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Abstract. In 1927 Littlewood constructed a bounded holomorphic function

on the unit disc, having no tangential boundary limits almost everywhere. This

theorem was the complement of a positive theorem of Fatou (1906), establish-
ing almost everywhere non-tangential convergence of bounded holomorphic

functions. There are several generalizations of Littlewood’s theorem whose

proofs are based on the specific properties of holomorphic functions. Apply-
ing real variable methods, we extend these theorems to general convolution

operators.

1. Introduction

The following remarkable theorems of Fatou [8] play a significant role in the
study of boundary value problems of analytic and harmonic functions.

Let T = R/2π and D = {z ∈ C : |z| < 1}.

Theorem A. (Fatou, 1906) Any bounded analytic function on the unit disc D has
non-tangential limits at almost all boundary points.

Theorem B. (Fatou, 1906) If a function of bounded variation µ(t) is differentiable
at x0 ∈ T, then the Poisson integral

1

2π

∫
T
Pr(x− t)dµ(t)

converges non-tangentially to µ′(x0) as r → 1.

Littlewood [15] made an important complement to these results, proving essen-
tiality of non-tangential approach in Fatou’s theorems. The following statement of
Littlewood’s theorem is equivalent to the original one. It is fitted to the further
statement of the present paper.

Theorem C (Littlewood, 1927). If a continuous function λ(r) : [0, 1) → (0,∞)
satisfies the conditions

(1.1) lim
r→1

λ(r) = 0 and lim
r→1

λ(r)/(1− r) =∞,

then there exists a bounded analytic function f(z), z ∈ D, such that the boundary
limit

lim
r→1

f
(
rei(x+λ(r))

)
,

does not exist at almost every x ∈ T.
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There are various generalizations of these theorems in different aspects. A simple
proof of Theorem C was given by Zygmund [27]. In [16] Lohwater and Piranian
proved, that in Littlewood’s theorem almost everywhere divergence can be replaced
to everywhere and the example function can be a Blaschke product. That is

Theorem D (Lohwater and Piranian). If a continuous function λ(r) satisfies (1.1),
then there exists a Blaschke product B(z) such that the limit

lim
r→1

B
(
rei(x+λ(r))

)
,

does not exist for any x ∈ T.

In [1] Aikawa obtained a similar everywhere divergence theorem for bounded
harmonic functions on the unit disc, giving a positive answer to a problem raised
by Barth [[6], p. 551].

Theorem E (Aikawa). If λ(r) is continuous and satisfies the condition (1.1), then
there exists a bounded harmonic function u(z) on the unit disc, such that the limit

lim
r→1

u
(
rei(x+λ(r))

)
,

does not exist for any x ∈ T.

As it is noticed in [1] this theorem implies theorem A. Indeed, if u(z) is a har-
monic function obtained in Theorem E and v(z) is its harmonic conjugate, then the
holomorphic function exp(u+ iv) has the same divergence property as u(z) does.

Related questions were considered also in higher dimensions. Korani [14] ex-
tended Fatou’s theorem for the Poisson-Szegö integral. Littlewood type theorems
for the higher dimensional Poisson integral was established by Aikawa [1, 2] and for
the Poisson-Szegö integral by Hakim-Sibony [9], Hirata [10]. In [6] Nagel and Stein
proved that the Poisson integral on the upper half space of Rn+1 has the boundary
limit at almost every point within a certain approach region, which is not contained
in any non-tangential approach regions. Sueiro [8] extended Nagel-Stein’s result for
the Poisson-Szegö integral. Almost everywhere convergence over tangential tress
(family of curves) were investigated by Di Biase [4], Di Biase-Stokolos-Svensson-
Weiss [5].

Sjögren ([23], [24], [25]), Rönning ([19], [20], [21]), Katkovskaya-Krotov ([12]),
Krotov ([13]), Brundin [7], Mizuta-Shimomura [17], Aikawa [3] studied fractional
Poisson integrals with respect to the fractional power of the Poisson kernel. In [12]
and [3] higher dimensional cases of such integrals are studied.

The present paper is the continuation of the authors investigations in [11]. In
[11] we introduce λ(r)-convergence, where λ(r) is a function

(1.2) λ(r) : (0, 1)→ (0,∞) with lim
r→1

λ(r) = 0.

