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Abstract. We study some almost everywhere convergence prob-
lems of martingales. We obtain different equivalency theorems,
which show, that in some problems of martingale theory generale
martingales can be replaced with Haar martingales. We bring some
applications of these results in the theory of differentiation of in-
tegrals and in some problems of convergence of Riemann sums.

1. Introduction

The study of almost sure convergence of martingales has a deep
connection with different problems in harmonic analysis. Many results
in the martingale theory are direct generalizations of some theorems
on Fourier-Haar series, differentiation of integrals, maximal functions.
A central result in martingale theory is due Doob [4]. It says, that
any L1-bounded martingale converges almost surely. An analogous
problem for multiple martingales is considered by R. Cairoli in [6].
He has proved an almost surely convergence of d-multiple martingales
which are bounded in L logd−1 L.

In this paper we obtain some equivalency theorems for martingales.
One-dimensional and multiple martingales are considered. It will be
shown that in some problems concerning to almost everywhere conver-
gence of martingales one can consider simply Haar martingales. We
shall discuss also some applications of these equivalency theorems in
maximal functions and Riemann sums.

We consider the probability space of Lebesgue measureable sets in
[0, 1). Let L be the family of Lebesgue measurable sets in [0, 1). Denote
by S(E) the minimal σ-algebra containing a family of sets E ⊂ L. We
say a sequence of σ-algebras {An, n = 1, 2, . . .} in [0, 1) is regular, if

1) An ⊂ An+1,
2) An is generated by a finite number of intervals of the form [a, b),
3) the σ-algebra S (∪nAn) does not have an atom.
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We shall consider the probability space (Qd,Ld,md) of Lebesgue mea-

sure on d-dimensional unit cube Qd = [0, 1)d. Let {A(k)
n , n ∈ N},

k = 1, 2, . . . , d, be sequences of σ-algebras in [0, 1). We consider the
Cartesian product of these σ-algebras

(1) An = An1,...,nd
= ⊗dk=1A(k)

nk
, n = (n1, . . . , nd) ∈ Nd.

We say the multiple sequence {An, n ∈ Nd} is regular, if each compo-

nent {A(k)
n , n ∈ N} is regular. For a given function f(x) ∈ L1(Qd) we

denote by
EAnf(x), n ∈ Nd,

the conditional expectation of f(x) with respect to σ-algebra An. A
function Θ : Ld → Ld is said to be measure preserving transformation
(MP -transformation) of Qd, if

Θ(E ∪ F ) = Θ(E) ∪Θ(F ),

md(Θ(E)) = md(E),

for any E,F ∈ Ld. If Θ is an MP -transformation of Qd, then one can
easily check that

(2)
if E ∩ F = ∅, then md(Θ(E) ∩Θ(F )) = 0,

if E ⊂ F, then md(Θ(F ) \Θ(E)) = 0.

For an arbitrary measurable f(x) we define Θf(x) as follows. If f(x)
has a form

(3)
m∑
i=1

αiIEi
(x),

where Ei ∈ Ld, i = 1, 2, . . . ,m, is a pairwise disjoint family of measur-
able sets, then

Θf(x) =
m∑
i=1

αiIΘ(Ei)(x).

In the generale case the function f(x) is a pointwise limit of a sequence
of functions sn(x) of the form (3). That is

(4) f(x) = lim
n→∞

sn(x), x ∈ Qd.

Using (2) and a standard argument one can observe that Θsn(x) con-
verges almost everywhere and the limit function doesn’t depend on the
representation (4). So we denote this limit by Θf(x).
For a given sequence of integers N = {νi ∈ N : ν1 < ν2 < . . .} we
consider the multiple sequence of σ-algebras

(5) Ãn = Aνn1 ,...,νnd
, n = (n1, . . . , nd) ∈ Nd.
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The sequence (5) is said to be a subsequence of (1).
The following two theorems are the main results of the paper.

Theorem 1. Let {An, n ∈ Nd} and {Bn, n ∈ Nd} be arbitrary multi-
ple regular sequences of σ-algebras in the unit cube Qd. Then for any
sequence of numbers εk > 0, k = 1, 2, . . ., there exist a measure preserv-
ing transformation Θ, a sequence of sets Gn ⊂ Qd and a subsequence
{B̃n} of {Bn}, such that

Gn ⊂ Gn′ , n ≤ n′,(6)

|Gn| > 1− εm, min
1≤i≤d

ni ≥ m(7) (
Θ ◦ EAn

)
f(x) =

(
EB̃n ◦Θ

)
f(x), x ∈ Gn, n ∈ Nd.(8)

for any f ∈ L1(Qd), where n = (n1, . . . , nd) ≤ n′ = (n′1, . . . , n
′
d) means

ni ≤ n′i, i = 1, 2, . . . ,.

Theorem 2. If {Bn, n ∈ Nd} is a subsequence of a regular sequence of
multiple σ-algebras {An, n ∈ Nd}, then there exist a measure preserving
transformation Θ, such that

(9)
(
Θ ◦ EAn

)
f(x) =

(
EBn ◦Θ

)
f(x) a.e.

for any f ∈ L1(Qd).

