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Abstract

In this paper we introduce the conditions under which the local limit theorem for
random fields with weakly dependent components follows from the central one. Obtained
result can be applied to Gibbs and martingale–difference random fields.
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Introduction

The validity of the central limit theorem (CLT) for random fields with weakly dependent
components was considered in many works (see, for example, [6, 10], where were discussed
different methods of proving the CLT, and references therein). There are a lot of results
on this subject under different types of dependency conditions for random variables - so called
mixing conditions. However the question of validity of the local limit theorem (LLT) for weakly
dependent random fields practically was not under consideration. The possible explanation is
that classical mixing conditions are probably not enough to obtain the LLT.

In the same time this problem is very important from the point of view of statistical physics,
particularly concerning the problem of equivalence of ensembles. The importance of the LLT
first was discussed in [8], where the LLT was proved for number of particles in the case of
the ideal gas. The notion of Gibbs random field predetermined further development of the
theory of limits theorems for random fields. The LLT for Gibbs random fields was a subject of
consideration in many works (see [1–5,9]).

For us the work [5] of Dobrushin and Tirozzi is of special interest. In this work it was
shown that the LLT for Gibbs random fields with finite-range potentials follows from the CLT.
Dobrushin and Tirozzi’s approach to prove LLT essentially uses the finite-range condition of
interaction potential. In our paper we introduce the notion of conditionally independent random
field (not necessary Gibbsian). For such random fields we present general conditions under
which the LLT follows from the CLT. The result can be applied to Gibbs and martingale-
difference random fields.

Let us also note the work [7] where the similar result was obtained in one-dimensional case
for random processes with finite-range dependence.
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1 Preliminaries

In this paper we consider random fields on d-dimensional integer lattice Zd, d ≥ 1 with finite
phase space X ⊂ Z, 1 ≤ |X| < ∞,1 i.e. collections of random variables (ξs) = (ξs, s ∈ Zd),
each of which takes value in X.

For any S ⊂ Zd, xs ∈ X we denote by XS = {(xs, s ∈ S)} the space of all configurations
on S. If S = Ø, we assume that the space XØ = {Ø}. For any S, T ⊂ Zd such that S ∩ T = Ø
and any configurations x ∈ XS and y ∈ XT , we denote by xy the concatenation of x and y,
that is, the configuration on T ∪ S equal to x on S and to y on T . For any S ⊂ T , x ∈ XT , we
denote by xS the restriction of x on S. Also we denote by W =

{
V ⊂ Zd, |V | <∞

}
the set of

all finite subsets of Zd.
Let =Zd be the σ-algebra, generated by cylinder subsets of the set XZd . The distribution of

a random field (ξs) is the probability measure P on (XZd ,=Zd), such, that

Pr{(ξs, s ∈ Zd) ∈ B} = P (B), B ∈ =Zd .

For the random filed (ξs) and any V ∈ W denote by =V a σ-algebra, generated by ξs, s ∈ V .
A random field (ξs) is called a homogeneous random field if for any V ∈ W and a ∈ Zd

P (ξs = xs, s ∈ V ) = P (ξs+a = xs, s ∈ V ), xs ∈ X, s ∈ V,

and called ergodic if for any I, V ∈ W and x ∈ XI , y ∈ XV the following relation holds

lim
n→∞

1

|Vn|
∑
a∈Vn

P ({ξs = xs, s ∈ I} ∩ {ξr+a = yr, r ∈ V }) = P (ξs = xs, s ∈ I)P (ξr = yr, r ∈ V ),

where Vn = [−n, n]d, n = 1, 2, ....
For a given random field (ξs) denote SV =

∑
s∈V

ξs, V ∈ W . We say that for the random field

(ξs) the CLT is valid if

lim
n→∞

P

(
SVn − ESVn√

DSVn
< x

)
=

1√
2π

x∫
−∞

e−u
2/2du, x ∈ R,

and the LLT is valid if

lim
n→∞

sup
j∈Z

∣∣∣∣√DSVnP (SVn = j)− 1√
2π

exp

{
−(SVn − ESVn)2

2DSVn

}∣∣∣∣ = 0.

