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Introduction

The problems relating to the multidimensional martingales are now becoming more
and more attractive (see, for instance, [1–12]). In the mentioned works the large
and interesting classes of such martingales are described and various limit theorems
are obtained. It was also demonstrated the applicability of the martingale method
in the mathematical statistical physics, particularly in the theory of Gibbs random
fields.

In [3], a martingale model associated with the Ising model was constructed. It
was shown that for this model the central limit theorem for the total spin (CLTS) is
valid for all values of parameters including the critical one. The latter is of special
interest as far as according to the generally accepted hypothesis the asymptotic
normality of the total spin at a critical point should not occur.

In this paper the connection formulas between the martingale and the Ising
models total spins probability distributions is established. We also found the simple
form of the total spin characteristic function of the martingale model expressed in
terms of the Ising model total spin distribution and vice versa. It allows to obtain the
direct proof of CLTS for the martingale model and specify the way of proving CLTS
for the Ising model for non critical parameters. Since CLTS for martingale model
holds for all values of parameters we presume that above mentioned connection
formulas give a possibility to find a limiting law for the Ising model total spin at
the critical point.

1 Preliminaries

Here we present the basic concepts and notations used in this paper. Let Zd, d ≥ 1
be the d-dimensional integer lattice, W =

{
V ⊂ Zd, |V | <∞

}
1 be the set of all

finite subsets of Zd and X ⊂ R be some set.
A collection of random variables (ξt) =

(
ξt, t ∈ Zd

)
, each of which takes value in

X we will call a random field defined on Zd with phase space X.
For any S ⊂ Zd, xt ∈ X we denote by XS = {(xt, t ∈ S)} the space of all

configurations on S. If S = Ø, we assume that the space XØ = {Ø}. For any
S, T ⊂ Zd such that S ∩ T = Ø and any configurations x ∈ XS and y ∈ XT , we
denote by xy the concatenation of x and y, that is, the configuration on T ∪S equal

1Here and below the symbol |V | is used to denote the power of the finite set V .
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to x on S and to y on T . For any S ⊂ T , x ∈ XT , we denote by xS the restriction
of x on S.

Let =Zd be the σ-algebra, generated by cylinder subsets of the set XZd . The

distribution of a random field (ξt) is the probability measure P on
(
XZd ,=Zd

)
,

such, that
Pr
{(
ξt, t ∈ Zd

)
∈ B

}
= P (B) , B ∈ =Zd .

Let us define a group of transformations τa, a ∈ Zd onXZd such that (τax)t = xt+a
for any x ∈ XZd . Let L be the σ-algebra of invariant subsets of XZd

L = {A ∈ =Zd : τaA = A}.

A random field (ξt) with distribution P is called homogeneous random field if for
any A ∈ =Zd and a ∈ Zd

P (τaA) = P (A) ,

and is called ergodic random field if its distribution P is trivial on L , i.e. P (A) ∈
{0, 1} when A ∈ L .

A random field (ξt) is called a martingale–difference random field (see [1]), if for
any t ∈ Zd

E |ξt| <∞ and E
(
ξt
/
ξs, s ∈ Zd\ {t}

)
= 0 (a.s.).

Here E
(
ξt
/
ξs, s ∈ Zd\ {t}

)
is the conditional expectation of ξt with respect to σ-

algebra generated by random variables ξs, s ∈ Zd\ {t}, t ∈ Zd.
The main result for the martingale–difference random fields is the CLT ( [2]).

Theorem 1. Let (ξt) be a homogenous ergodic martingale–difference random field
such that 0 < σ2 = Eξ2

0 <∞. Then

lim
n→∞

P

(
1

σ |Vn|
∑
t∈Vn

ξt < x

)
=

1√
2π

x∫
−∞

e−u
2/2du, x ∈ R,

where Vn is a d-dimensional cube with side length n, n = 1, 2, ....

