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Martingales

A stochastic sequence of random variables S1, S2, ..., Sk, ...

is called martingale if for any k ≥ 1

E |Sk| <∞ and E
(
Sk+1/σ (Si,1 ≤ i ≤ k)

)
= Sk (a.s.)



Basic example 1. Let η be a random variable, E |η| < ∞, and
let {=k, k ≥ 1} be a family of σ-algebras, =k ⊂ =k+1. Then the
sequence of random variables

Sk = E (η/=k) , k = 1,2,3, ...

forms a martingale.

Basic example 2. Let η1, η2, ..., ηk, ... be a random variables.
Then the sequence of random variables

Sk =
k−1∑
j=1

(
ηj − E

(
ηj/σ (ηi,1 ≤ i ≤ j − 1)

))
, k = 1,2,3, ...

forms a martingale.



Convergence theorems

Theorem. Let S1, S2, ..., Sn, ... be a martingale such that

sup
n
E |Sn| <∞.

Then with probability 1 there exists limit

lim
n→∞Sn = S∞,

and E |S∞| <∞.



Limit theorems

The sequence ξ1, ξ2, ..., ξk, ... of random variables is called
a martingale–difference if for any k ≥ 1

E |ξk| <∞ and E
(
ξk+1/σ (ξi,1 ≤ i ≤ k)

)
= 0 (a.s.)

Theorem (Billingsli, Ibragimov).Let ξ1, ξ2, ..., ξk, ... be a stationary
ergodic process which forms a martingale-difference, and 0 < Eξ2

0 <∞.
Then

lim
n→∞P

 1

σ
√
n

n∑
k=1

ξk < x

 =
1√
2π

x∫
−∞

e−u
2/2du, x ∈ R.



Multidimensional martingales
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Zd — d-dimensional integer lattice

Let
{
SV , V ⊂ Zd, |V | <∞

}
be a family of random variables on

(Ω,=,P) parameterized by finite subsets of Zd.

Let
{
=V , V ⊂ Zd

}
be a partially ordered by inclusion set of σ-

subalgebras of =, i.e.

=V ⊂ =, =I ⊂ =V as I ⊂ V, =Ø = {Ø,Ω}

The family of random variables S = (SV ,=V ) is called
martingale, if for any finite V ⊂ Zd SV is =V -measurable and
for any I ⊂ V

E (SV /=I) = SI (a.s.)
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Martingale-difference random fields

A collection of random variables (ξt) =
(
ξt, t ∈ Zd

)
, each

of which takes value in X will call a random field defined on
Zd with phase space X, X ⊂ R

A random field (ξt) is called amartingale–difference random
field if for any t ∈ Zd

E |ξt| <∞ and E
(
ξt/σ

(
ξs, s ∈ Zd\ {t}

))
= 0 a.s.

Let (ξt) be a martingale difference random field. Then the
family of random variables SV =

∑
t∈V

ξt forms a martingale with

respect to any increasing sequence {Vn} of finite subsets of Zd

such that Vn ⊂ Vn+1 and
∞⋃
n=1

Vn = Zd.



The Central Limit Theorem
for martingale–difference random fields

Theorem (Nahapetian (1995)). Let (ξt) be a homogeneous
ergodic martingale-difference random field such that 0 < Eη2

0 <∞.
Then

lim
n→∞P

 SVn√
DSVn

< x

 =
1√
2π

x∫
−∞

e−u
2/2du, x ∈ R,

where SV =
∑
t∈V

ξt, and Vn is a d-dimensional cube with side

length n, n = 1,2, ....



Homogenous random field (ξt) is called ergodic if for any finite
I,Λ ⊂ Zd

lim
n→∞

1

|Vn|
∑
a∈Vn

P
(
{ξt = xt, t ∈ I} ∩

{
ξs+a = x̄s, s ∈ Λ

})
=

= P (ξt = xt, t ∈ I)P (ξs = x̄s, s ∈ Λ) ,

where x ∈ XI, x̄ ∈ XΛ.