For a given x ∈ T we denote by λ(r, x) the interval [x− λ(r), x+ λ(r)]. If λ(r) ≥ π
we assume that λ(r, x) = T. Let Fr(x) be a family of functions from L1(T), where r
varies in (0, 1). We say Fr(x) is λ(r)-convergent at a point x ∈ T to a value a ∈ R,
if

(1.3) lim
r→1

sup
θ∈λ(r,x)

|Fr(θ)− a| = 0.
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We shall denote this relation by

lim
r→1: θ∈λ(r,x)

Fr(θ) = a.

We shall say Fr(x) is λ(r)-divergent at x ∈ T, if there is no a ∈ R satisfying (1.3).
This definition generalizes the non-tangential convergence. For example, in Fa-

tou’s Theorems A and B we have a.e. λ(r)-convergence, if λ(r) satisfies the condi-
tion (1.7).

We say the family of kernels ϕ = {ϕr(x) ≥ 0 : 0 < r < 1} ⊂ L∞(T), forms an
approximative identity (AI), if they satisfy the conditions

(a): ϕr(x) is even and decreasing on [0, π],
(b): ‖ϕr‖1 → 1 as r → 1,
(c): ϕr(x)→ 0 as r → 1, 0 < |x| < π.

We denote by BV (T) the family of functions of bounded variation on T. In [11] we
have investigated a. e. λ(r)-convergence properties of the integrals

Φr(x, dµ) =

∫
T
ϕr(x− t)dµ(t), µ ∈ BV (T),(1.4)

Φr(x, f) =

∫
T
ϕr(x− t)f(t)dt, f ∈ Lp(T), 1 ≤ p ≤ ∞.(1.5)

The quantity

(1.6) α = α(λ, ϕ) = lim sup
r→1

λ(r)‖ϕr‖∞

plays a significant role in the investigations of (1.4) and (1.5) with p = 1. It is
proved

Theorem F ([11]). Let {ϕr} be an AI.
1) If α(λ, ϕ) <∞ and µ(t) ∈ BV (T) is differentiable at x0, then

lim
r→1: t∈λ(r,x0)

Φr (t, dµ) = µ′(x0).

2) If α(λ, ϕ) =∞, then there exists a positive function f ∈ L1(T) such that

lim sup
r→1: t∈λ(r,x)

Φr (t, f) =∞

for all x ∈ T.

Theorem F implies that an admissible approach region for Φr is determined in
terms of the finiteness of the quantity (1.6). It is interesting, that this rate depends
only on the values ‖ϕr‖∞. If ϕr is the Poisson kernel

Pr(t) =
1− r2

1− 2r cos t+ r2
,

then one can easily check that ‖ϕr‖∞ ∼ 1/(1 − r) and the condition α(λ, ϕ) < ∞
coincides with the well-known condition

(1.7) lim sup
r→1

λ(r)/(1− r) <∞,

guaranteeing non-tangential convergence in the unit disc. So the first part of The-
orem F generalizes Fatou’s theorem.
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In the same paper [11] the authors presented a necessary and sufficient condition
for a. e. λ(r)-convergence of the integrals (1.5) with p = ∞. This condition is
described by another quantity

β = β(λ, ϕ) = lim sup
δ→0

lim sup
r→1

∫ δλ(r)

−δλ(r)
ϕr(t)dt,

which contains more information about {ϕr} than α(λ, ϕ) does. That is

Theorem G ([11]). Let {ϕr(x)} be an arbitrary AI.
1) If β(λ, ϕ) = 0, then for any f ∈ L∞(T) we have

lim
r→1: θ∈λ(r,x)

Φr (θ, f) = f(x)

at any Lebesgue point x ∈ T.
2) If β(λ, ϕ) > 0, then there exists a set E ⊂ T, such that Φr (x, IE) is λ(r)-

divergent at any x ∈ T.

Observe that α(λ, ϕ) < ∞ implies β(λ, ϕ) = 0, which may be deduced directly
or by using the results of Theorems F and G. One can easily check, that in the case
of Poisson kernels for a given function (1.2) the value of β(λ, ϕ) is either 1 or 0.
Besides the condition β(λ, ϕ) = 0 is equivalent to (1.7) and β(λ, ϕ) = 1 coincides
with

(1.8) lim sup
r→1

λ(r)/(1− r) =∞.

We note, that the second part of Theorem G does not imply Theorems C and
E, because they provide the everywhere divergence of Φr (x+ λ(r), IE) , as r → 1,
along tangential curves, not within tangential regions.