2 Main result and some of its applications

Let us introduce the following condition of weak dependence of components of a random field.
We say that a homogenous random field (ξs) is conditionally independent with coefficient

βI if for any I, V,Λ ∈ W such that I ∩ V = Ø and I, V ⊂ Λ, and any random variables η1, η2

which are =I- and =V -measurable correspondingly the following relation holds

|E(η1 · η2/=Λ\{I∪V })− E(η1/=Λ\{I∪V }) · E(η2/=Λ\{I∪V })| ≤ βI(ρ(I, V )),

where ρ(I, V ) is the distance between I and V , and βI(ρ)→ 0 as ρ→∞ (and, hence, Λ ↑ Zd)
and I is fixed.

1Here and below the symbol |X| is used to denote the power of the finite set X.
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Introduced condition of weak dependence of components of random fields seems stronger
than classical mixing conditions. Also it seems more suitable to use conditions of this type
instead of classical ones for random fields which are described by means of their conditional
distributions such as Markov, Gibbs and martingale–difference random fields.

In the next theorem conditions under which for conditionally independent random field the
LLT follows from the CLT are presented.

Theorem 1. Let (ξs) be a homogenous random field with phase space X ⊂ Z. If

1. DSV = σ2|V |(1 + o(1)), as V ↑ Zd, σ > 0;

2. (ξs) is conditionally independent with coefficient βI such that

βI(ρ) ≤ |I|β(ρ) and β(ρ) =
µ(ρ)

ρ3d/2
,

where µ(ρ)→ 0 arbitrarily slow as ρ→∞;

3. there exists γ > 0 such that for any I ⊂ V ∈ W

P (SI = y/=V \I) ≥ γ for any possible value y of SI ;

then for the random field (ξs) the LLT follows from the CLT.

Let us make some remarks on possible applications of this theorem. First, let us note, that
Gibbs random fields with finite-range R potentials are conditionally independent, since for such
random fields βI(ρ) = 0 as soon as ρ > R. Hence the Theorem 1 generalizes Dobrushin and
Tirozzi’s result.

Now let us consider martingale–difference random fields. A random field (ξs) is called a
martingale–difference (see [12]) if for any s ∈ Zd

E |ξs| <∞ and E(ξs/ξr, r ∈ Zd\{s}) = 0 a.s..

For homogenous ergodic martingale–difference random fields the CLT is valid (see [11]). It is
easy to see that if a random field is conditionally independent than it is ergodic. Hence we can
formulate the following result.

Theorem 2. Let (ξs) be a homogenous martingale–difference random field with phase space
X ⊂ Z, and let there exists γ > 0 such that for any I ⊂ V ∈ W

P (SI = y/=V \I) ≥ γ for any possible value y of SI .

If, in addition, (ξs) is a conditionally independent with coefficient βI such that

βI(ρ) ≤ |I|β(ρ) and β(ρ) =
µ(ρ)

ρ3d/2
,

where µ(ρ)→ 0 arbitrarily slow as ρ→∞, then for the martingale–difference random field (ξs)
the LLT is valid.
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3 Proof of the main theorem

In this section we give the proof of the Theorem 1.

Proof of the Theorem 1. For any n ∈ N set Vn = [−n, n]d, Sn =
∑
s∈Vn

ξs, and let fn(t) be a

characteristic function of Sn. Then

P (Sn = j) =
1

2π

π∫
−π

e−itjfn(t)dt.

Denote znj =
j − ESn√
DSn

. Then j = znj
√
DSn + ESn, and we can write

P (Sn = j) =
1

2π

π∫
−π

e−itznj
√
DSn−itESnfn(t)dt =

1

2π
√
DSn

π
√
DSn∫

−π
√
DSn

e−itznj−itESn/
√
DSnfn

(
t√
DSn

)
dt.

Also we have

1√
2π
e−z

2
nj/2 =

1

2π

+∞∫
−∞

e−t
2/2e−itznjdt for any znj ∈ R.

