded because of (34). Since Gp ∩∆ = ∅ if p =
2, 3, 5, 6, then (40) holds for such p’s. If p ≥ 7, then rough estimation
gives

#

(
Gp ∩

(
9π

20
,
11π

20

))
<

p

20
+ 1,

#

(
Gp ∩

(
29π

20
,
31π

20

))
<

p

20
+ 1,

which implies

(41) #(Gp ∩∆) < 2
( p

20
+ 1
)
<

2p

5
, p ≥ 7.

In the case of irrational x/2π we shall use an approximation of x/2π
by rational numbers. It is known that there exist coprime numbers l
and ν, with ν > 40, such that

(42)

∣∣∣∣x− 2πl

ν

∣∣∣∣ < 2π

ν2
.

We consider the set

∆0 =

(
8π

20
,
12π

20

)
∪
(

28π

20
,
32π

20

)
⊃ ∆.

Similarly as in (41), we get

(43) #((a+Gν) ∩∆0) < 2
( ν

10
+ 1
)
<

2ν

5
, ν > 40,
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for arbitrary a ∈ R, where

a+Gν =

{(
a+

2πlk

ν

)
/2π, k = 1, 2, . . . , ν

}
.

From (42) it follows that∣∣∣∣kx− 2πlk

ν

∣∣∣∣ < 2πk

ν2
≤ 2π

ν
<

π

20
, k = 1, 2, . . . , ν,

and therefore we conclude, that the condition

(a+ kx)/2π ∈ ∆, k = 1, 2, . . . , ν, ,

implies (
a+

2πlk

ν

)
/2π ∈ ∆0.

Taking a = nx, thus we obtain

(44)

#{k ∈ N :n < k ≤ n+ ν, (kx)/2π ∈ ∆}
= #{k ∈ N : 1 ≤ k ≤ ν, (a+ kx)/2π ∈ ∆}

= #{k ∈ N : 1 ≤ k ≤ ν,

(
a+

2πlk

ν

)
/2π ∈ ∆0}

= #((a+Gν) ∩∆0) <
2p

5

and the lemma is proved. �

Lemma 5. If a sequence xn, n = 1, 2, . . ., satisfies the conditions (5),
then for any sequence of coefficients an, with (6), the series

(45)
∞∑
n=1

an cos(xn)

is divergent.

Proof. Applying Lemma 3, we may find sequences of numbers pn, qn ∈
N, qn > pn > n, n = 1, 2, . . ., such that

0 < (xj)/2π <
π

50
, pn ≤ j ≤ qn,(46)

qn∑
j=pn

√
∆ 2xj > 10−3.(47)

From (6) and (47) we obtain
qn∑
j=pn

aj ≥ c

qn∑
j=pn

√
∆ 2xj > c · 10−3,
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then, combining this with (46), we get
qn∑
j=pn

aj cos(xj) > cos(π/50)

qn∑
j=pn

aj > c · cos(π/50) · 10−3.

This implies the divergence of series (45). �

3. Proof of theorems

Proof of Theorem 1. The real part of series (7) is

(48)
∞∑
n=1

an cos(nx+ ρn).

Defining

xn = nx+ ρn,

we have ∆ 2xn = ∆ 2ρn. So xn satisfies the same conditions (5) and (6)
as ρn. Therefore the divergence of series (48) immediately follows from
Lemma 5. The imaginary part of (7) is the series

∞∑
n=1

an sin(nx+ ρn) =
∞∑
n=1

an cos(nx+ ρn − π)

and its divergence can be obtained similarly, discussing the sequence
xn = nx+ ρn − π. �

Proof of Theorem 2. We fix an arbitrary number

(49) x 6= π

2
mod 2π

and denote

(50) xn = πρn − nx−
π

2
.