The purpose of the present paper is to prove Littlewood type theorems for the
operators (1.5). We shall obtain such theorems for more general kernels, than the
approximative identity. Consider a family of kernels ϕ = {ϕr(x) ≥ 0 : 0 < r < 1},
satisfying the properties (b) and

(d): m(v) = sup0<r<v ‖ϕr‖∞ <∞ for any 0 < v < 1.

We introduce another quantity

β∗ = β∗(λ, ϕ) = lim sup
δ→0

lim inf
r→1

∫ δλ(r)

−δλ(r)
ϕr(t)dt ≤ β(λ, ϕ).

We prove the following theorems.

Theorem 1.1. Let {ϕr} be a family of nonnegative functions with properties (b)
and (d). If a function (1.2) is continuous and satisfies the condition β∗(λ, ϕ) > 1/2,
then there exists a measurable set E ⊂ T such that

lim sup
r→1

Φr (x+ λ(r), IE)− lim inf
r→1

Φr (x+ λ(r), IE) ≥ 2β∗ − 1

at every point x ∈ T.

In the case of the Poisson kernel under the condition (1.8) we have β∗(λ, ϕ) =
1 > 1/2. Therefore Theorem 1.1 implies the following generalization of Theorems
C and E, giving additional information about the divergence character.
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Corollary 1.2. If a continuous function (1.2) satisfies (1.1), then there exists a
harmonic function u(z) on the unit disc with 0 ≤ u(z) ≤ 1, such that

lim sup
r→1

u
(
rei(x+λ(r))

)
= 1, lim inf

r→1
u
(
rei(x+λ(r))

)
= 0

at any point x ∈ T.

The higher dimensional case of this corollary and Theorems C and E was con-
sidered by Hirata [10]. We construct also a Blaschke product with Littlewood type
divergence condition as in Theorem 1.1, which generalizes Theorem D. In this case
a stronger condition β∗(λ, ϕ) = 1 is required. So we prove.

Theorem 1.3. If a family of nonnegative functions {ϕr} satisfies (b), (d), the
function (1.2) is continuous and β∗(λ, ϕ) = 1, then there exists a function B ∈
L∞(T), which is the boundary function of a Blaschke product, such that the limit

lim
r→1

Φr (x+ λ(r), B)

does not exist for any x ∈ T.

In the definition of λ(r)-convergence the range of the parameter r is (0, 1) with
the ”limit point” 1, that is we consider the convergence or divergence properties
when r → 1. We take the limit point equal to 1 to compare our results with the
boundary properties of analytic and harmonic functions in the unit disc. Certainly
it is not essential in the theorems. In general there is no need to imagine the
meaning of λ(r)-convergence geometrically. Instead of (0, 1) we could take any
interval (finite or infinite) (a, b) with a limit point r0 ∈ [a, b]. In this settings λ(r)
satisfies

λ(r) : (a, b)→ (0,∞) with lim
r→r0

λ(r) = 0.

instead of (1.2) and the properties (b) and (d) of the family of kernels ϕr, used in
the formulations of new results, will take the forms

(b’): ‖ϕr‖1 → 1 as r → r0,
(d’): m(δ) = supr∈(a,b)\(r0−δ,r0+δ) ‖ϕr‖∞ <∞ for any δ > 0.

A theorem analogous to Theorem 1.1 may be considered also for the integrals

(1.9) Φr(x, f) =

∫
R
ϕr(t− x)f(t)dt, f ∈ L1(R), r > 0,

where the family of kernels ϕ = {ϕr(x) ≥ 0 : 0 < r <∞} ⊂ L∞(R)∩L1(R) satisfy
the conditions

(b”): ‖ϕr‖1 → 1 as r → 0,
(d”): m(δ) = supr>δ ‖ϕr‖∞ <∞ for any δ > 0.

For a function

(1.10) λ(r) : (0,∞)→ (0,∞) with lim
r→0

λ(r) = 0

we define

β∗ = β∗(λ, ϕ) = lim sup
δ→0

lim inf
r→0

∫ δλ(r)

−δλ(r)
ϕr(t)dt.
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Theorem 1.4. Let {ϕr(x) : 0 < r < ∞} be a family of nonnegative functions on
R with properties (b”) and (d”). If (1.10) is continuous and β∗(λ, ϕ) > 1/2, then
there exists a measurable set E ⊂ R such that

(1.11) lim sup
r→0

Φr (x+ λ(r), IE)− lim inf
r→0

Φr (x+ λ(r), IE) ≥ 2β∗ − 1, x ∈ R.