2 The Ising model

Ising ferromagnetic model (further — Ising model) is defined on Zd by means of the
nearest neighbor pair interaction potential

Φ{t,s} (xtxs) =


xtxs, ‖t− s‖ = 1

0, ‖t− s‖ 6= 1

where xt, xs ∈ X = {−1, 1} and ‖t− s‖ =
d∑
i=1

∣∣t(i) − s(i)
∣∣, t, s ∈ Zd. The Hamiltonian

of this model is equal

Hh
V (x/x̄) = −1

2

∑
t,s∈V :
‖t−s‖=1

xtxs −
∑

t∈V,s∈∂V :
‖t−s‖=1

xtx̄s − h
∑
t∈V

xt,
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where x ∈ XV , x̄ ∈ XZd\V , V ∈ W and the parameter h ∈ R corresponds to the
external field. Let β > 0 be a parameter proportional to the inverse temperature.
The conditional probability distribution of Gibbs random field (ξt) corresponding to
the Ising model is defined by the following way

P β,h
V

(
ξt = xt, t ∈ V

/
ξs = x̄s, s ∈ Zd\V

)
= P β,h

V (x/x̄) =
exp

{
−βHh

V (x/x̄)
}∑

z∈XV

exp
{
−βHh

V (z/x̄)
} ,

for any V ∈ W , x ∈ XV and x̄ ∈ XZd\V .
Denote

P β,h
V,+ = P β,h

V (x/x̄s = 1, s ∈ ∂V ) and P β,h
V,− = P β,h

V (x/x̄s = −1, s ∈ ∂V ) ,

where
∂V =

{
t ∈ Zd\V : ρ (t, V ) = 1

}
, ρ (t, V ) = min

s∈V
|t− s| .

It is well known that P β,h
V,+ and P β,h

V,− are weakly converge to some limits P β,h
+ and

P β,h
− when V ↑ Zd. For d = 1 there exist the unique limiting distribution ( [13]), i.e.

P β,h
+ = P β,h

−

for any values of parameters (β, h). In the case d = 2 the uniqueness takes place
only for h 6= 0, 0 < β <∞ and h = 0, 0 < β < βcr, where βcr is the critical inverse
temperature. But for h = 0 and β > βcr we have

P β,h
+ 6= P β,h

− .

A point (βcr, 0) is the critical point for the Ising model.

3 The martingale model

Consider the model which was introduced in [3]. The pair correlation between spins
in this model is equal to zero for any values of (β, h). This model is defined by the
following nearest neighbor pair interaction potential

Φ̃{t,s} (ytys) =

{
|yt| · |ys| , ‖t− s‖ = 1
0, ‖t− s‖ 6= 1,

where yt, ys ∈ Y = {−1, 0, 1}, t, s ∈ Zd. This potential is even, i.e.

ΦV (xt, t ∈ V ) = ΦV (|xt| , t ∈ V ) , x ∈ XV , V ∈ W.

It was shown in [1] that a Gibbs random field with symmetric (with respect to zero)
phase space and even potential is a martingale–difference random field. Hence the
Gibbs random field (ηt) corresponding to the potential Φ̃ is a martingale–difference.
The Hamiltonian of this martingale model is given by

H̃h
V (y/ȳ) = −1

2

∑
t,s∈V :
‖t−s‖=1

|yt| · |ys| −
∑

t∈V,s∈∂V :
‖t−s‖=1

|yt| · |ȳs| − h
∑
t∈V

|yt|,
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where y ∈ Y V , ȳ ∈ Y Zd\V , V ∈ W .
Let us rewrite the Hamiltonian H̃h

V (y/ȳ) in a more convenient form. Using the
same idea which was used in [3] one can obtain

H̃h
V (y/ȳ) = −1

8

∑
t,s∈V :
‖t−s‖=1

(2 |yt| − 1) · (2 |ys| − 1)− 1

4

∑
t∈V,s∈∂V :
‖t−s‖=1

(2 |yt| − 1) · (2 |ȳs| − 1)−

−h+ d

2

∑
t∈V

(2 |yt| − 1)− 1

2

∑
t∈V,s∈∂V :
‖t−s‖=1

|ȳs| − f (|V | , |∂V |) =

=
1

4
H

h+d
2

V (2 |y| − 1/2 |ȳ| − 1)− 1

2

∑
t∈V,s∈∂V :
‖t−s‖=1

|ȳs|+ f (|V | , |∂V |)

where

f (|V | , |∂V |) =
d

2
|V |+ h

2
|V | − 1

8

∑
t,s∈V :
‖t−s‖=1

1− 1

4

∑
t∈V,s∈∂V :
‖t−s‖=1

1,

and
2 |y| − 1 = {2 |yt| − 1, t ∈ V } , 2 |ȳ| − 1 = {2 |ȳs| − 1, s ∈ ∂V } .

