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Abstract
We consider the boundary value problem (BVP) for degenerate third order differential-operator equation. 
The study of linear differential equations, coefficients of which are, in general, unbounded operators in the 
Hilbert or Banach spaces, is expedient not only because they contain many differential equations with par-
tial derivatives, but also we get the opportunity to look from a single point of view at ordinary differential 
operators, as well as at the operators with partial derivatives. First we consider one-dimensional case of the 
BVP. Then it is proved that under certain conditions on the corresponding operators and on the degenera-
tion index, a generalized solution of the corresponding operator-differential equation exists and is unique.
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Introduction

In the presented paper we consider the following boundary value problem (BVP) for degenerate differential-operator 
equation of third order

with boundary conditions u(0) = u�(0) = u�(b) = 0 , where t ∈ (0, b) , � ≥ 0 , � ≠ 1 , 𝛼 <
5

2
.

Linear operators A,P ∶ H → H are in general unbounded operators in some separable Hilbert space H and commute with 
Dt ≡ d

dt
 , f ∈ L2((0, b),H) , i.e.,

Let us give a short historical overview. First note the important article and the book by A.A. Dezin (see [2, 3]), where 
the second order degenerated differential-operator equations are considered. Then author published an article for the 
degenerate differential-operator equation of fourth order (see [11]). It is worth to note also the articles of the author (see 
[12, 13]) and the article of B.-W. Schulze with L. Tepoyan ([9]). Note also the book by J. Weidmann (see [15]) and the 
articles of N. Yataev ([16–18]).
We prove that under some conditions on the operators A, P and � the BVP (1.1) has unique generalized solution 
u ∈ L2((0, b),H) for arbitrary f ∈ L2((0, b),H).

(1.1)Su ≡ −(t�u��)� − Au� + Pu = f ,

∫
b

0

‖f‖2
L2((0,b),H)

dt < ∞.
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We suppose that the linear operators A,P ∶ H → H have common complete system of eigenfunctions {�k}
∞
k=1

 , which 
form Riesz basis in H, i.e., A�k = ak�k , P�k = pk�k , k ∈ ℕ and for every x ∈ H we have the following representation

Moreover, there are some positive constants c1 > 0, c2 > 0 such that for any x ∈ H we have

First we investigate one-dimensional case of the operator equation (1.1), when Au = au , Pu = pu , a, p ∈ ℂ . Then we 
consider general operator equation and prove the existence and uniqueness of the generalized solution.
Note also that for even order degenerated differential equations we usually define generalized solutions in weighted 
Sobolev spaces, which is very useful. For differential equations of odd order there is no such possibility and therefore 
we have to find some way to prove the existence and uniqueness of the generalized solution.

One‑dimensional case

In this section we consider one-dimensional case of BVP (1.1), i.e. when Su = au

where f ∈ L2(0, b).
Our goal is to find such values of � , a and p, for which BVP (2.1) has unique generalized solution for any f ∈ L2(0, b) 
as well to describe domain of definition for operator S.
We will first give description of the domain of definition for differential expression

since the term pu evidently belongs to D(S) = D(S1) . Denote u� = v . Then we obtain new BVP, namely

BVP (2.3) were considered in the article of A.A. Dezin (see [2]) forthe degenerate second order ordinary differential 
equation. It was proved that for a ≤ 0 the BVP (2.3) is uniquely solvable for every f ∈ L2(0, b).
Let us first consider the case a = 0 . Then we obtain

Now, using the inequality of Cauchy we obtain the following inequality for some constant c > 0

where the constant c depends from the function f. In the same way we can estimate u(t) in the case a ≠ 0 and again we 
obtain the same inequality (2.4). Therefore, we will suppose that 5

2
− 𝛼 > 0 , i.e. 0 ≤ 𝛼 <

5

2
, 𝛼 ≠ 1.

Let us consider as an example the following boundary value problem: a self-adjoint equation of the second type of 
the fourth order.
Here we consider special case of the fourth order one-dimensional equation

x =

∞∑

1

xk�k.

(1.2)c1

∞�

k=1

�xk�2 ≤ ‖x‖2
H
≤ c2

∞�

k=1

�xk�2.