Homogenous random field (ξt) satisfies the strong mixing condition
with coefficient ϕI if for any fixed finite I ⊂ Zd

sup {|P (A/B)− P (A)| , A ∈ =I , B ∈ =Λ, P (B) > 0} ≤ ϕI (ρ (I,Λ)) ,

where function ϕI (ρ), ρ ∈ R is such that ϕI (ρ)→ 0 as ρ→∞
and the finite set I ⊂ Zd is fixed.

=S = σ (ξs, s ∈ S)



Exact asymptotic for the moments of sums of components

Theorem (Khachatryan, Nahapetian (2013)). Let (ξt) be a
homogenous martingale–difference random field with phase
space X, 1 < |X| <∞. Then for any k = 1,2, ...

E
(
SVn

)2k−1
= C2k−1 · |Vn|k−1 ,

where constant C2k−1 does not depend on n.
If, moreover, the random field (ξt) satisfies the strong mixing
condition with coefficient ϕI such that

ϕI (j) ≤ |I| · ϕ (j) and
∞∑
j=1

jd−1 · ϕ (j) <∞,

then for any k = 1,2, ...

E
(
SVn

)2k
= (2k − 1)!!

(
Eξ2

0

)k
|Vn|k + C2k |Vn|k−1 ,

where constant C2k does not depend on n.



Theorem. Let (ξt) be a homogenous martingale–difference
random field with phase space X, satisfying the strong mixing
condition with coefficient ϕI such that

ϕI (j) ≤ |I| · ϕ (j) and
∞∑
j=1

jd−1 · ϕ (j) <∞,

and let Eξ2
0 > 0. Then for random field (ξt) the CLT is valid

and for any k = 1,2, ...

E

 SVn√
DSVn


k

→ Eζk при n→∞

where ζ is a random variable with standard normal distribution.



Theorem (Khachatryan, Nahapetian (2013)). Let (ξt) be a
homogenous martingale–difference random field with phase
space X, satisfying the strong mixing condition with coefficient
ϕI such that

ϕI (j) ≤ |I| · ϕ (j) and
∞∑
j=1

jd−1 · ϕ (j) <∞,

and let Eξ2
0 > 0. Then

sup
x∈R

∣∣∣∣∣∣∣P
 SVn√

DSVn
< x

− 1√
2π

x∫
−∞

e−u
2/2du

∣∣∣∣∣∣∣ ≤ C · n−d/8,

where positive constant C does not depend on n.

Theorem. Under conditions of Theorem

P

lim sup
n→∞

SVn√
2DSVn ln ln |Vn|

= 1

 = 1.



Basic examples of martingale–difference random fields



Example 1.

Let (ξt) be a positive random field with symmetric (with
respect to zero) phase space X and even finite dimensional
probability distributions, i.e. for any finite V ⊂ Zd

PV > 0

and

PV (θtxt, t ∈ V ) = PV (xt, t ∈ V ) ,

for any θt ∈ {1,−1}. Then the random field (ξt) is a martingale–
difference.



Example 2.

Let (ξt) be a random field with phase space X for which
there exists a partition Π = {X1, X2, ..., Xn}

X =
n⋃

k=1

Xk, Xi ∩Xj = Ø, i 6= j,

such that one-dimensional conditional probability distributions

qx̄t (x) = P
(
ξt = x

/
ξs = x̄s, s ∈ Zd\ {t}

)
of random field (ξt) take constant values on elements of the
partition Π, i.e. for any x̄ ∈ XZd\{t} and t ∈ Zd

qx̄t (x) = qx̄t,k, x ∈ Xk, k = 1, n.

If the partition Π such that∑
x∈Xk

x = 0 for any k = 1, n,

then the random field (ξt) is a martingale–difference.



Example 3. Martingale–difference Markov random fields

Let (ξt) be a Markov random field with phase space X for
which there exists a partition Π = {X1, X2, ..., Xn} such that
for x, x′ ∈ Xk

P (ξt = x) = P
(
ξt = x′

)
and

P (ξt = x/ξs = x̄s, s ∈ ∂t) = P
(
ξt = x′

/
ξs = x̄s, s ∈ ∂t

)
for any k = 1, n и x̄ ∈ X∂t, where ∂t is neighborhood of a point
t, t ∈ Zd. If the partition Π such that∑

x∈Xk
x = 0 for any k = 1, n,

then the Markov random field (ξt) is a martingale–difference.