The conditional probability distribution of the Gibbs random field (ηt) takes the
form

Qβ,h
V

(
ηt = yt, t ∈ V

/
ηs = ȳs, s ∈ Zd\V

)
= Qβ,h

V (y/ȳ) =
exp

{
−βH̃h

V (y/ȳ)
}

∑
z∈Y V

exp
{
−βH̃h

V (z/ȳ)
} =

=

exp

{
−β

4
H

h+d
2

V (2 |y| − 1/2 |ȳ| − 1)

}
∑
z∈Y V

exp

{
−β

4
H

h+d
2

V (2 |z| − 1/2 |ȳ| − 1)

} .
It is not difficult to see that∑

z∈Y V
exp

{
−β

4
H

h+d
2

V (2 |z| − 1/2 |ȳ| − 1)

}
=

= 2|V |/2
∑

z∈XV

exp

{
−β

4
H

h+d−4(ln 2)/β
2

V (2 |z| − 1/2 |ȳ| − 1)

}
.

Hence

Qβ,h
V (y/ȳ) =

= 2
−

∑
t∈V
|yt|
·

exp

{
−β

4
H

h+d−4(ln 2)/β
2

V (2 |y| − 1/2 |ȳ| − 1)

}
∑
z∈Y V

exp

{
−β

4
H

h+d−4(ln 2)/β
2

V (2 |z| − 1/2 |ȳ| − 1)

} =

= 2
−

∑
t∈V
|yt|
P

β
4
,
h+d−4(ln 2)/β

2
V (2 |y| − 1/2 |ȳ| − 1) .

Denote
Qβ,h
V,0 = Qβ,h

V (y/ȳs = 0, s ∈ ∂V ) ,
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Qβ,h
V,+ = Qβ,h

V (y/ȳs = 1, s ∈ ∂V ) ,

Qβ,h
V,− = Qβ,h

V (y/ȳs = −1, s ∈ ∂V ) .

We have

Qβ,h
V,0 = 2

−
∑
t∈V
|yt|
P

β
4
,
h+d−4(ln 2)/β

2
V,− (2 |y| − 1) ,

Qβ,h
V,+ = Qβ,h

V,− = 2
−

∑
t∈V
|yt|
P

β
4
,
h+d−4(ln 2)/β

2
V,+ (2 |y| − 1) .

Further for any I ⊂ V one can write(
Qβ,h
V,0

)
I

(y) = 2
−

∑
t∈V
|yt|
(
P

β
4
,
h+d−4(ln 2)/β

2
V,−

)
I

(2 |y| − 1) (1)

and (
Qβ,h
V,+

)
I

(y) =
(
Qβ,h
V,−

)
I

(y) = 2
−

∑
t∈V
|yt|
(
P

β
4
,
h+d−4(ln 2)/β

2
V,+

)
I

(2 |y| − 1) . (2)

Since as V ↑ Zd the limits in the right hand sides of (1) and (2) exist, then there
also exist limits (

Qβ,h
j

)
I

(y) = lim
V ↑Zd

(
Qβ,h
V,j

)
I

(y) , j ∈ {0,+,−},

and (
Qβ,h

0

)
I

(y) = 2
−

∑
t∈V
|yt|
(
P

β
4
,
h+d−4(ln 2)/β

2
−

)
I

(2 |y| − 1) ,

(
Qβ,h

+

)
I

(y) =
(
Qβ,h
−

)
I

(y) = 2
−

∑
t∈V
|yt|
(
P

β
4
,
h+d−4(ln 2)/β

2
+

)
I

(2 |y| − 1) .

From these equations we conclude that the limiting distribution for the martin-
gale model is unique whenever

h+ d− 4 (ln 2) /β

2
6= 0, β > 0

and
h+ d− 4 (ln 2) /β

2
= 0, 0 <

β

4
< βcr

(since for corresponding parameters we have uniqueness in the Ising model), and
there is a phase transition on the curve

h+ d− 4 ln 2

β
= 0, β > 4βcr.

