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The main goals of the talk are:

• to present a new type of limit theorems for random fields
with weakly dependent components (particularly, for Gibbs
random fields);

• to demonstrate the capabilities of the martingale method
for studying some models of the mathematical statistical
physics (ground states, critical point).



Martingale–difference random fields

A collection of random variables (ξt) = (ξt, t ∈ Zd), each of which

takes value in X will call a random field defined on Zd with phase space

X, X ⊂ R (in this talk we consider only the case of finite phase space, i.e.

1 < |X| <∞).

The distribution P of the random field (ξt) is the probability measure on

(XZd

,BZd

) (BZd is a sigma-algebra generated by the set of cylindric subsets

of XZd) such that P(B) = P ({ξt, t ∈ Zd} ∈ B),B ∈ BZd.

A random field (ξt) is called amartingale–difference random
field if E|ξt| <∞ for any t ∈ Zd and

E(ξt/ξs, s ∈ Zd\{t}) = 0 (a.s.) for any t ∈ Zd.

Example. Positive random field with symmetric (with respect to zero)

phase space and even finite-dimensional probability distribution, i.e. for all

V ∈W and x ∈ XV

PV (θtxt,t∈V )=PV (xt,t∈V ) for any θt∈{1,−1}.



Gibbs random fields

A random field P is called a Gibbs random field if it is
positive and for any x ∈ X and any t ∈ Zd there exist strictly
positive uniform (with respect to x̄ ∈ XZd\{t}) limits

qx̄t (x) = lim
V ↑Zd\{t}

P{t}∪V (xx̄V )

PV (x̄V )
.

The set Q(1) =
{
qx̄t , x̄ ∈ XZd\{t}, t ∈ Zd

}
is called a canonical

1–specification.



Representation of Gibbs random fields

Theorem 1.Let P be a Gibbs random field. Then corresponding
canonical 1–specification Q(1) admits the Gibbs representation
with the aid of uniformly convergent potential

Φ = {ΦV (x), x ∈ XV , V ∈W},

that is

qx̄t (x) =
exp{H x̄

t (x)}∑
z∈X

exp{H x̄
t (z)}

, x ∈ X,

where

H x̄
t (x) =

∑
J⊂W (Zd\{t})

Φ{t}∪J(xx̄J), x ∈ X.



Martingale–difference Gibbs random fields

Let P be a Gibbs random field with phase space X and let
Π = {X1, X2, ..., Xn} be a partition of X such that for any
k = 1, n ∑

x∈Xk
x = 0.

• If canonical 1–specification Q(1) of the Gibbs random field
P is such that for any t ∈ Zd, x̄ ∈ XZd\{t}, and k = 1, n

qx̄t (x) = qx̄t (x′), x, x′ ∈ Xk,

then P is a martingale–difference Gibbs random fields.
• If potential Φ corresponding to the Gibbs random field P
takes constant values on the elements of a partition Π of
phase space X, i.e. for any t ∈ Zd, V ∈W (Zd\{t}), x̄ ∈ XV and
k = 1, n

Φ{t}∪V (xtx̄V ) = Φ{t}∪V (x′tx̄V ), x, x′ ∈ Xk,

then P is a martingale–difference Gibbs random fields.



1. Martingale method
in the theory of limit theorems



Classical limit theorems
and their refinements
1. The central limit theorem

(CLT);

2. Rate of convergence in the

CLT;

3. The law of the iterated

logarithm;

4. Asymptotical behavior of

moments;

5. The local limit theorem

(LLT).

Valid for random fields
1. with independent components;

2. with weak dependent

components and suitable

decrease of correlations between

components;

3. Gibbs r.f. under suitable

conditions on corresponding

canonical 1–specification or

potential.

Let (ξt) be a random field. Denote

SVn =
∑
t∈Vn

ξt, =S = σ(ξt, t ∈ S),

Vn = [−n, n]d, n = 1,2, ..., S ⊂ Zd.



Weak dependence conditions

A homogenous random field (ξt) is called ergodic if for any
I,Λ ∈W

lim
n→∞

1

|Vn|
∑
a∈Vn

P
(
{ξt = xt, t ∈ I} ∩ {ξs+a = x̄s, s ∈ Λ}

)
=

= P (ξt = xt, t ∈ I)P (ξs = x̄s, s ∈ Λ),

where x ∈ XI, x̄ ∈ XΛ.

1. The weakest condition of weak dependence;
2. If Gibbs random field is unique, then it is ergodic;
3. In the general case it is not enough to obtain classical limit
theorems.