Conditional distribution of a random field

Dobrushin R.L. (1968) ”The description of random field
by means of conditional probabilities and conditions of its
regularity”, Theory Probab. Appl. 13

For a given random field (ξt) with distribution P the conditional
probability qx̄V (x), x ∈ XV in finite volume V ⊂ Zd with boundary
conditions x̄ ∈ XZd\V is the limit

qx̄V (x) = lim
Ṽ ↑Zd\V

PV ∪Ṽ
(
xV x̄Ṽ

)
PṼ

(
x̄Ṽ

) ,

which exists almost everywhere.



Gibbs random fields

Dachian S., Nahapetian B.S. (2009) ”On Gibbsiannes of
Random Fields”, Markov Processes and Related Fields 15

A random field (ξt) with distribution P is called Gibbs
random field, if

1. PV (x) > 0 for any finite V ⊂ Zd and x ∈ XV ;

2. the limits

qx̄t (x) = lim
V ↑Zd\{t}

P{t}∪V (xx̄)

PV (x̄)
, x ∈ X, x̄ ∈ XZd\{t}, t ∈ Zd

exist, are positive, and the convergence is uniform with
respect to x̄.



Dobrushin R.L. (1968) ”Gibbs random fields for lattice
systems with pair–wise interaction”, Funct. Anal. Appl. 2

Gibbs random field corresponding to the potential Φ is a
random field which has a version of conditional distribution
almost everywhere coinciding with Gibbs specification

Q =
{
qx̄V , x̄ ∈ X

Zd\V , V ⊂ Zd
}
,

where

qx̄V (x) =
exp

{
−U x̄V (x)

}
∑

z∈XV
exp

{
−U x̄V (z)

}, x ∈ XV ,

U x̄V (x) =
∑

J⊂V :J 6=Ø

∑
J̃⊂Zd\V

ΦJ∪J̃
(
xJ x̄J̃

)

Φ =
{

ΦV (x) , x ∈ XV , V ⊂ Zd, |V | <∞
}
is an interaction potential

‖Φ‖ =
∑

0∈V
sup
x∈XV

|ΦV (x)| <∞



Example 4. Martingale–difference Gibbs random fields

Theorem (Nahapetian, Petrosian (1992)). Let potential Φ

with spin space X be even, i.e. for any finite V ⊂ Zd

ΦV (θtxt, t ∈ V ) = ΦV (xt, t ∈ V ) .

If X is symmetric with respect to zero, then Gibbs random field
corresponding to the potential Φ is a martingale–difference.



Example 4’. Martingale–difference Gibbs random fields

Theorem (Khachatryan, Nahapetian (2013)). Let potential Φ

takes constant values on elements of partition Π = {X1, X2, ..., Xn}
of spin space X, i.e. for any finite V ⊂ Zd and t ∈ Zd\V

Φ{t}∪V (xx̄) = Φ{t}∪V
(
x′x̄

)
for any x, x′ ∈ Xk,

where x̄ ∈ XV , k = 1, n. If the partition Π is such that∑
x∈Xk

x = 0, k = 1, n,

then Gibbs random field corresponding to the potential Φ is a
martingale–difference.



Application of martingale method
in statistical physics



Limit Theorems for Gibbs random fields

Conditions on the potential:
a smallness of the norm of the potential;
conditions on the rate of convergence of the potential.

Theorem (Dobrushin, Tirozzi (1977)). If the potential Φ is
bounded then the local limit theorem for the corresponding
Gibbs random field follows from the central limit theorem.



Limit Theorems
for martingale–difference Gibbs random fields

Theorem. Let potential Φ with spin space X be translation–
invariant, ergodic, and let potential Φ takes constant values
on elements of a partition Π = {X1, X2, ..., Xn} of set X, i.e.
for any finite V ⊂ Zd and t ∈ Zd\V

Φ{t}∪V (xx̄) = Φ{t}∪V
(
x′x̄

)
for any x, x′ ∈ Xk,

where x̄ ∈ XV , k = 1, n. If the partition Π is such that∑
x∈Xk

x = 0, k = 1, n,

then for Gibbs random field corresponding to the potential Φ

CLT and LLT are valid.