2. Notations and auxiliary lemmas

A set in [0, 1) is said to be simple, if it is a finite union of intervals
of the form [α, β). If a finite family of simple sets A = {ai : i =
1, 2, . . . , n} satisfy the relations

∪ni=1ai = [0, 1), ai ∩ aj = ∅, i 6= j,

then we say A is a partition of [0, 1). Any partition A defines a σ-
algebra A generated by the atoms ai, i = 1, 2, . . . , n. We denote the
family of such σ-algebras by M. We shall use the letters A, B and C
for partitions and the letters A, B and C for σ-algebras corresponding
to these partitions. For any two σ-algebras A and B we denote by

A ∧ B = S{a ∩ b : a ∈ A, b ∈ B}
the σ-algebras generated by the sets of the form a ∩ b, where a ∈ A,
b ∈ B. Let a be a simple set. One can easily check, that the function

φa(x) = |[0, x) ∩ a|
defines one to one correspondence from a to [0, |a|), such that

|E| = |φa(E)|
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for any Lebesgue measurable set E ⊂ a. For arbitrary simple sets a
and b we denote

φa,b = φ−1
b ◦

(
|b|
|a|
φa

)
.

It is easy to observe that φa,b defines one to one correspondence from
a to b and we have

|φa,b(E)| = |b|
|a|
|E|

if E ⊂ a is measurable. If A,B ∈ M, then we denote by [A,B] an
MP -transformation defined as follows. At first we consider the case
A ⊂ B. Take an arbitrary x ∈ [0, 1). We have x ∈ a for some a ∈ A
and a = ∪ki=1bi, where bi ∈ B. We let

[A,B](x) = {φa,bi(x) : i = 1, . . . , k}

and

[A,B](E) =
⋃
x∈E

[A,B](x).

If A and B are arbitrary, then A ⊂ A ∧ B and we define

[A,B] = [A,A ∧ B].

It is easy to observe that θ = [A,B] defines an MP -transformation.
We say a function g(x) is a rearrangement of f(x), if

P{g(x) > λ} = P{f(x) > λ}, λ ∈ R.

We shall use the notation g ∼ f for this relation. The following sim-
ple properties of MP -transformations and the operator of conditional
expectation EA can be checked easily.

P1) For any MP -transformation θ and measurable function f(x),
defined on Qd, we have

θf(x) ∼ f(x).

P2) For any MP -transformation θ the operator θf(x) is linear-
bounded in L1(Qd) and

‖θ‖L1(Qd)→L1(Qd) = 1.

P3) For any A,B ∈M we have θ(a) = a, a ∈ A, where θ = [A,B].
P4) For any σ-algebras A,B ∈M we have

EAf(x) = EBf(x), x ∈ a, a ∈ A ∩B.

P5) If θ is an MP -transformation, then

θ ◦ EA = Eθ(A) ◦ θ.
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P6) If A,B ∈M, A ⊂ B and θ = [A,B] then

EA ◦ θ = EA = EB ◦ θ.
P7) If A,B, C ∈M, A ⊂ C, A ⊂ B and θ = [A,B], then

Eθ(C) ◦ θ = Eθ(C)∧B ◦ θ.
P8) If A ⊂ B ⊂ C and θ = [A, C] then the equality

EAg(x) = EBg(x)

implies
EBg(x) =

(
EB ◦ θ

)
g(x).

Everywhere below any MP -transformations θ and conditional expec-
tations EA will be considered as linear bounded operators from L1[0, 1)
to L1[0, 1). Let

{Ak : k = 1, 2, . . .},(10)

{Bk : k = 1, 2, . . .},(11)

be sequences of σ-algebras from M, satisfying

Ak ⊂ Ak+1, Bk ⊂ Bk+1, k = 1, 2, . . . ,

max
a∈An

|a| → 0, max
b∈Bn

|b| → 0.

We note, that if in addition each partition An consists of intervals, then
(10) turns to be regular. We associate with (10) and (11) a sequence
of MP -transformations Θk, k = 1, 2, . . ., defined as follows. We take

Θ1 = [A1,B1], Θk = [Θk−1(Ak),Bk] ◦Θk−1, k = 2, 3, . . . .

Denoting

(12) θ1 = Θ1, θk = [Θk−1(Ak),Bk], k = 2, 3, . . . ,

we have

(13) Θk = θk ◦Θk−1 = θk ◦ θk−1 ◦ . . . ◦ θ1.

Lemma 1. For any sequences (10) and (11) the sequence

(14) A1,Θ1(A2), . . . ,Θn−1(An) . . . ,

is an increasing sequence of σ-algebras from M.

Proof. It is clear that Θk−1(Ak) ∈M. Such that Ak ⊂ Ak+1, we get

(15) Θk(Ak) ⊂ Θk(Ak+1).

According to (12) and the property P3), we have θk(Θk−1(Ak)) =
Θk−1(Ak). Thus, using (13), we obtain

Θk(Ak) = θk(Θk−1(Ak)) = Θk−1(Ak).
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This together with (15) implies Θk−1(Ak) ⊂ Θk(Ak+1). The second
and third conditions of regularity of (14) clearly follows from the corre-
sponding conditions of Ak and this completes the proof of lemma. �

Lemma 2. For any sequence (10) we have

Θl(Ak) = Θk−1(Ak), l ≥ k.

Proof. From (12) and property P3), we get

(16) θm(a) = a, a ∈ Θm−1(Am).

By Lemma 1, we have

(17) Θk−1(Ak) ⊂ Θm−1(Am), m ≥ k.

From (16) and (17) it follows that

θm(a) = a, a ∈ Θk−1(Ak),
and therefore, we get

(18) θm(Θk−1(Ak)) = Θk−1(Ak), m ≥ k.