A homogenous random field (ξt) satisfies the uniform strong
mixing condition with coefficient ϕI if for any fixed I ∈W

sup
A∈=I ,B∈=V ,P (B)>0

{|P (A/B)− P (A)|} ≤ ϕI (ρ(I, V )),

where function ϕI(ρ), ρ ∈ R is such that ϕI(ρ) → 0 as ρ → ∞
and the set I is fixed (ρ(I, V ) stands for distance between sets
I and V ).

1. Gibbs random fields satisfy
this condition;
2. The CLT and logarithmic
rate of convergence in it; law
of the iterated logarithm;
3. In general case it is not
enough to obtain the LLT.



A homogenous random field (ξt) is conditionally independent
with coefficient βI if for any I, V,Λ ∈W such that I∩V = Ø and
I, V ⊂ Λ, and any random variables η1, η2 which are =I- and
=V -measurable correspondingly the following relation holds∣∣∣E (η1 · η2/=Λ\{I∪V }

)
− E

(
η1/=Λ\{I∪V }

)
· E

(
η2/=Λ\{I∪V }

)∣∣∣ ≤
≤ βI(ρ(I, V )),

where βI(ρ)→ 0 as ρ→∞ (and, hence, Λ ↑ Zd) and I is fixed.

1. Gibbs random fields with
finite range potentials;
2. The LLT.



The Central Limit Theorem

Theorem 2 (N., 1995). Let (ξt) be a homogeneous ergodic
(Gibbs) martingale–difference random field such that 0 < Eξ2

0 <∞.
Then

lim
n→∞P

 SVn√
DSVn

< x

 =
1√
2π

x∫
−∞

e−u
2/2du, x ∈ R.



Rate of convergence in the CLT.
Law of the iterated logarithm

Theorem 3 (Kh., N., 2013).Let (ξt) be a homogenous (Gibbs)
martingale–difference random field with phase space X, satisfying
the uniform strong mixing condition with coefficient ϕI such
that

ϕI(j) ≤ |I| · ϕ(j) and
∞∑
j=1

jd−1ϕ(j) <∞,

and let Eξ2
0 > 0. Then

sup
x∈R

∣∣∣∣∣∣∣P
 SVn√

DSVn
< x

− 1√
2π

x∫
−∞

e−u
2/2du

∣∣∣∣∣∣∣ ≤ C · n−d/8,

where positive constant C does not depend on n.

Theorem 4 (Kh., N., 2013). Under conditions of Theorem 3

P

lim sup
n→∞

SVn√
2DSVn ln ln |Vn|

= 1

 = 1.



Exact asymptotic for the moments of sums of components

Theorem 5 (Kh., N., 2013).Let (ξt) be a homogenous (Gibbs)
martingale–difference random field with phase space X. Then
for any k = 1,2, ...

E(SVn)2k−1 = C2k−1 · |Vn|k−1 ,

where constant C2k−1 does not depend on n.
If, moreover, the random field (ξt) satisfies the uniform strong
mixing condition with coefficient ϕI such that

ϕI(j) ≤ |I| · ϕ(j) and
∞∑
j=1

jd−1ϕ(j) <∞,

then for any k = 1,2, ...

E(SVn)2k = (2k − 1)!!(Eξ2
0)k |Vn|k + C2k |Vn|k−1 ,

where constant C2k does not depend on n.



Theorem 6 (Kh., N., 2013). Let (ξt) be a (Gibbs) martingale–
difference random field with phase space X, satisfying the
uniform strong mixing condition with coefficient ϕI such that

ϕI(j) ≤ |I| · ϕ(j) and
∞∑
j=1

jd−1ϕ(j) <∞,

and let Eξ2
0 > 0. Then for random field (ξt) the CLT is valid

and for any k = 1,2, ...

E

 SVn√
DSVn


k

→ Eζk as n→∞,

where ζ is a random variable with standard normal distribution.



Local limit theorem

Theorem 7 (Kh., N., 2016). Let (ξt) be a (Gibbs) martingale–
difference random field with phase space X ⊂ Z, and let there
exists γ > 0 such that for any finite I ⊂ V ⊂ Zd

P
(
SI = y/=V \I

)
≥ γ for any possible value y of SI .

If, in addition, (ξt) is a conditionally independent with coefficient
βI such that

βI(ρ) ≤ |I|β(ρ) and β(ρ) = µ(ρ) · ρ−3d/2,

where µ(ρ)→ 0 arbitrarily slow as ρ→∞, then for the martingale–
difference random field (ξt) the LLT is valid.



Associated martingale–difference random fields

For any given random field (ξt) by the method of randomization
one can construct a martingale–difference random field (ηt)

someway associated with (ξt).