Theorem. Let potential Φ with spin space X be translation–
invariant, ergodic, and let potential Φ takes constant values
on elements of a partition Π = {X1, X2, ..., Xn} of set X, and∑

x∈Xk
x = 0, k = 1, n.

Let further the potential Φ satisfies the following conditions

1

2
e4‖Φ‖

(
e4‖Φ‖ − 1

)
< 1,

∑
0∈V⊂Zd

|V | (diamV )γ sup
x∈XV

|ΦV (x)| <∞, γ > d− 1,

where

‖Φ‖ =
∑

0∈V⊂Zd
|V | sup

x∈XV
|ΦV (x)|, diamV = sup

t,s∈V
|t− s| .



Then for Gibbs random field corresponding to the potential
Φ

1.

M

 SVn√
DSVn


k

→Mζk as n→∞,

for any k = 1,2, ..., where ζ is a random variable with
standard normal distribution;

2.

sup
x∈R

∣∣∣∣∣∣∣P
 SVn√

DSVn
< x

− 1√
2π

x∫
−∞

e−u
2/2du

∣∣∣∣∣∣∣ ≤ C · n−d/8,

where the positive constant C does not depend on n;

3. the law of iterated logarithm is valid.



The Ising ferromagnetic model

ΦV (x) =


−βh · xt, V = {t}
−β · xtxs, V = {t, s} и ‖t− s‖ = 1
0, in other cases

where

xt, xs ∈ X = {−1,1} ,

‖t− s‖ =
d∑

i=1

∣∣∣t(i) − s(i)
∣∣∣, t, s ∈ Zd,

h ∈ R — the external field,
β > 0 — the inverse temperature.



Phase diagram for the Ising model

(0, βcr) — the critical point for the Ising model



Nahapetian, 1997

Martingale model

Φ̃V (y) =


−βh · |yt| , V = {t}
−β |yt| · |ys| , V = {t, s} и ‖t− s‖ = 1
0, in other cases

where

yt, ys ∈ Y = {−1,0,1}

ϕ : Y → X

x = ϕ (y) = 2 |y| − 1



Phase diagram for the martingale model

Coordinates of the critical point for the martingale model

β∗cr = 4βcr, h∗cr = −d−
ln 2

β∗cr
,

where βcr is the critical temperature for the Ising model



The connection formulas of total spins probability distribution

Denote for any finite V ⊂ Zd

SIsV — total spin of the Ising model
SevV — total spin of the model with even potential

P
(
SevV = k

)
=

|V |−k
2∑

j=0

2−(k+2j)

(
k + 2j

2j

)
P
(
SIsV = 2k + 4j − n

)
,

P
(
SevV = k

)
= P

(
SevV = −k

)

k = 0,1, ..., |V |



P
(
SIsV = k

)
= 2−k

[
P
(
SevV = k

)
−

−
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
P
(
SevV = k + 2j

)
+

+
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
22j×

×
(|V |−k)/2−j∑

s=1

(
k + 2 (j + s)

2s

)
22sP

(
SevV = k + 2 (j + s)

)
−

−
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
22j

(|V |−k)/2−j∑
s=1

(
k + 2 (j + s)

2s

)
22s×

×
(|V |−k)/2−j−s∑

l=1

(
k + 2 (j + s+ l)

2l

)
22lP

(
SevV = k + 2 (j + s+ l)

)
+ ...





Associated martingale-difference random fields



Theorem. Let there be given a random field (ξt) with phase
space X, a set Y , a surjective map ϕ : Y → X and a set of
randomizations R =

{
Rt, t ∈ Zd

}
. Then there exists an associated

random field (ηt) with phase space Y such that for any t ∈ Zd

ξt = ϕ (ηt) .

Finite dimensional probability distributions of random field (ηt)

have a form

P (ηt = yt, t ∈ V ) =
∏
t∈V

Rxtt (yt) · P (ξt = xt, t ∈ V ) ,

where yt ∈ ϕ−1 (xt), xt ∈ X, t ∈ V , and V is a finite subset of Zd.



Properties of associated random fields

Associated random fields inherit properties of a given random
field such as

1. homogeneity;

2. ergodicity;

3. weak dependence;

4. a random field associated with Gibbs random field is also
a Gibbsian.