From (13) we have

Θl = θl ◦ θl−1 ◦ . . . ◦ θk ◦Θk−1.

Thus, using (18) for m = k, k + 1, . . . , l, we obtain

Θl(Ak) = Θk−1(Ak), l ≥ k.

�

Lemma 3. If (10) is regular, then there exists an MP -transformation
Θ, such that

(19) ‖Θn(f)−Θ(f)‖L1 → 0, n→∞,
for any f ∈ L1[0, 1).

Proof. At first we prove the convergence of Θn(f) in L1. Since (10) is
regular we have

‖EAn(f)− f‖L1 → 0,

as n→∞. So for any ε > 0 one may find a number N , such that

‖EAn(f)− f‖L1 < ε, n > N.

Since Θk are measure preserving, the last inequality immediately im-
plies

(20) ‖Θk[E
An(f)]−Θk(f)‖L1 < ε, n > N,

for any k = 1, 2, . . .. From Lemma 2 it follows that

Θm[EAn(f)] = Θn[EAn(f)], m > n.
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Combining this with (20), we get

‖Θm(f)−Θn(f)‖L1 < 2ε, m > n > N,

which implies the convergence of Θk(f) in L1. Denoting the limit
function by U(f), we have

(21) ‖Θn(f)− U(f)‖L1 → 0, n→∞.
On the other hand we have

m{Θn(f) > λ} = m{f > λ}, λ ∈ R.
Thus, using (21), we get

m{U(f) > λ} = m{f > λ}.
Taking f = IF for a measurable F we will have U(f) = IG for some
measurable G with mG = mF . So we define MP -transformation Θ,
taking Θ(F ) = G. To complete the proof of lemma it remains to show
that

(22) Θ(f) = U(f), f ∈ L1[0, 1).

From (21) it follows that U(f) is a bounded linear operator from L1

to L1, since the same property have the operators Θn (see P2)). Ac-
cording to the definition of Θ the equality (22) holds if f = IF is a
characteristic function. Therefore by linearity the (22) will be satisfied
for the functions of the form (3). Thus, using the continuity of the
operators Θ(f) and U(f) we obtain (22) for any integrable functions.
The lemma is proved. �

Definition 1. We say the sequence (11) divides (10), if

(23) A1 ⊂ B1, Θk−1(Ak) ⊂ Bk, k = 2, 3, . . . .

Lemma 4. If the σ-algebra (11) divides (10), then we have

(24) EBk ◦Θl = EΘk−1(Ak) ◦Θl, l ≥ k.

Proof. The σ-algebras B = Bn, A = Θn−1(An) and C = Θn−1(An+1)
satisfy the conditions of the property P7). Indeed A ⊂ B follows from
the fact, that (11) divides (10), the embedding A ⊂ C follows from the
regularity of An, that is An ⊂ An+1. By (12), we have

θn = [Θn−1(An),Bn] = [A,B].

Consider a function f ∈ L1. Applying the property P7), we obtain

(25)
(
Eθn(Θn−1(An+1)) ◦ θn

)
(Θn−1(f))

=
(
Eθn(Θn−1(An+1))∧Bn ◦ θn

)
(Θn−1(f)).
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Such that θn ◦Θn−1 = Θn we obtain

EΘn(An+1)(Θn(f)) = EΘn(An+1)∧Bn(Θn(f)).

The σ-algebras A = Θn(An+1), B = Θn(An+1) ∧ Bn and C = Bn+1

satisfy the conditions of P8). The condition A ⊂ B is clear. By
regularity of Bn we have Bn ⊂ Bn+1. Besides, since {Bn} divides {An},
we get Θn(An+1) ⊂ Bn+1. Therefore we get B ⊂ C. We have

θn+1 = [Θn(An+1),Bn+1] = [A, C]

Hence, using (25) and the property P8), we obtain

EΘn(An+1)∧Bn(Θn(f))

= (EΘn(An+1)∧Bn ◦ θn+1)(Θn(f))

= EΘn(An+1)∧Bn(Θn+1(f)).

Thus, such that Bk ⊂ Θn(An+1) ∧ Bn if k ≤ n, we get

(EBk ◦Θn)(f) = (EBk ◦Θn+1)(f), k ≤ n.

From this we obtain

(EBk ◦Θl)(f) = (EBk ◦Θl−1)(f) = . . . = (EBk ◦Θk)(f).

Hence we have

(26) (EBk ◦Θl)(f) = (EBk ◦Θk)(f) = (EBk ◦ θk)(Θk−1(f))

and therefore, since

(27) Θk−1(Ak) ⊂ Bk,

we obtain

(28) (EΘk−1(Ak) ◦Θl)(f) = (EΘk−1(Ak) ◦Θk)(f)

= (EΘk−1(Ak) ◦ θk)(Θk−1(f)).

Finally, again taking into account of (27), from the property P6) we
deduce

(EBk ◦ θk)(Θk−1(f)) = (EΘk−1(Ak) ◦ θk)(Θk−1(f)).

Combining this with (26) and (28) we get (24). �

Lemma 5. If the σ-algebra (11) divides (10) and (10) is regular, then
there exists an MP -transformation Θ, such that

(29) Θ ◦ EAk = EBk ◦Θ, k = 1, 2, . . . .
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Proof. Such that Θl is measure preserving, from P5) we get

(30) Θl ◦ EAk = EΘl(Ak) ◦Θl.