Advantages:
1. The class of random fields with martingale properties is
extended.
2. The class of random fields for which classical limits theorems
are valid is extended.
3. The connection between a given random field and associated
martingale–difference can be used to study the asymptotical
behavior of sums of components of the given random field by
using the good properties martingale–differences.
4. Random field, associated with a Gibbs random field, is also
Gibbsian.



2. Martingale method
in the mathematical statistical physics



Martingale model

Φ̃V (y) =


−βh · |yt| , V = {t}
−β |yt| · |ys| , V = {t, s} and ‖t− s‖ = 1
0, in other cases

where ‖t− s‖ =
d∑

i=1

∣∣∣t(i) − s(i)
∣∣∣, t, s ∈ Zd and

yt, ys ∈ Y = {−1,0,1}

Hamiltonian has a form

H̃
β,h
V (y/ȳ) = −

β

2

∑
t,s∈V :
‖t−s‖=1

|yt| · |ys|−β
∑

t∈V,s∈Zd\V :
‖t−s‖=1

|yt| · |ȳs|−h
∑
t∈V
|yt|,

where h ∈ R — the external field,
β > 0 — the inverse temperature.



Phase diagram for the martingale model

Coordinates of the critical point (h∗cr, β
∗
cr) for the martingale

model

β∗cr = 2 ln(1 +
√

2), h∗cr = ln 2− 4 ln(1 +
√

2).



Ground states

The martingale model has infinitely many ground states,
namely all configurations which do not contain zeros

y± = (|yt| = 1, t ∈ Zd).

For configuration

y0 = (yt = 0, t ∈ Zd)

we have

H
y0
Zd\{t}
t (yt) = 0, t ∈ Zd.



Classical limit theorems for the Gibbs random field
corresponding to the martingale model

Outside the critical point
• the CLT;
• power rate of convergence in the CLT;
• the law of iterated logarithm;
• asymptotical behavior of moments of sums of components
in finite volumes (after suitable normalization) coincides with
the behavior of moments of standard normal distribution;
• the LLT.

At the critical point
• the CLT;
• the LLT.



On the investigation of the Ising model

The Ising ferromagnetic model is defined on Zd by means
of the nearest neighbor pair interaction potential

ΦV (x) =


−βh · xt, V = {t}
−β · xtxs, V = {t, s} and ‖t− s‖ = 1
0, in other cases

Hamiltonian has a form

H
x̄,β,h
V (x) = H

β,h
V (x/x̄) = −

β

2

∑
t,s∈V :
‖t−s‖=1

xtxs−β
∑

t∈V,s∈Z\V :
‖t−s‖=1

xtx̄s−h
∑
t∈V

xt,

Connection with martingale model:

x = 2 |y| − 1.



Phase diagram for the Ising model

(0, βcr) — critical point for the Ising model
(h∗cr, β

∗
cr) — critical point for the martingale model

β∗cr = 4βcr, h∗cr = −
ln 2

β∗cr
− d.



Ground states

The Ising model has two ground states

x+ = (xt = +1, t ∈ Zd) and x− = (xt = −1, t ∈ Zd).

The ground state x+ corresponds with all (infinitely many)
ground states y± of the martingale model.

The ground state x− corresponds with the state y0 which
is not the ground state of the martingale model.



Connection formulas
Theorem 8.The probability distribution of total spin SξV of the
Ising model by means of probability distribution of total spin
S
η
V of the martingale model is given by the following formula

P
(
S
ξ
V = k

)
=

= 2
k+|V |

2

[
n−|V |

4

]
∑
j=0

(−1)j
k + |V |+ 4j

k + |V |+ 2j
C
j
k+|V |

2 +j
P

(
S
η
V =

k + |V |
2

+ 2j

)
,

for any − |V | ≤ k ≤ |V |.

The characteristic function f
S
ξ
V

(t) of the total spin SξV has the

following form

f
S
ξ
V

(t) = e−it|V |
|V |∑

k=−|V |
cos

(
k arccos e2it

)
P
(
S
η
V = k

)
.



Classical limit theorems for the Gibbs random field
corresponding to the Ising model

Outside the critical point for the Gibbs random field corresponding
to the Ising model the CLT and the LLT are valid. But at the
critical point the situation remains unclear.

Since for the martingale model both the CLT and the LLT
hold at the critical point (h∗cr, β

∗
cr) and the connection formulas

between martingale and Ising models are known, the martingale
method can be applied for discovering a limit distribution of
the Ising model total spin at its critical point (0, βcr).



Thank you

for your attention
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