Hence we can write

2π sup
j∈Z

∣∣∣∣√DSnP (Sn = j)− 1√
2π

exp

{
−(j − ESn)2

2DSn

}∣∣∣∣ =

= sup
j∈Z

∣∣∣∣∣∣∣
π
√
DSn∫

−π
√
DSn

e−itznj−itESn/
√
DSnfn

(
t√
DSn

)
dt−

+∞∫
−∞

e−itznj−t
2/2dt

∣∣∣∣∣∣∣ ≤

≤
T∫

−T

∣∣e−itznj ∣∣ · ∣∣∣∣(e−itESn/√DSnE exp

{
itSn√
DSn

}
− e−t2/2

)∣∣∣∣ dt+

∫
|t|≥T

∣∣e−itznj ∣∣ · ∣∣∣e−t2/2∣∣∣ dt+
+

∫
T≤|t|≤π

√
DSn

∣∣e−itznj ∣∣ · ∣∣∣∣e−itESn/√DSnE exp

{
itSn√
DSn

}∣∣∣∣ dt ≤

≤
T∫

−T

∣∣∣∣E exp

{
it
Sn − ESn√

DSn

}
− e−t2/2

∣∣∣∣ dt+

∫
|t|≥T

e−t
2/2dt+

∫
T≤|t|≤π

√
DSn

∣∣∣∣E exp

{
it
Sn − ESn√

DSn

}∣∣∣∣ dt,
where T , 0 < T < π

√
DSn, can be chosen big enough for sufficiently large n.

Let ε > 0 be fixed. If the CLT for (ξs) is valid, then for sufficiently large T we have

T∫
−T

∣∣∣∣(E exp

{
it
Sn − ESn√

DSn

}
− e−t2/2

)∣∣∣∣ dt ≤ ε.
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Choosing T big enough we obtain also ∫
|t|≥T

e−t
2/2dt ≤ ε.

It remains to show that ∫
T≤|t|≤π

√
DSn

∣∣∣∣E exp

{
it
Sn − ESn√

DSn

}∣∣∣∣ dt ≤ ε. (1)

Let us make the sectionalization of Vn. Set p = p(n) = o(n), q = q(n) = o(p) = n · λ(n),
where λ(n) = µ2/(3d)−τ (n), τ > 0. Set also

In(j) = [−n+ jp+ jq;−n+ (j + 1)p+ jq], j = 1, 2, ...,

[
2n+ 1

p+ q

]
2,

In =

[ 2n+1
p+q ]⋃
j=0

In(j),

and let Idn be a Cartesian product of d copies of In. Then Idn is a union of kn =

[
2n+ 1

p+ q

]d
d-dimensional cubes ∆

(n)
j with side-length p, which are numerated in some way: Idn =

kn⋃
j=1

∆
(n)
j .

Denote by =n = =Vn\Idn = σ(ξs, s ∈ Vn\Idn). We have

E exp

{
it
Sn − ESn√

DSn

}
= E

(
E

(
exp

{
it
SIdn − ESIdn√

DSn

}
· exp

{
it
SVn\Idn − ESVn\Idn√

DSn

}
/=n

))
=

= E

(
exp

{
it
SVn\Idn − ESVn\Idn√

DSn

}
E

(
exp

{
it
SIdn − ESIdn√

DSn

}
/=n

))
.

Hence∣∣∣∣E exp

{
it
Sn − ESn√

DSn

}∣∣∣∣ ≤ E

∣∣∣∣E (exp

{
it
SIdn − ESIdn√

DSn

}
/=n

)∣∣∣∣ = E

∣∣∣∣∣E
(

kn∏
j=1

exp

{
it
Sj − ESj√

DSn

}
/=n

)∣∣∣∣∣ ,
where Sj =

∑
s∈∆

(n)
j

ξs. Denote ηj =
Sj − ESj√

DSn
, and consider

E

(
kn∏
j=1

eitηj/=n

)
= E

(
kn∏
j=1

eitηj/=n

)
−

kn∏
j=1

E
(
eitηj/=n

)
+

kn∏
j=1

E
(
eitηj/=n

)
.

Using the following relation (see, for example, Lemma 3.3.1 in [10])

E

(
kn∏
j=1

eitηj/=n

)
−

kn∏
j=1

E (eitηj/=n) =

=
kn∑
r=2

(
kn∏

m=r+1

E (eitηm/=n)

)
·

(
E

(
r∏
j=1

eitηj/=n

)
− E (eitηr/=n)

r−1∏
j=1

E (eitηj/=n)

)
,

2Here and below by [z] we denote the integer part of z.
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we obtain∣∣∣∣∣E
(

kn∏
j=1

eitηj/=n

)∣∣∣∣∣ ≤
∣∣∣∣∣ kn∏j=1

E (eitηj/=n)

∣∣∣∣∣+
+

kn∑
r=2

(
kn∏

m=r+1

E (|eitηm| /=n)

)
·

∣∣∣∣∣E
(

r∏
j=1

eitηj/=n

)
− E (eitηr/=n)

r−1∏
j=1

E (eitηj/=n)

∣∣∣∣∣ ≤
≤

kn∏
j=1

|E (eitηj/=n)|+
kn∑
r=2

β
∆

(n)
r

(
ρ
(

∆
(n)
r , Idn\∆

(n)
r

))
≤

kn∏
j=1

|E (eitηj/=n)|+ knp
dβ(q).