We note that for any positive function Φ(x) ∈ L∞(R) ∩ L1(R) with ‖Φ‖1 = 1
the kernels

(1.12) ϕr(x) =
1

r
Φ
(x
r

)
satisfy the conditions (b”) and (d”). The condition

(1.13) lim
r→0

λ(r)/r =∞

geometrically means tangential approach. One can easily check, that for the Poisson
kernel and for (1.12) the relation (1.13) is equivalent to the conditions

lim
r→0

λ(r)/r =∞⇔ β∗(λ, ϕ) = 1⇔ β∗(λ, ϕ) > 0.

Therefore, if the kernels in (1.9) coincide with (1.12) and λ(r) satisfies (1.13), then
Theorem 1.4 implies the everywhere ”strong” λ(r)-divergence of integrals (1.9),
which covers the one-dimensional case of a theorem obtained by Aikawa in [3].

P. Sjögren ([23], [24], [25]), J.-O. Rönning ([19], [20], [21]), I. N. Katkovskaya
and V. G. Krotov ([12]) considered the square root Poisson integrals

(1.14) P0
r (x, f) =

1

c(r)

∫
T
[Pr(x− t)]1/2f(t)dt,

where

c(r) =

∫
T
[Pr(t)]

1/2dt

is the normalizing coefficient. They proved that

(1.15) lim
r→1: θ∈λ(r,x)

P0
r (θ, f) = f(x) a.e.

whenever f ∈ Lp(T), 1 ≤ p ≤ ∞, and

λ(r) ≤

{
c(1− r)

(
log 1

1−r

)p
if 1 ≤ p <∞,

c(µ)(1− r)µ for any 0 < µ < 1 if p =∞,
(1.16)

where c(µ) > 0 is a constant, depended only on µ. The case of p = 1 was proved
in [23], 1 < p ≤ ∞ were considered in [19], [20]. The cases p = 1 and p = ∞ are
consequences of Theorem F with an additional information about the points where
the convergence occurs. Indeed, it is easy to observe that the kernels

ϕr(x) =
[Pr(x)]1/2

c(r)

of the operators (1.14) satisfy all conditions (a)-(d). Besides, as it is mentioned in
[19] (p. 223),

ϕr(x) ∼ ψr(x) =

{ 1

2(1−r) log( 1
1−r )

if |x| < 1− r,
1

2|x| log( 1
1−r )

if 1− r ≤ |x| ≤ π.(1.17)
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This implies

‖ϕr‖∞ ∼
1

2(1− r) log 1
1−r

,

and therefore, according to Theorem F, we conclude that the condition in (1.16),
corresponding to the case p = 1, is necessary and sufficient to have the relation
(1.15) for any function f ∈ L1(T). This reproves the result of [23] and establishes
the optimality of such estimate for λ(r).

Now suppose λ(r) satisfies the condition (1.16) with p =∞. A simple calculation
shows that for such λ(r) and for the kernels (1.17) we have β(λ, ϕ) = β∗(λ, ϕ) = 0.
Hence, according to the first part of Theorem G, we get the result of the paper
[19] for p = ∞. Taking λ(r) = (1 − r)µ with a fixed 0 < µ < 1 we shall get
β(λ, ϕ) = β∗(λ, ϕ) = 1 − µ > 0 and, applying the second part of Theorem G, we
conclude the optimality of the bound (1.16) in the case p =∞ too. If 0 < µ < 1/2,
then we have β∗ > 1/2. In this case, applying Theorem 1.4, we get Littlewood type
strong divergence of the integrals (1.14) for some indicator function f = IE .

2. Proof of Theorem 1.1

We shall consider the sets

(2.1) U(n, δ) =

n−1⋃
j=0

(
π(2j − δ)

n
,
π(2j + δ)

n

)
⊂ T

in the proofs of this as well as the next theorems. Observe that, using the definition
of β∗ > 1/2 and the property (d), we may choose positive numbers δk, uk, vk
(k ∈ N), satisfying

δk < 2−k−5, 1 > vk > uk → 1, 0 < 3λ(vk) ≤ λ(uk) < π,(2.2) ∫ δkλ(uk)

−δkλ(uk)
ϕr(t)dt > β∗(1− 2−k), uk < r < 1, k = 1, 2, . . . ,(2.3) ∑

j≥k+1

δj <
1

10π · 2km(vk)
,(2.4)

where m(v) is defined in (d). Denote

(2.5) Uk = U(nk, 5δk), nk =

[
5π

λ(uk)

]
, k ∈ N,

and define the sequence of measurable sets Ek ⊂ T by

E1 = U1,(2.6)

Ek =

{
Ek−1 \ Uk if k is even,
Ek−1 ∪ Uk if k is odd.