Thus, using Lemma 2 and then Lemma 4 for l ≥ k, we obtain

(31) EΘl(Ak) ◦Θl = EΘk−1(Ak) ◦Θl = EBk ◦Θl.

Combination of (30) and (31) implies

Θl ◦ EAk = EBk ◦Θl, l > k.

Since (10) consists of interval σ-algebras, we may define Θ, satisfying
the relation (19) of Lemma 3. Then, using the boundedness of operators
EAk and EBk in L1 we get (29). �

For arbitrary σ-algebras A,B ∈ M, generated by partitions A and
B, we denote

ρ(A,B) =

∣∣∣∣∣∣
⋃

b∈B\A

b

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

a∈A\B

a

∣∣∣∣∣∣ .
Lemma 6. If A ∈M and (11) is regular, then

lim
n→∞

ρ(A ∧ Bn,Bn) = 0.

Proof. One can easily observe, that the number of elements in

(A ∧Bn) \Bn

does not exceed a number l depended only on A. Thus, since {Bn} is
regular, we get

ρ(A,Bn) =

∣∣∣∣∣∣
⋃

a∈(A∧Bn)\Bn

a

∣∣∣∣∣∣ ≤ lmax
b∈Bn

|b| → 0, n→∞.

�

3. Proof of main theorems

Proof of Theorem 1: One-dimensional case: Let {An} and {Bn} be reg-
ular sequences σ-algebras in [0, 1) and εk > 0, k = 1, 2, . . ., is a sequence
of numbers. Suppose l1 < l2 < . . . < ln < . . . are some integers and
{B̃n = Bln , n ∈ N} is a subsequence of {Bk}. We introduce a sequence
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Ck ∈M and measure preserving transformations Θk as follows:

C1 =A1 ∧ Bl1 , Θ1 = [A1, C1],

C2 =Θ1(A2) ∧ Bl2 , Θ2 = [Θ1(A2), C2] ◦Θ1,

. . .

Cn =Θn−1(An) ∧ Bln , Θn = [Θn−1(An), Cn] ◦Θn−1,

. . .

It is clear that the sequence {Ck} divides {Ak} (see definition in (23)).
Therefore, by Lemma 5, there exists an MP -transformation Θ such
that

(32) Θ ◦ EAk = ECk ◦Θ, k = 1, 2, . . . .

Using Lemma 6, the numbers {ln} can be chosen satisfying

ρ(Blk , Ck) < εk.

Denoting

(33) Gk =
⋃

a∈Blk
∩Ck

a,

from the definition of ρ, we will have

|Gk| = 1− ρ(Blk , Ck) > 1− εk.

On the other hand, by the property P4), we get

(34)
(
ECk ◦Θ

)
f(x) =

(
EBlk ◦Θ

)
f(x), x ∈ Gk.

From (32) and (34) we immediately obtain(
Θ ◦ EAk

)
f(x) =

(
EBlk ◦Θ

)
f(x), x ∈ Gk,

which completes the proof of Theorem 1 in the case of d = 1. �

If T is a bounded linear operator in L1[0, 1), then we denote by Tk,
1 ≤ k ≤ d, the operator

Tk : L1(Qd)→ L1(Qd)

defined by

Tkf(x1, . . . , xd) = Tf(x1, . . . , xk−1, ·, xk+1, . . . , xd).

It is clear, that the operator Tk is bounded in L1(Qd).

Lemma 7. If T and P are bounded linear operators in L1[0, 1), then

Pn ◦ Tm = Tm ◦ Pn, n 6= m, 1 ≤ n,m ≤ d.
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Proof. We have to prove that

(35) (Pn ◦ Tm)f(x) = (Tm ◦ Pn)f(x).

for any f ∈ L1(Qd). If

(36) f(x) =
d∏

k=1

IEk
(xk)

where Ek ⊂ [0, 1), k = 1, 2, . . . , d are measurable sets, then, using the
linearity, we have

Pnf(x) =
∏
k 6=n

IEk
(xk) · P (IEn)(xn)

and then

(Tm ◦ Pn)f(x) = P (IEn)(xn) · T (IEm)(xm) ·
∏
k 6=n,m

IEk
(xk).

The same we will have for (Pn ◦ Tm)f(x). Hence (35) holds for the
functions of the form (36) and their linear combinations, i.e. it holds
for the all simple functions. If f(x) ∈ L1(Qd), then we find a sequence
of simple functions sn(x, y) of the form (36), such that ‖sn−f‖L1 → 0.
Using the continuity of mappings Tm and Pn, as well as the equality
(35) for the functions sn, we immediately get (35) in general case. �

Proof of Theorem 1: The generale case: Using the above notations, we
have

EAn =
(
EA

(1)
n1

)
1
◦ . . . ◦

(
EA

(d)
nd

)
d
, n = (n1, . . . , nd).

Without loss of generality, in the formulation of the theorem one can
assume that εk > εk+1. Applying one-dimensional case of the theorem

for the sequences of σ-algebras A(k)
n and B(k)

n , we may define an MP
-transformations Θk, k = 1, 2, . . . , d, a sequences of measurable sets

{G(k)
i }, and a subsequences of σ-algebras B̃(k)

i , such that

|G(k)
i | > 1− εi

d
,(

Θk ◦ EA
(k)
i

)
f(x) =

(
EB̃

(k)
i ◦Θk

)
f(x), x ∈ G(k)

i , i = 1, 2, . . . .