Associated martingale–difference random fields

Theorem. Let (ξt) be a random field with phase space X, and
let (ηt) be a random field with phase space Y associated with
(ξt) by means of map ϕ and set of randomizations R. If for
any x ∈ X and t ∈ Zd ∑

y∈ϕ−1(x)

y ·Rxt (y) = 0,

then the random field (ηt) is a martingale–difference.



Limit theorems
for martingale-difference (Gibbs) random fields

Theorem. Let (ξt) be a homogenous ergodic (Gibbs) random
field. Then there exists a martingale-difference (Gibbs) random
field (ηt), associated with random field (ξt), for which the CLT
is valid.



Application of the martingale method
to the Ising model

Let (ξt) be the homogenous Gibbs random field with phase
space X = {0,1}, and let (ηt) be an associated random field
with phase space Y = {−1,0,1} such that

ξt = ϕ (ηt) = η2
t , t ∈ Zd

and for any t ∈ Zd

P (ηt = 1) = P (ηt = −1) =
1

2
P (ξt = 1) , P (ηt = 0) = P (ξt = 0) .

The random field (ηt) is a martingale-difference; and for
any finite V ⊂ Zd

P (ηt = yt, t ∈ V ) = 2
−
∑
t∈V

xt
P (ξt = xt, t ∈ V ) ,

yt ∈ ϕ−1 (x), xt ∈ X, t ∈ V .



The connection formulas of
total spins probability distributions

For any finite V ⊂ Zd

P
(
S
η
V = k

)
=

|V |−k
2∑

j=0

2−(k+2j)

(
k + 2j

2j

)
P
(
S
ξ
V = k + 2j

)
,

P
(
S
η
V = −k

)
= P

(
S
η
V = k

)
,

k = 1,2, ..., |V |.



For any finite V ⊂ Zd

P
(
S
ξ
V = k

)
= 2k

|V |−j
2∑

j=0
(−1)j

k + 2j

k + j

(
k + j
j

)
P
(
S
η
V = k + 2j

)
,

k = 0,1, ..., |V |



Characteristic function of total spin of given r.f.
by means of total spin distributions of associated r.f.

For any finite V ⊂ Zd

f
S
ξ
V

(t) =
|V |∑

j=−|V |
cos

(
j · arccos eit

)
P
(
S
η
V = j

)



The connection formula of moments of total spins

For any k = 1,2, ...

E
(
S
ξ
V

)k
=
∑(

k!

m1!m2! · ... ·mk! (1!)m1 (2!)m2 · ... · (k!)mk
·

·
1

(2m− 1)!!

m∑
i=1

am,iE
(
S
η
V

)2i
)

where sum is taken by all integers m1,m2, ...,mk ≥ 0 such that

1 ·m1 + 2 ·m2 + ...+ k ·mk = k,

m =
k∑
i=1

mi, and coefficients am,i are defined by the following

relation
m−1∏
s=0

(
x2 − s2

)
=

m∑
i=1

am,ix
2i



Investigation of the Ising model total spin
at the critical point

(0, βcr) — critical point for the Ising model

(h∗cr, β
∗
cr) — critical point for the martingale model, where

β∗cr = 4βcr, h∗cr = −d−
ln 2

β∗cr
,

For the martingale model the CLT and the LLT hold at
the critical point (h∗cr, β

∗
cr).

Obtained formulas can be applied for discovering a limit
distribution of the Ising model total spin at its critical point
(0, βcr).



Thank you for your attention!
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Randomization

X,Y ⊂ R — finite sets,
ϕ : Y → X — a surjective map,
ϕ−1 (x) = {y ∈ Y : ϕ (y) = x}, x ∈ X

Y =
⋃
x∈X

ϕ−1 (x)

P — probability distribution on X



Randomization Rϕ = {Rϕ,x, x ∈ X} is the set of probability
distributions on Y such that for any x ∈ X

Rϕ,x (y) > 0, y ∈ ϕ−1 (x) and Rϕ,x (y) = 0, y /∈ ϕ−1 (x) .

Put

P̂ (y) = Rϕ,x (y)P (x) as y ∈ ϕ−1 (x)

Then P̂ is a probability distribution on Y and

P (x) =
∑

y∈ϕ−1(x)

P̂ (y), x ∈ X