(2.1)Su ≡ −(t�u��)� − au� + pu = f , u(0) = u�(0) = u�(b) = 0,

(2.2)S1u ≡ −(t�u��)� − au� = f ,

(2.3)−(t�v�)� − av = f , v(0) = v(b) = 0.

u�(t) = v(t) = −∫
t

0

�−�
(
∫

�

0

f (�)d�
)
d� + c1t

1−� + c2.

(2.4)|u(t| ≤ ct
5

2
−�
,

(2.5)Su ≡ D2

t
(t�D2

t
)u − qD2

t
u = f , 0 ≤ � ≤ 4, q = �����, � ≠ 1, � ≠ 3.
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Definition 3. We say that u ∈ Ẇ𝛼
2
(0, b) is a generalized solution of the equation (2.5), when

for every v ∈ W  and h > 0 , were vh = v�h.
Theorem 4.  If f ∈ L2(0, b) , then the equation (2.5) has a unique generalized solution for q > 0 and 0 ≤ 𝛼 < 3.
Proof. Existence. Let 0 ≤ 𝛼 < 3 . Solving the homogeneous equation and applying the method of variation of constants, 
we obtain the following explicit representation of the solution for the equation (2.6)

where

and I�(x) and K�(x) are Bessel functions of purely imaginary argument of order � = (� − 1)(� − 2)−1 , � is determined by 
the condition

Here w(t) is the Wronskian of the functions w1 and w2 , k2 is a constant determined by the condition u|t=b = 0 . It follows 
from the asymptotic expansions of I�(x) and K�(x) , that u(t), given by (2.7), is in W2

�
(0, b) . Thus we have the equality

obtained by integration by parts. For the details see [11].
Let us now prove the uniqueness of the generalized solution. We have to prove that the relation

which holds for some u ∈ Ẇ2
𝛼
 and all v ∈ Ẇ2

𝛼
 , implies that u = 0.

It follows from (11) that u(t) is a weak solution of the homogeneous equation corresponding to (8), and is therefore a 
classical solution on each subinterval of Vt [9]. First, let l1 and d1 be sufficiently close to 0 and b, and vary l and d so that 
0 < l ≤ l1 < d1 ≤ d < b . Let v1(t) = t(1−�)∕2I�(x) , and let v2(t) = t(1−�)∕2K�(x) . On [l1, d1] we have

where ci, i = 1, 2, 3, 4 are constants.
On [l, d] the same function has a similar representation with coefficients cl,d

i
, i = 1, 2, 3, 4 . Replacing l1 and d1 by l and 

d, and using the coincidence of the two representations for t ∈ [l1, d1] , we obtain

(2.6){u, vh}� + q(Dtu,Dtvh) = (f , vh),

(2.7)u(t) = k−1
1

{

∫
t

0

[
w2(�) ∫

�

0

w1(�)F(�) d� + w1(�) ∫
b

�

w2(�)F(�) d�

]
d�

}
,

F(t) = ∫
t

0

f (�) d� + k2, w1(t) = t(1−�)∕2K�(x),

w2(t) = t(1−�)∕2(I�(x) + �K�(x)), x = 2(� − 2)−1q1∕2t(2−�)∕2,

I�|t=b + �K�|t=b = 0, k1 = b�w(b).

{u, vh}� = (D2

t
t�D2

t
u, vh),

{u, vh}� + q(Dtu,Dtvh) = 0,

u(t) = c1 ∫
t

l1

v1(�) d� + c2 ∫
t

l1

v2(�) d� + c3 ∫
t

l1

v1(�)∫
t

l1

v2(�) d� d�+

+ c3 ∫
t

l1

v2(�)∫
d1

�

v1(�) d� d� + c4,

c
l,d

3
= c3, c

l,d

1
= c1 − c3 ∫

l1

l

v2(�) d�, c
l,d

2
= c2 − c3 ∫

d

d1

v1(�) d�,

c
l,d

4
= c4 − c3 ∫

l1

l

v1(�) ∫
�

l

v2(�) d� d� − c3 ∫
l1

l

v2(�) ∫
d

�

v1(�) d� d�−
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Letting l and d tend to 0 and b, and using the fact that u ∈ Ẇ2
𝛼
 and 0 ≤ 𝛼 < 3 , we find that

uniformly with respect to l and d, and u|t=0 = u|t=b = Dtu|t=b = 0 . These conditions can be satisfied only if the following 
relations hold:

Hence u(t) = 0 on each interval [l, d], since the determinant of the system (12) does not vanish, and so ci = 0, i = 1, 2, 3, 4.