Denote

Θ = (Θ1)1 ◦ . . . ◦ (Θd)d ,

Gn =
{
x ∈ Qd : xk ∈ G(k)

nk

}
, n = (n1, . . . , nd).
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We have

|Gn| > 1−
d∑

k=1

εnk

d
≥ 1− εminnk

,

as well as

(37) ⊗dk=1

(
Θk ◦ EA

(k)
nk

)
k
f(x)

= ⊗dk=1

(
EB̃

(k)
nk ◦Θk

)
k
f(x), x ∈ Gn, n ∈ Nd.

Applying Lemma 7 several times, we conclude

⊗dk=1

(
Θk ◦ EA

(k)
nk

)
k

=
(
⊗dk=1 (Θk)k

)
◦
(
⊗dk=1

(
EA

(k)
nk

)
k

)
= Θ ◦ EAn ,

and similarly

(38) ⊗dk=1

(
EB̃

(k)
i ◦Θk

)
k

= EB̃n ◦Θ.

So from (37) and (38) we get (8). �

Proof of Theorem 2. The proof of Theorem 2 is a direct repetition of
the proof of Theorem 1 with a little change. That is, if Bn is a sub-
sequence of An, then we will take B̃n = Bn. Then all the sets Gk in
(33) coincide with [0, 1) and therefore in the proof of general case of
Theorem 1 we will have |Gn| = 1 for each n ∈ N. So the equality (9)
will be satisfied almost everywhere in the generale case. �

4. Maximal functions

We consider the family of dyadic rectangles

(39)

{
x = (x1, . . . , xd) ∈ Qd :

ti − 1

2ni
≤ xi <

ti
2ni

, i = 1, 2, . . . , d

}
, 1 ≤ ti ≤ 2ni , ni ∈ N.

in the unit cube Qd. Denote by Rn the subfamily of these rectangles
corresponding to a fixed multiindex n = (n1, n2, . . . , nd). It is clear,
thatRn consists of mutually disjoint rectangles, which union is Qd. For
an infinite set of integers N ⊆ N we consider the family of rectangles

RN =
⋃

n∈N d

Rn
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If N = N, then instead of RN it will be used also the notation R.
It is said, that a basis RN differentiates the integral of a function
f ∈ L1(Qd), if

DNf(x) = lim
diam (R)→0,x∈R∈RN

1

|R|

∫
R

f(t)dt = f(x) a.e. .

We note, that if RN ⊂ RN ′ and RN differentiates the integral of
f ∈ L1(Qd), then so we will have for the basis RN ′ . By L logd−1 L(Qd)
we denote the class of functions satisfying the bound∫

Qd

|f |(log+ |f |)d−1 <∞.

The classical Jessen-Marcinkiewicz-Zygmund theorem [12] states, that
the integral of any function from the class L logd−1 L(Qd) is differen-
tiable with respect to the basis of all dyadic rectangles R. Consider
the maximal function

(40) MNf(x) = sup
R:x∈RN

1

|R|

∫
R

|f(t)|dt,

corresponding to the basis RN . If N = N, then we shall use Mf(x)
instead of MNf(x). In the theory of differentiation of integrals it is
well known that the differentiation properties of a basis RN closely
connected with some week type estimates of maximal function (40). In
the case N = N, a most general estimate for (40) is due M. de Guzman
[7], [8]. That is the week type inequality

md{x ∈ Qd : Mf(x) > λ}

.
∫
Qd

|f(t)|
λ

(
1 + log+ |f(t)|

λ

)d−1

dt, λ > 0,

In fact, L logd−1 L is the widest Orlicz class of functions, which integrals
are differentiable with respect to the basis R, and it is proved by Saks’s
in [17] and [18]. Analogous problem as well as some other problems
concerning general basis RN are considered in the papers by K. Hare,
A. Stokolos [10], P. Hagelstein [9] and A. Stokolos [19]. Notice that,
if N = N, then RN coincides with R, but in general RN is strongly
included in R and so we have

MNf(x) ≤Mf(x).

In spite of this, the basis RN doesn’t have better differentiation prop-
erty than R, which is proved by A. Stokolos in [19]. Moreover, he
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proved, that for any sequence N and a number 0 < λ < 1 there exists
a measurable set E ⊂ Qd, such that

(41) md{x ∈ Qd : MN IE(x) > λ}

&
∫
Qd

|IE(t)|
λ

(
1 + log+ |IE(t)|

λ

)d−1

dt.

Using this estimate one can easily show that the class L logd−1 L is
again the optimal Orlicz class of functions, having differentiable inte-
grals with respect to the basis RN . The construction of the set E in
[19] satisfying (41) is based on a modified Bohr lader construction (see
[8], p. 89), which is used in the Saks theorem too. These problems for
differentiation of integrals can be discussed in view of martingale the-

ory. Indeed, consider the sequences of σ-algebras A(k)
n , k = 1, 2, . . . d,

in Qd generated by the dyadic d-dimensional rectangles{
x = (x1, . . . , xd) ∈ Qd :

i− 1

2n
≤ xk <

i

2n

}
, i = 1, 2, . . . , 2n.