(2.7)

It is easy to observe that if k < m, then

Em ⊂ Ek
⋃ m⋃

j=k+1

Ui

 ,

Em \
m⋃

j=k+1

Uj = Ek \
m⋃

j=k+1

Uj .
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These relations imply

Ek 4 Em ⊂
m⋃

j=k+1

Uj

and therefore we get

(2.8) ‖IEk − IEm‖1 = |Ek 4 Em| ≤
∑
j≥k+1

|Uj | ≤ 10π
∑
j≥k+1

δj .

This and (2.4) impliy that IEn(t) converges to a function f(t) in L1-norm. Using
Egorov’s theorem, we conclude that f(t) = IE(t) for some measurable set E ⊂ T.
Tending m to infinity, from (2.8) we get

(2.9) |E 4 Ek| ≤ 10π
∑
j≥k+1

δj .

Take an arbitrary x ∈ T. There exists an integer 1 ≤ j0 ≤ nk such that

2πj0
nk
− x ∈

[
2π

nk
,

4π

nk

]
⊂
[
λ(uk)

3
, λ(uk)

]
⊂ [λ(vk), λ(uk)]

and therefore, since λ(r) is continuous, we may find a number r, uk ≤ r ≤ vk, such
that

(2.10) λ(r) =
2πj0
nk
− x.

If k ∈ N is odd, then according to the definition of Ek we get

Ek ⊃ Uk ⊃ I =

(
π(2j0 − 5δk)

nk
,
π(2j0 + 5δk)

nk

)
.

Thus, using (2.3), (2.10) as well as the definition of nk from (2.5), we conclude

(2.11)

Φr(x+ λ(r), IEk) ≥
∫
I

ϕr(x+ λ(r)− t)dt

=

∫
I

ϕr

(
2πj0
nk
− t
)
dt

=

∫ 5πδk/nk

−5πδk/nk
ϕr (t) dt

≥
∫ δkλ(uk)

−δkλ(uk)
ϕr(t)dt > β∗(1− 2−k).

From (2.4) and (2.9) it follows that

|Φr (t, IE)− Φr (t, IEk)| ≤ |E 4 Ek| ·m(vk)

< 10πm(vk)
∑
j≥k+1

δj < 2−k, t ∈ T, 0 < r < vk,

and hence from (2.11) we obtain

(2.12) lim sup
r→1

Φr (x+ λ(r), IE) ≥ β∗.
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If k ∈ N is even, then we have Ek ∩Uk = ∅ and therefore Ek ∩ I = ∅. Thus we get

Φr(x+ λ(r), IEk) ≤
∫
T
ϕr(x+ λ(r)− t)dt−

∫
I

ϕr(x+ λ(r)− t)dt

≤ ‖ϕr‖1 −
∫ δkλ(uk)

−δkλ(uk)
ϕr (t) dt ≤ ‖ϕr‖1 − β∗(1− 2−k)

and similarly we get

(2.13) lim inf
r→1

Φr (x+ λ(r), IE) ≤ 1− β∗.

Relations (2.12) and (2.13) complete the proof of theorem.

3. Proof of Theorem 1.3

The following finite Blaschke products

(3.1) b(n, δ, z) =
zn − ρn

ρnzn − 1
=

n−1∏
k=0

z − ρe 2πik
n

ρe
2πik
n z − 1

, ρ = e−
√
δ/n.

plays a significant role in the proof of Theorem 1.3. Similar products were used in
the proof of Theorem D too. If z = eix, then (3.1) defines a continuous function in
H∞(T). We shall use the set U(n, δ) defined in (2.1). The following lemma shows

that on U(n, δ) the function (3.1) is approximative −1, and outside of U(n, 4
√
δ) is

approximative 1.

Lemma 3.1. There exists an absolute constant C > 0 such that∣∣b (n, δ, eix)+ 1
∣∣ ≤ C√δ, x ∈ U(n, δ),(3.2) ∣∣b (n, δ, eix)− 1
∣∣ ≤ C 4

√
δ, x ∈ T \ U(n,

4
√
δ).(3.3)

for any 0 < δ < 1.