Differential‑operator equations

In this section we consider the boundary value problem for differential-operator equation

with boundary conditions u(0) = u�(0) = u(b) = 0 , where t ∈ (0, b), � ≥ 0 , A,P ∶ H → H are linear operators in some 
separable Hilbert space H and f ∈ L2((0, b),H) . We suppose that the operators A and P have common complete system 
of eigenfunctions {�k}

∞
k=1

 , which form Riesz basis in H (see [11, 12]). Therefore, we can write

Then instead of operator equation (3.1) with boundary conditions

we obtain infinite chain of ordinary differential equations

−

[
c1 − c3 ∫

l1

l

v2(�) d�

]

∫
l1

l

v1(�) d� −

[
c2 − c3 ∫

d

d1

v1(�) d�

]

∫
l1

l

v2(�) d�.

�
d

l

t�|D2

t
u|2 dt ≤ C

c1 − c3 ∫
l1

0

v2(�) d� = 0,

c2v2(b) + c3v1(b)∫
b

0

v2(�) d� − c3v2(b)∫
b

d1

v1(�) d� = 0,

c4 − c3 ∫
l1

0

v1(�)∫
�

0

v2(�) d� d� − c3 ∫
l1

0

v2(�)∫
d1

�

v1(�) d� d� − c2 ∫
l1

0

v2(�) d� = 0, (12)

c4 + c3 ∫
l1

0

v2(�) d� ∫
b

l1

v1(�) d� +

[
c2 − c3 ∫

b

d1

v1(�) d�

]

∫
b

l1

v2(�) d�+

+c3 ∫
b

l1

v1(�)∫
�

l1

v2(�) d� d� + c3 ∫
b

l1

v2(�)∫
b

�

v1(�) d� d� = 0.

(3.1)Su ≡ −(t�u��(t))� − Au� + Pu = f (t),

(3.2)u(t) =

∞∑

k=1

uk(t)�k,

(3.3)f (t) =

∞∑

k=1

fk(t)�k.

u(0) = u�(0) = u�(b) = 0
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with boundary conditions

It follows from the considerations above that for the generalized solution u ∈ L2((0, b),H) we obtain the following 
inequality

Let us give an interesting example (see [2]).
Example 1. Let Vx ≡ [0, 2𝜋]3 ⊂ ℝ

3 and the operator A be the closure in the space L2(Vx) of the differential operation

originally defined on the smooth functions with the periodicity conditions with respect to each variable xk with the period 
2� , � and � be some irrational numbers. Then the point spectrum of the operator A ∶ L2(Vx) → L2(Vx) will consist of the 
points in the complex plane ℂ having the coordinates

The set of values of the polynomial A(k), k ∈ ℤ is dense in the complex plane ℂ . This follows from the uniform distribution 
in the unit square of the fractional parts of the pair (�k2, �k22), k2 ∈ ℤ . Hence we get that the spectrum of the operator A 
(closure of the set A(k), k ∈ ℤ

3 ) coincides with the whole complex plane. Note that in this example the role of the func-
tions {�k}

∞
k=1

 played the functions e−i(k1x1+k2x2+k3x3 = e−ik⋅x, k ∈ ℤ
3 , which form an orthogonal basis in L2(Vx) . We prove 

that the spectrum �(P) of the operator P in the case of the operator A ∶ L2(Vx) → L2(Vx) is the whole complex plane ℂ , i.e. 
�(P) = � . In fact, let �m,m ∈ ℕ be the eigenvalues of the operator P. Then the numbers �m + A(k),m ∈ ℕ, k ∈ ℤ

3 are the 
eigenvalues for the operator P. Obviously, this set is dense in ℂ because of the density of A(k), k ∈ ℤ

3 in ℂ , i.e. �(P) = ℂ , 
since the spectrum is closed.
Now, we define the so-called 

∏
-operators, which are very useful.