It is easy to observe that σ-algebra An, defined by (1), coincides with
the σ-algebra generated by the rectangles Rn. Moreover, we have

EAnf(x) =
1

|R(x)|

∫
R(x)

f(t)dt,

where R(x) denotes the dyadic rectangle of the form Rn, containing
the point x. So taking An = S (Rn) in Theorem 2 we will get some
equivalencies between the basis RN and R and the Stokolos theorem
follows from Theorem 4 bellow. So from Theorem 2 we obtain

Theorem 3. For any N ⊂ N and f ∈ L1(Qd) there exists a function
g ∼ f such that

md{x ∈ Qd : DN g(x) = g(x)} = md{x ∈ Qd : Df(x) = f(x)}.

Theorem 4. For any N ⊂ N and f ∈ L1(Qd) there exists a function
g ∼ f such that

md{x ∈ Qd : MN g(x) > λ} = md{x ∈ Qd : Mf(x) > λ}.

It is well known that EAnf(x) almost everywhere coincides with the
n-th rectangular partial sum of Fourier-Haar series of function f(x).
So these theorems can be discussed in view of Haar series too.
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5. Some martingale equivalency theorems

In this section we consider some applications of Theorem 1 in some
martingale convergence problems. We will prove some theorems, which
show that in the problems of a.s. convergence of generale martingales
one can consider simply Haar martingales.

Theorem 5. Let {An, n ∈ Nd} be arbitrary sequence and {Bn, n ∈
Nd} be regular sequence of multiple σ-algebras in Qd. Then for any
f ∈ L1(Qd) there exists a function g(x) ∼ f(x), such that

md{EAnf(x) converges } ≥ md{EBng(x) converges }.
Let us do a remark about this theorem before starting the proof. Let

{An, n ∈ N} is an increasing sequence of σ-algebras in F . Doob in [4]
proved that the sequence

EAnf(x), n = 1, 2, . . . ,

converges a.s. for any f ∈ L1([0, 1)). A generalization of Doob’s the-
orem for multiple sequences of σ-algebras {An, n ∈ Nd} obtained by
R. Cairoli in [6]. He proves that the multiple martingale

EAnf(x), n ∈ Nd,

converge a.s. for any function f ∈ L logd−1 L(Qd), that is∫
Qd

|f |(log+ |f |)d−1 <∞.

The simplest martingales are the Haar martingales, which correspond
to the σ-algebras Rn of d-dimensional dyadic rectangles (or dyadic
intervals in the one-dimensional case) defined in (39). Doob’s and
Cairoli’s theorems for Haar martingales are a consequences of Lebesgue
and Jessen-Marcinkewicz-Zygmund differentiation theorems correspond-
ingly. So, using Theorem 5, Doob’s and Cairoli’s theorems, can be also
deduced from Jessen-Marcinkewicz-Zygmund differentiation theorem.

To prove Theorem 5 we need the following

Lemma 8. If {An, n ∈ Nd} is an arbitrary sequence of multiple σ-
algebras and f ∈ L1(Qd), then there exists a regular sequence {Bn, n ∈
Nd} such that

md{EAnf(x) converges } ≥ md{EBnf(x) converges }.
Proof. Denote

G = {EAnf(x) diverges },

G(δ) =

{
lim sup
n→∞

EAnf(x)− lim inf
n→∞

EAnf(x) > δ

}
.
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We have

G = G(0) = ∪δ>0G(δ).

Thus for any ε > 0 there exists a number δ > 0, such that

md (G(δ)) > md(G)− ε.

Consider a sequence of multiindexes

(42) n(k) = (n
(k)
1 , . . . , n

(k)
d ), k = 1, 2, . . . ,

satisfying the relation n(k) ≤ n(k+1). Consider the sets

G(k)(δ) =

{
sup

n(k)≤n≤n(k+1)

EAnf(x)− inf
n(k)≤n≤n(k+1)

EAnf(x) > δ

}
.

Using the definition of G(δ), it is easy to observe, that for a suitable
sequence (42) we can ensure

md

(
G(k)(δ)

)
> md (G(δ))− ε

2k
, k = 1, 2, . . . .

Then we can find a regular sequence of multiple σ-algebras {Bn, n ∈
Nd}, such that

md

{
sup

n(k)≤n≤n(k+1)

|EAnf(x)− EBnf(x)| < δ

3

}
> 1− ε

2k
, k = 1, 2, . . . .

Thus we get

md

{
sup

n(k)≤n≤n
¯

(k+1)

EBnf(x)− inf
n(k)≤n≤n(k+1)

EBnf(x) >
δ

3

}

≥ mdG
(k)(δ) ∩

{
sup

n(k)≤n≤n(k+1)

|EAnf(x)− EBnf(x)| < δ

3

}
≥ md (G(δ))− 2ε

2k
≥ |G| − ε

2k−1
− ε

and therefore

md{EBnf(x) diverges }

≥ md

(
lim sup
k→∞

{
sup

n(k)≤n≤n(k+1)

EBnf(x)

− inf
n(k)≤n≤n(k+1)

EBnf(x) >
δ

3

})
≥ md(G)− ε.
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Since ε is arbitrary we get

md{EBnf(x) diverges } ≥ md{EAnf(x) diverges },
which completes the proof of lemma. �

Proof of Theorem 5. Using Lemma 8, in Theorem 5 we may suppose,
that {An} is regular too. Thus, applying Theorem 1, we define an
MP -transformation Θ corresponding to εi = i−1 with the properties
(6)-(8). We take g(x) = Θf(x). From (6) and (7) we obtain that for
the set

G =
⋃
n∈Nd

Gn

we have md(G) = 1. According to (8), for any x ∈ G, we can find an
index n(x), such that(

Θ ◦ EAn
)
f(x) =

(
EB̃n ◦Θ

)
f(x), if n ≥ n(x).