Applying Lemma 3 we may define sequences qn > pn > n with condi-
tions (46) and (47). Observe, that if

(51) pn ≤ k ≤ qn and | cos kx| ≥ sin(π/20),

then

(52) (−1)[ρk] cos kx = | cos kx|.
Indeed, from (46) and (51) we have

(xk)/2π ∈ (0, π/50),

(kx)/2π 6∈ ∆ =

(
9π

20
,
11π

20

)
∪
(

29π

20
,
31π

20

)
,
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which together with (50) implies

sign (cos kx) = sign (cos(kx+ xk))

= sign (cos(πρk − π/2)) = sign (sin πρk) = (−1)[ρk],

and therefore we get (52). According to Lemma 4 there exists a number
ν = ν(x), satisfying (35). Hence, from (52) we obtain

(53)
#{k ∈ N : m < k ≤ m+ ν, (−1)[ρk] cos kx ≥ sin(π/20)}

= #{k ∈ N : m < k ≤ m+ ν, | cos kx| ≥ sin(π/20)} ≥ 3ν

5

provided we have pn ≤ m, m+ ν ≤ qn. We let

sn =
[pn
ν

]
+ 1, tn =

[qn
ν

]
.

We have

(54) (sn − 1)ν ≤ pn < snν, tnν ≤ qn < (tn + 1)ν.

Then, denoting

Gk = {j ∈ N : kν < j ≤ (k + 1)ν, (−1)[
ρj
π ] cos jx ≥ sin(π/20)}

from (53) we obtain

#Gk ≥
3ν

5
, sn ≤ k < tn.

Hence we conclude, if

(55)

ν(k+1)∑
j=νk+1

(−1)[ρj ]aj cos jx

≥
∑
j∈Gk

(−1)[ρj ]aj cos jx− 2ν

5
sin(π/20)aνk

≥ sin(π/20)

(
3ν

5
aν(k+1) −

2ν

5
aνk

)
=
ν sin(π/20)

5

(
3aν(k+1) − 2aνk

)
,

provided sn ≤ k < tn. From (47) and the relation ∆ 2xn = ∆ 2ρn → 0
it follows that the inequality

(56)
νtn∑

j=νsn+1

aj ≥ c
νtn∑

j=νsn+1

√
∆ 2xj ≥ c · 10−4
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holds for sufficiently large n > n0. From (55) and (56) we obtain∣∣∣∣ νtn∑
j=νsn+1

(−1)[ρj ]aj cos jx

∣∣∣∣
=

∣∣∣∣∣∣
tn−1∑
k=sn

ν(k+1)∑
j=νk+1

(−1)[ρj ]aj cos jx

∣∣∣∣∣∣
>
ν · sin(π/20)

5

(
3
tn−1∑
k=sn

aν(k+1) − 2
tn−1∑
k=sn

aνk

)

=
ν · sin(π/20)

5

(
tn−1∑

k=sn+1

aνk + 3aνtn − 2aνsn

)

≥ sin(π/20)

5

 ν(tn−1)∑
j=ν(sn+1)+1

aj + ν(3aνtn − 2aνsn)


Using (56) and (54), we obtain

lim sup
n→∞

∣∣∣∣∣
νtn∑

j=νsn+1

(−1)[ρj ]aj cos jx

∣∣∣∣∣ > 0.

So the series (8) is divergent if (49) holds. If x = π/2, then we have

∞∑
n=0

(−1)[ρn]an cosnx =
∞∑
k=0

(−1)[ρ2k]a2k cos kπ

The last series is divergent because ρ2k again satisfies the same condi-
tions (5) and the divergent of such series at x = π has been already
proved. This completes the proof of theorem. �

References

1. N. Bary, A treatise on trigonometric series, Pergamon Press, (1964).
2. L. Carleson, On the convergence and growth of partial sums of Fourier series,

Acta Math., 116(1966), 135-167.
3. A. Dvoretzky, P. Erdos, On power series which diverges everywhere on the unit

circle of convergence, Michigan Math. Journal, 3(1955-1956), No 1, 31-35.
4. P. Fatou, Series trigonometriques et series de Taylor, Acta Math., 30(1906),

335-400.
5. S. Sh. Galstyan, Everywhere divergent trigonometric series, Math. Notes,

37(1985), No 2, 105-108.
6. G. H. Hardy, J. E. Littlewood, Some problems of diophantine approximation:

A remarkable trigonometrical series, Nat. Acad. Sci. U.S.A., 2(1916), 583-586.



ON CLASSES OF EVERYWHERE DIVERGENT POWER SERIES 13

7. F. Herzog, A note on power series which diverge everywhere on the unit circle
of convergence, Michigan Math. Journal, 3(1955-1956), 3, No 1, 31-35.

8. N. N. Luzin, On a case of Taylor series, Mat. Sbornik, 23(1912), 295-302.
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