Let V be cube (0, 2�)n in Rn . To each polynomial A with constant complex coefficients we associate differential operation 
A(−iD) such that (here |�| = �1 + ... + �n)

We call the corresponding operator A ∶ H → H 
∏

-operator.
Let us formulate some properties of 

∏
-operators without proofs (the proofs can be found, for example, from the monograph 

of A.A. Dezin “General Questions of the Theory of Boundary Value Problems”).
Proposition 1. Each two 

∏
-operators A1 and A2 commute.

Proposition 2. Each 
∏

-operator A is normal.
Let us formulate other propositions concerning 

∏
-operators.

Proposition 3. For n ≤ 2 the resolvent set �(A) for 
∏

-operator A is nonempty.
For the case n > 2 there exist operators A, for which the spectrum coincides with ℂ.
Proposition 4. Operator A−1 ∶ H → H , inverse for some 

∏
-operator A, is compact only then, when

Example 2. (see A.A. Dezin, [2])
Let V be cube (0, 2�)3 in ℝ3,

(3.4)Skuk ≡ −(t�u��
k
(t))� − aku

�
k
+ pkuk = fk(t), k ∈ ℕ

uk(0) = u�
k
(0) = u�

k
(b) = 0, k ∈ ℕ.

‖u‖L2((0,b),H) ≤ c‖f‖L2((0,b),H).

A(−iD) ≡ −iD1 − i�D2 + D3 − i�D2

2
,

A(k) = k1 + �k2 + i(k3 + �k2
2
), k = (k1, k2, k3).

s� = s
�1
1
⋯ s�n

n
,

A(−iD)eis⋅x = A(s)eis⋅x.

|A(s)| → ∞
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under conditions of periodicity with respect to all xi with period 2� . Then the spectrum of the operators consists from the 
points (−1)k+1(s2

1
+ s2

2
+ 1) and −s2

1
− s4

3
 , where sl ∈ ℤ.

Thus we immediately obtain the following result.
Proposition 5. Generalized solution of the differential-operator equation

in domain [0, b] × V  under conditions of the periodicity with respect x and conditions u|t=0 = 0, u|t=b = 0 with respect t 
exists and is unique.
Now, we define the so-called model operators (see [4]).
Definition 1. The operator A ∶ ℍ → ℍ is called M operator, when �k, k ∈ ℕ is the system of eigenfunctions of the operator 
A, which form Riesz basis in ℍ.
Thus we can write

Proposition 6. The spectrum �(F) of the operator F consists from the closure in the complex plane F(S), which forms 
point spectrum P�(F) of operator P. The set

forms continuous spectrum of the operator F.
Now, we define tensor product of separable Hilbert spaces ℍ′ and ℍ′′ , where {�k}

∞
k=1

 and {�k}
∞
k=1

 are given orthogonal 
bases. Let us form Hilbert space ℍ in the following way. We take the pairs 𝜙k ⊗𝜓j, k, j ∈ ℕ as ℍ . Let us define scalar 
product in the following way

Thus we form new Hilbert space, which is called tensor product of Hilbert spaces ℍ′ and ℍ′′ , which we will denote by
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Ak(D) ≡ (−1)k(D2

1
+ D2

2
− 1), k = 1, 2,

P(D) = D2

1
− D4

3
,Dl ≡ �

�xl
,

(
− D�

t
Dt + (−1)k(D2

1
+ D2

2
− 1)Dt − D2

1
+ D4

3
)u = f

u =

∞∑

k=1

uk�k,

F(A)u =

∞∑

s=1

F(As)use
is⋅x.

C�(F) = �(F) ⧵ P�(F)

(𝜙k ⊗𝜓j,𝜙l ⊗𝜓i) = (𝜙k,𝜙l)(𝜓j,𝜓i).

ℍ = ℍ
�
⨂

ℍ
��.
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