This means that the sequences(
Θ ◦ EAn

)
f(x) and

(
EB̃n ◦Θ

)
f(x) = EB̃ng(x)

converge simultaneously. Therefore, since md(G) = 1 and B̃n is a
subsequence of Bn, we get

md{EBng(x) converges }

≤ md{EB̃ng(x) converges }
= md{

(
Θ ◦ EAn

)
f(x) converges }

= md{EAnf(x) converges }.
�

For a given multiple sequence of σ-algebras A = {An : n ∈ Nd} we
consider the maximal function

MAf(x) = sup
n∈Nd

EAn|f(x)|

These maximal functions play significant role in the martingale con-
vergence theorems. We prove

Theorem 6. For any two different families A = {An, n ∈ Nd} and
B = {Bn, n ∈ Nd} of regular sequences of multiple σ-algebras and for
any function f ∈ L1(X) we have

sup
g: g∼f

md{x ∈ X : MAg(x) > λ} = sup
g: g∼f

md{x ∈ X : MBg(x) > λ}.
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Proof. Using Theorem 1, we define an MP -transformation Θ corre-
sponding to εi = ε/i with the properties (6)-(8). Let f(x) ∈ L1(Qd)
and g(x) = Θf(x). Such that

Gn ⊃ G1,1,...,1, n ∈ Nd

using (8), we get

(43) MAf(x) =MB̃g(x) ≤MBg(x), x ∈ G1,1,...,1.

Therefore, since P (G1,1,...,1) > 1− ε, we obtain

md{x ∈ Qd : MAf(x) > λ}
≤ md{x ∈ Qd : MBg(x) > λ}+ 1−md(G1,1,...,1)

≤ sup
g: g∼f

md{x ∈ Qd : MBg(x) > λ}+ ε.

Since ε is arbitrary, this implies

sup
g: g∼f

md{MAg(x) > λ} ≤ sup
g: g∼f

md{MBg(x) > λ}

Similarly we can prove the converse inequality and the theorem is
proved. �

Let Φ : R+ → R+ be an increasing convex function. Denote by
LΦ(Qd) the class of functions f on Qd with Φ(|f |) ∈ L1(Qd). If Φ
satisfies ∆2-condition Φ(2x) ≤ kΦ(x) then LΦ is Banach space with
the norm ‖f‖LΦ = ‖f‖Φ to be the least c > 0 for which the inequality

(44)

∫
T

Φ

(
|f |
c

)
≤ 1

holds.

Theorem 7. Let Φ : R+ → R+ be an increasing convex function.
Then for any two families A = {An, n ∈ Nd} and B = {Bn, n ∈ Nd}
of regular sequences of multiple σ-algebras we have

sup
g: g∼f

‖MAg(x)‖Φ = sup
g: g∼f

‖MBg(x)‖Φ.

Proof. From the inequality (43), obtained in the proof of Theorem 6,
we have

MAf(x) ≤MBg(x), x ∈ G = G1,1,...,1.

Therefore

(45) ‖MAf(x)‖Φ ≤ sup
g: g∼f

‖MBg(x)‖Φ + ‖MBf(x) · IG(x)‖Φ.
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Such that the norm ‖ · ‖Φ is absolute continuous the last term in (45)
can be sufficiently small. Hence we get

sup
g: g∼f

‖MAg(x)‖Φ ≤ sup
g: g∼f

‖MBg(x)‖Φ

and so the converse inequality. This completes the proof of Theorem
7. �

Theorem 8. Let {An, n ∈ Nd} be an arbitrary sequence of multiple
σ-algebras and f ∈ L1(Qd). Then there exists a subsequence {Bn, n ∈
Nd} of An, such that EBnf(x) converges a.s.

We say the multiple sequence of functions fn(x), x ∈ Qd, n ∈ Nd,
strongly converges to f(x) in measure, if

(46) lim
min
i∈A1

ni→∞
lim

min
i∈A2

ni→∞
. . . lim

min
i∈Ak

ni→∞
fn(x) = f(x)

for any partition A1, A2, . . . , Ak of the set {1, 2, . . . , d}, where the it-
erated limits are considered in the sense of measure. It is well known
that for any f ∈ L1(Qd) and for an arbitrary sequence {An, n ∈ Nd}
the multiple sequence EAnf(x) strongly converges in measure. So the
theorem immediately follows from the following

Lemma 9. If the multiple sequence of functions fn(x), x ∈ Qd, n ∈
Nd, strongly converges to f(x) in measure, then there exists a set
N ⊂ N such that the subsequence fn(x), n ∈ N d, converges almost
everywhere to f(x).

Proof. To avoid huge notations and for better understanding we prefer
to prove the lemma in the case of d = 2. So we consider a sequence
fn1,n2(x) which strongly converges in measure to f(x). According to
(46) we have

(47)

lim
n1→∞

fn1,n2(x) = f∞,n2(x),

lim
n2→∞

fn1,n2(x) = fn1,∞(x),

lim
n2→∞

f∞,n2(x) = f(x),

lim
n1→∞

fn1,∞(x) = f(x),

lim
n1,n2→∞

fn1,n2(x) = f(x).

where all the limits are considered in measure sense. We suppose that
the sequence N = {l1, l2, . . . , lk, . . .} have been already chosen. Then
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we denote

Gk =

{|flk,li(x)− f∞,li(x)| < 2−k, i = 1, 2, . . . , k − 1}
∩ {|fli,lk(x)− fli,∞(x)| < 2−k, i = 1, 2, . . . , k − 1}
∩ {|flk,∞(x)− f(x)| < 2−k}
∩ {|f∞,lk(x)− f(x)| < 2−k}
∩ {|flk,lk(x)− f(x)| < 2−k}.