Proof. Deduction of these inequalities based on the inequalities

1

3
≤ |eix − 1| ≤ 2.

If x ∈ U(n, δ), then we have

(3.4)

∣∣b (n, δ, eix)+ 1
∣∣ =

∣∣∣∣ (einx − 1)(ρn + 1)

ρneinx − 1

∣∣∣∣ ≤ 4πδ

1− e−
√
δ
,

≤ 4eπδ

e
√
δ − 1

≤ 8eπδ√
δ
≤ C
√
δ.

If x ∈ T \ U(n, 4
√
δ), then einx = eiα with π 4

√
δ < |α| < π. Thus we obtain

(3.5)

∣∣b (n, δ, eix)− 1
∣∣ =

∣∣∣∣ (einx + 1)(1− ρn)

ρneinx − 1

∣∣∣∣ ≤ 2(e
√
δ − 1)

|einx − e
√
δ|

≤ 4
√
δ

|einx − 1| − |e
√
δ − 1|

≤ 4
√
δ

π 4
√
δ/2− 2

√
δ
≤ C 4
√
δ.

�
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Proof of Theorem 1.3. As in the proof of Theorem 1.1 we may choose numbers δk,
uk, vk (k ∈ N), satisfying (2.2), (2.3) and the condition

(3.6)
∑
j≥k+1

4
√
δj <

1

10π · 2km(vk)

instead of (2.4). Then we denote

(3.7) bk(x) = b(nk, δk, e
ix), nk =

[
6π

λ(uk)

]
, k ∈ N,

and

Bk(x) =

k∏
j=1

bj(x), B(x) =

∞∏
j=1

bj(x).

The convergence of the infinite product follows from the bound (3.10), which will
be obtained below. Observe that in the process of selection of the numbers (2.2)
we were free to define δk > 0 as small as needed. Besides, taking uk to be close to
1 we may get nk as big as needed. Using these notations and Lemma 3.1, aside of
the conditions (2.2),(2.3) and (3.6) we can additionally claim the bounds

ω (2π/nk, Bk−1) = sup
|x−x′|<2π/nk

|Bk−1(x)−Bk−1(x′)| < 2−k,(3.8)

|bk(x) + 1| < 2−k, x ∈ U(nk, 6δk),(3.9)

|bk(x)− 1| < 2−k, x ∈ T \ U(nk,
4
√
δk).(3.10)

From (3.10) we get

(3.11)

|B(x)−Bk(x)| =

∣∣∣∣∣∣
∏

j≥k+1

bj(x)− 1

∣∣∣∣∣∣
≤

∏
j≥k+1

(1 + 2−j)− 1 < 2−k+1, x ∈ T \
⋃

j≥k+1

U
(
nj ,

4
√
δj

)
.

Take an arbitrary x ∈ T. There exists an integer 1 ≤ j0 ≤ nk such that

2πj0
nk
− x ∈

[
2π

nk
,

4π

nk

]
⊂
[

2π

nk
,

5π

nk

]
⊂
[
λ(uk)

3
, λ(uk)

]
⊂ [λ(vk), λ(uk)],

where the inclusions follow from the definition of nk (see (3.7)) and from the in-
equality 3λ(vk) ≤ λ(uk) < π coming from (2.2). Thus since λ(r) is continuous, we
may find numbers uk ≤ r′k ≤ r′′k ≤ vk, such that

(3.12) λ(r′k) =
2πj0
nk
− x, λ(r′′k) =

2πj0
nk

+
π

nk
− x.

For the set

e =
⋃

j≥k+1

U
(
nj ,

4
√
δj

)
,

we have

|e| = 10π
∑
j≥k+1

4
√
δj .
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To simplify the further estimations, without loss of generality we may replace the
relation ‖φr‖1 → 1 by ‖φr‖1 = 1. So taking r ∈ [uk, vk], from (3.6) and (3.11) we
conclude

(3.13)

∣∣Φr(x,B)− Φr(x,Bk)
∣∣

≤
∫
e

ϕr(x− t)|B(t)−Bk(t)|dt+ 2−k+1

∫
T\e

ϕr(x− t)dt

≤ 20πm(vk)
∑
j≥k+1

4
√
δj + 2−k+1

≤ 2 · 2−k + 2−k+1 = 4 · 2−k, x ∈ T.