For any j = 1, kn we can write

|E (eitηj/=n)| =
∣∣∣∣E (exp

{
it
Sj − E(Sj/=n)√

DSn

}
· exp

{
it
E(Sj/=n)− ESj√

DSn

}
/=n

)∣∣∣∣ ≤
≤
∣∣∣∣exp

{
it
E(Sj/=n)− ESj√

DSn

}∣∣∣∣ · ∣∣∣∣E (exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)∣∣∣∣ ≤
≤
∣∣∣∣E (exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)∣∣∣∣ .
Further,

E

(
exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)
= 1− t2

2DSn
D(Sj/=n) +

O(t2)

DSn
.

Let Y be the set of all possible values of Sj. Using the third condition of the theorem, we can
write

D(Sj/=n) =
∑
y∈Y

(y − E(Sj/=n))2P (Sj = y/=n) ≥ γ
∑
y∈Y

(y − E(Sj/=n))2 ≥ γα,

where α > 0. Hence

E

(
exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)
≤ 1− γα

2DSn
t2 +

O(t2)

DSn
.

On the other hand

e−
γαt2

2DSn = 1− γα

2DSn
t2 +

∞∑
k=2

1

k!

(
−γαt2

2DSn

)k
.

From here it follows that there exists δ > 0 (which is independent of j) such that for any
|t| ≤ δπ

√
DSn

E

(
exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)
≤ exp

{
− γαt2

2DSn

}
.

Then

kn∏
j=1

|E (eitηj/=n)| ≤
kn∏
j=1

exp

{
− γαt2

2DSn

}
= exp

{
−γα

2
· kn
DSn

· t2
}
≤ e−cnt

2
,

where, due to the first condition of the theorem,

cn =
γα

2
·
[

2n+ 1

p+ q

]d
· 1

σ2(1 + o(1))nd
=

C

(p+ q)d
,
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and C is a positive constant.
Hence for the integral in left-hand side of (1) we can write∫
T≤|t|≤π

√
DSn

∣∣∣∣E exp

{
it
Sn − ESn√

DSn

}∣∣∣∣ dt ≤ ∫
T≤|t|≤δπ

√
DSn

e−cnt
2

dt+

∫
T≤|t|≤π

√
DSn

knp
dβ(q)dt+

+

∫
δπ
√
DSn≤|t|≤π

√
DSn

kn∏
j=1

∣∣∣∣E (exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)∣∣∣∣ dt.
Let us show that for sufficiently big T and n and sufficiently small δ each summand on the
right-hand part of the obtained inequality can be made smaller then ε/3. By doing this, we
conclude the proof. It is obvious for the second summand. For the first one, taking into account
the second condition of the theorem, we can write∫

T≤|t|≤π
√
DSn

knp
dβ(q)dt = 2knp

dβ(q)(π
√
DSn − T ) =

[
2n+1
p+q

]d
· pd · µ(q)

q3d/2
· C ′nd/2 ≤

≤ C ′ µ(n)·n3d/2

λ3d/2(n)·n3d/2 = C ′λ3dτ/2(n),

where C ′ is a positive constant. Since λ3dτ/2(n)→ 0 as n→∞, for sufficiently large n∫
T≤|t|≤π

√
DSn

knp
dβ(q)dt ≤ ε

3
.

Consider the third summand. We have∫
δπ
√
DSn≤|t|≤π

√
DSn

kn∏
j=1

∣∣∣∣E (exp

{
it
Sj − E(Sj/=n)√

DSn

}
/=n

)∣∣∣∣ dt ≤√DSn

∫
δπ≤|t|≤π

kn∏
j=1

∣∣E (eitSj/=n)∣∣ dt.
Denote aj =

∣∣E (eitSj/=n)∣∣. We can write

kn∏
j=1

aj = exp

{
ln

kn∏
j=1

aj

}
= exp

{
1

2

kn∑
j=1

ln a2
j

}
≤ exp

{
1

2

kn∑
j=1

(a2
j − 1)

}
.