Using (47), we can chose the sequence N , such that

md(Gk) > 1− 1

2k
.

Putting
G = ∪n∈N ∩k≥n Gk,

we will have md(G) = 1. Hence, it is enough to prove the convergence
of fln,lm(x) for any x ∈ G, as n,m→∞. If x ∈ G, then

x ∈ Gk, k > k(x).

Chose arbitrary integers n,m > k(x). If n = m, then, according to the
definition Gk, we have

|fln,lm(x)− f(x)| = |fln,ln(x)− f(x)| < 2−n.

If n < m, then we get

|fln,lm(x)− f∞,lm(x)| < 2−n,

|f∞,lm(x)− f(x)| < 2−n

and therefore we obtain

|fln,lm(x)− f(x)| < 2 · 2−n.
The lemma is proved. �

6. Riemann sums

In this section we display an application of martingale theorems in
Riemann sums, defined by

(48) Rnf(x) =
1

n

n−1∑
k=0

f

(
x+

k

n

)
, x ∈ T,

where f(x) is an integrable function on the torus T = [0, 1] = R/Z.
It will be an important complement to the paper [13] by author. It
is not hard to see, that if f is continuous then these sums converge
to the integral of f uniformly and they converge in L1(T) while f
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is Lebesgue integrable. We consider almost everywhere convergence
problems of Riemann sums or subsequences of (48). B. Jessen in [11]
proved a.e. convergence of subsequence R2kf(x) for any f ∈ L1(T).
W. Rudin [16] constructed an example of a function L∞(T), such that
Rnf(x) everywhere diverges. These are two fundamental theorems in
the theory of Riemann sums. Almost everywhere convergence problem
of Rlkf(x) for a given sequence of integers D = {1 ≤ 11 < l2 < . . .}
is investigated by many other authors([3], [5], [1], [2], [14], [15]). As
it is shown by Rudin [16] convergence properties of Rlkf(x) strongly
depend on arithmetic properties of D. L. E. Dubins and J. Pitman in
[5] proved, if

(49) D = {n ∈ N : n = pk1
1 p

k2
2 . . . pkdd , k1, k2, . . . , kd ∈ N}

where p1, p2, . . . , pd, are some fixed primes, then for any f ∈ L logd−1 L
the subsequence Rlkf(x) corresponding to (49) converges a.e.. Then
Y. Bugeaud and M. Weber in [3] proved that the class L logd−1 L is
nearly sharp.

Theorem A (Bugeaud, Weber). If the sequence D = {lk, k = 1, 2, . . .}
is defined by (49) and 0 < ε < 1, then there exists a function f ∈
L logd−1−ε L(T) such that Rlkf(x) is almost everywhere divergent.

The proof of this theorem is based on the method of R. C. Baker
[1], where author has proved a weaker version of this theorem. A final
correction in the last theorem is made by author in [13].

Theorem B (Karagulyan). Let lk be a sequence in (49) and φ : R+ →
R+ be an increasing function satisfying the condition

lim
x→∞

φ(x)

x lnd−1 x
= 0.

Then there exists a function f(x) ∈ Lφ, that is∫ 1

0

φ (|f(x)|) dx <∞,

such that the sequence Rlkf(x) is everywhere divergent.

We prove this theorem, establishing a direct connection between Rie-
mann maximal functions and ordinary maximal functions in Rd. We
associate with the set of integers (49) the family of d-dimensional rect-
angles {

x ∈ Qd :
ti − 1

psii
≤ xk <

ti
psii
, k = 1, 2, . . . , d

}
,

0 ≤ ti < psii , si = 0, 1, 2, . . . , i = 1, 2, . . . , d
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and denote it by RD. Consider two maximal functions

RDg(x) = sup
n∈D

Rn|g(x)|, x ∈ T,

and

MDf(x) = sup
R:x∈RD

1

|R|

∫
R

|f(t)|dt, x ∈ Qd.

In [13] we proved, that

(50) sup
‖g‖Φ≤1

md

{
x ∈ T : RDg(x) > λ

}
= sup
‖f‖Φ≤1

md

{
x ∈ Qd : MDf(x) > λ

}
,

for any λ > 0, where ‖ · ‖Φ is Orlicz norm defined in (44). Using
Theorem 6 we have

(51) sup
f∼g

md

{
x ∈ Qd : MDf(x) > λ

}
= sup

f∼g
md

{
x ∈ Qd : Mf(x) > λ

}
.

Since the norm ‖ · ‖Φ is rearrangement invariant, using (50) and (51),
we obtain

Theorem 9. If D is the set of indexes from (49), then

sup
‖g‖Φ≤1

md

{
x ∈ T : RDg(x) > λ

}
= sup
‖f‖Φ≤1

md

{
x ∈ Qd : Mf(x) > λ

}
,

where Mf(x) is the maximal function with respect to all dyadic rect-
angles defined in Section 5.
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