If

t ∈ I = (−δkλ(uk), δkλ(uk)) ⊂
(
−6πδk

nk
,

6πδk
nk

)
,

then we have

2πj0
nk
− t ∈ U(nk, 6δk),

2πj0
nk

+
π

nk
− t ∈ T \ U(nk,

4
√
δk).

Then, using these relations together with (3.9) and (3.8), we get

(3.14)

∣∣∣∣Bk (2πj0
nk
− t
)

+ Bk−1

(
2πj0
nk

)∣∣∣∣
≤
∣∣∣∣Bk−1(2πj0

nk
− t
)∣∣∣∣ ∣∣∣∣bk (2πj0

nk
− t
)

+ 1

∣∣∣∣
+

∣∣∣∣Bk−1(2πj0
nk
− t
)
−Bk−1

(
2πj0
nk

)∣∣∣∣
< 2−k + 2−k = 2−k+1

and

(3.15)∣∣∣∣Bk (2πj0
nk

+
π

nk
− t
)
− Bk−1

(
2πj0
nk

)∣∣∣∣
≤
∣∣∣∣Bk−1(2πj0

nk
+

π

nk
− t
)∣∣∣∣ ∣∣∣∣bk (2πj0

nk
+

π

nk
− t
)
− 1

∣∣∣∣
+

∣∣∣∣Bk−1(2πj0
nk

+
π

nk
− t
)
−Bk−1

(
2πj0
nk

)∣∣∣∣
< 2−k + 2−k = 2−k+1.
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On the other hand we have

(3.16)

∣∣∣Φr′k(x+ λ(r′k), Bk) + Bk−1

(
2πj0
nk

)∣∣∣∣
=

∣∣∣∣∫
T
ϕr′k(t)Bk(x+ λ(r′k)− t)dt+Bk−1

(
2πj0
nk

dt

)∣∣∣∣
=

∣∣∣∣∫
T
ϕr′k(t)

[
Bk

(
2πj0
nk
− t
)

+Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣
≤
∣∣∣∣∫
I

ϕr′k(t)

[
Bk

(
2πj0
nk
− t
)

+Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣
+

∣∣∣∣∫
Ic
ϕr′k(t)

[
Bk

(
2πj0
nk
− t
)

+Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣
=A+B.

Then from (3.14) we get

(3.17) A ≤ 2−k+1

∫
I

ϕr′k(t)dt ≤ 2−k+1.

By the hypotheses of Theorem 1.3 we have β∗ = 1. So from (2.3) we get

∫
I

ϕr′k(t) =

∫ δkλ(uk)

−δkλ(uk)
ϕr(t)dt > 1− 2−k

and therefore

(3.18)

∫
Ic
ϕr′k(t) ≤ ‖ϕr′k‖1 − 1 + 2−k = 2−k.

From (3.12) and (3.18) we get

(3.19) B ≤ 2 · 2−k.

Thus, using (3.16), (3.17) and (3.19), we obtain

(3.20)

∣∣∣∣Φr′k(x+ λ(r′k), Bk) +Bk−1

(
2πj0
nk

)∣∣∣∣ ≤ 4 · 2−k.

Similarly, using (3.15), we conclude

(3.21)

∣∣∣∣Φr′′k (x+ λ(r′′k), Bk)−Bk−1
(

2πj0
nk

)∣∣∣∣ ≤ 4 · 2−k.
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Since
∣∣∣Bk−1 ( 2πj0

nk

)∣∣∣ = 1, from (3.13), (3.20) and (3.21) it follows that∣∣∣∣Φr′k(x+ λ(r′k), B)− Φr′′k (x+ λ(r′′k), B)

∣∣∣∣
=

∣∣∣∣− 2Bk−1

(
2πj0
nk

)
+ Φr′k(x+ λ(r′k), Bk) +Bk−1

(
2πj0
nk

)
− Φr′′k (x+ λ(r′′k), Bk) +Bk−1

(
2πj0
nk

)
+ Φr′k(x+ λ(r′k), B)− Φr′k(x+ λ(r′k), Bk)

+ Φr′′k (x+ λ(r′′k), Bk)− Φr′′k (x+ λ(r′′k), B)

∣∣∣∣
≥2− 4 · 2−k − 4 · 2−k − 4 · 2−k − 4 · 2−k

=2− 16 · 2−k,

which implies the divergence of Φr(x+ λ(r), B) at a point x. �
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