Further for any j we have

a2
j − 1 =

∣∣E (eitSj/=n)∣∣2 − 1 =
∑

x,y∈Y
(cos t(x− y)− 1)P (Sj = x/=n)P (Sj = y/=n) =

= −2
∑

x,y∈Y
sin2 t(x− y)

2
P (Sj = x/=n)P (Sj = y/=n) ≤ −2γ2

∑
x,y∈Y

sin2 t(x− y)

2
,

where we used the third condition of the theorem. Hence

kn∏
j=1

∣∣E (eitSj/=n)∣∣ ≤ exp

{
−knγ2

∑
x,y∈X

sin2 t(x− y)

2

}
= exp {−kn · g(t)} ,
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where

g(t) = −γ2
∑
x,y∈X

sin2 t(x− y)

2

is continuous positive function. Using the mean value theorem for integral, we obtain

√
DSn

∫
δπ≤|t|≤π

kn∏
j=1

∣∣E (eitSj/=n)∣∣ dt ≤√DSn

∫
δπ≤|t|≤π

e−kng(t)dt ≤ (π − δπ)
√
DSn

ekng(t0)
≤ ε

3

for any fixed δ, some t0 ∈ [δπ; π] and n big enough.
The theorem is proved.

In conclusion let us note that for homogenous martingale–difference random fields the proof
of the theorem can be simplified in some way. Indeed, for such fields one have

ESn = 0 and DSn = ES2
n = Eξ2

0 · |Vn| > 0.

To estimate the integral in (1) we can write

E exp

{
it
Sn − ESn√

DSn

}
= EeitSn/

√
DSn = 1 +

it√
DSn

ESn−
t2

2DSn
ES2

n +
O(t2)

DSn
= 1− t2

2
+
O(t2)

DSn
.

Hence there exists δ > 0 such that for any |t| ≤ δπ
√
DSn

|EeitSn/
√
DSn| ≤ e−t

2/2.

Therefore ∫
T≤|t|≤δπ

√
DSn

∣∣∣∣E exp

{
it

Sn√
DSn

}∣∣∣∣ dt ≤
∞∫
T

e−t
2/2dt ≤ ε

2
,

for T and n sufficiently large. It remains to show that∫
δπ
√
DSn≤|t|≤π

√
DSn

∣∣∣∣E exp

{
it

Sn√
DSn

}∣∣∣∣ dt ≤ ε

2
,

which can be done in the same way it was done above.

References

[1] Arzumanyan V.A., Nakhapetyan B.S., Pogosyan S.K., Local limit theorem for the particle
number in spin lattice systems. Theoretical and Mathematical Physics 89, 1991, 1138-1146

[2] Campanino M., Capocaccia D., Tirozzi B., The local central limit theorem for a Gibbs
random field. Commun. Math. Phys. 70, 1979, 125–132

[3] Campanino M., Del Grosso G., Tirozzi B., Local limit theorem for a Gibbs random field
of particles and unbounded spins. J. Math. Phys. 20, 1979, 1752–1758

[4] Del Grosso G., On the local central limit theorem for Gibbs processes. Commun. Math.
Phys. 37, 1974, 141–160

8



[5] Dobrushin R.L., Tirozzi B., The Central Limit Theorem and the Problem of Equivalence
of Ensembles. Commun. math. Phys. 54, 1977, 173–192

[6] Doukhan P., Mixing. Properties and examples. Lecture notes in statistics 85, 1994

[7] Kazanchyan T.P., The local limit theorem for the sequences of dependent random variables.
Izvestia NAN Armenii 39, 2004, 33–42

[8] Khinchin A.Ya., Mathematical foundations of statistical mechanics. New York, Dover Pub-
lications, 1949

[9] Minlos R.A., Khalfina A.M., Two-dimensional limit theorem for the particle number and
energy in the grand canonical ensemble. Izv. Akad. Nauk SSSR 34, 1970, 1173–1191

[10] Nahapetian B.S. Limit theorems and some applications in statistical physics. Teubner-
Texte zur Mathematik 123 (B.G. Teubner Verlagsgesellschaft, Stuttgart.Leipzig), 1991

[11] B. Nahapetian, Billingsley-Ibragimov Theorem for martingale-difference random fields and
its applications to some models of classical statistical physics. C. R. Acad. Sci. Paris, Vol.
320, 1995, 1539–1544

[12] Nahapetyan, B.S., Petrosyan, A.N., Martingale-difference Gibbs random fields and central
limit theorem. Ann. Acad. Sci. Fennicae, Ser. A. I. Math., Vol. 17, 1992, 105–110

9