The critical point (β∗cr, h
∗
cr) of the martingale model has coordinates

β∗cr = 4βcr, h∗cr =
4 ln 2

β∗cr
− d,

where βcr is the critical inverse temperature for the Ising model. Note that at the
critical point the limiting distribution Qβ∗cr,h

∗
cr is unique.
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4 Connection formulas of total spins probability

distributions

Denote by SξV =
∑
t∈V

ξt and SηV =
∑
t∈V

ηt the total spins in the volume V ∈ W for the

Ising model and the martingale model respectively. The relation

ξt = 2 |ηt| − 1, t ∈ Zd

allows to find the connection between probability distributions of total spins SξV and
SηV . In [3] the formula expressing the probability distribution of SηV by means of the
probability distribution of SξV and the inverse formula expressing the probability
distribution of SξV by means of the probability distribution of SηV were established.

Let us note that the inverse formula obtained in [3] is quite complicated and
inconvenient for further study. In this paper a more compact form for the connection
formula of total spins probability distribution is found.

For the sake of simplicity we will consider the random field (ζt) with phase
space Z = {0, 1} instead of the random field (ξt) with phase space X = {−1, 1}
corresponding to the Ising model, such that

ζt =
ξt + 1

2
, t ∈ Zd.

Then
ζt = |ηt| , t ∈ Zd.

The following two theorems present the connection formulas between probability
distributions of total spins SζV and SηV .

Theorem 2. The probability distribution of total spin SηV by means of probability
distribution of total spin SζV is given by the following formulas

P (SηV = k) =

[(|V |−k)/2]∑
m=0

2−(k+2m)Cm
k+2mP

(
SζV = k + 2m

)
, 2 (3)

P (SηV = k) = P (SηV = −k) , k = 0, 1, ..., |V | ,

where [·] denotes the integer part of number.

Proof. Denote V + = {t ∈ V : ηt = +1} and V − = {t ∈ V : ηt = −1}. Then

SηV =
∑
t∈V

ηt =
∣∣V +

∣∣− ∣∣V −∣∣ .
Hence the event {ω : SηV = k} can be rewrite as follows{

ω :
∑
t∈V

ηt = k

}
=

{
ω : |V +| = k +m, |V −| = m, 0 ≤ m ≤ |V | − k

2

}
=

=
⋃
m

⋃
I⊂V
|I|=k+2m

⋃
Ĩ⊂I
|Ĩ|=m

{
ω : ηt = −1, t ∈ Ĩ , ηt = +1, t ∈ I\Ĩ , ηt = 0, t ∈ V \I

}
,

2Here and below Ck
n stands for the binomial coefficient, i.e. the coefficient of xk in the expansion

of (1 + x)
n
.
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where I = {t ∈ V : ηt = ±1}, Ĩ = {t ∈ V : ηt = −1}, Ĩ ⊂ I ⊂ V , 0 ≤ k ≤ |V |.
Then

P (SηV = k) =
[(|V |−k)/2]∑

m=0

∑
I⊂V
|I|=k+2m

∑
Ĩ⊂I
|Ĩ|=m

P
(
ηt = −1, t ∈ Ĩ , ηt = +1, t ∈ I\Ĩ , ηt = 0, t ∈ V \I

)
=

=
[(|V |−k)/2]∑

m=0

∑
I⊂V
|I|=k+2m

∑
Ĩ⊂I
|Ĩ|=m

2−(k+2m)P (ζt = 1, t ∈ I, ζt = 0, t ∈ V \I) =

=
[(|V |−k)/2]∑

m=0

2−(k+2m)Cm
k+2m

∑
I⊂V
|I|=k+2m

P (ζt = 1, t ∈ I, ζt = 0, t ∈ V \I) =

=
[(|V |−k)/2]∑

m=0

2−(k+2m)Cm
k+2mP

(
SζV = k + 2m

)
.

Similarly

P (SηV = −k) =

[(|V |−k)/2]∑
m=0

2−(k+2m)Cm
k+2mP

(
SζV = k + 2m

)
,

i.e. P (SηV = −k) = P (SηV = k), 0 ≤ k ≤ |V |.

More important is the following theorem.

Theorem 3. The probability distribution of total spin SζV by means of probability
distribution of total spin SηV is given by the following formulas

P
(
SζV = 0

)
= P (SηV = 0) + 2

[|V |/2]∑
m=1

(−1)m P (SηV = 2m),

P
(
SζV = k

)
= 2k

[(|V |−k)/2]∑
m=0

(−1)m
k + 2m

k +m
Cm
k+mP (SηV = k + 2m) (4)

for any k = 1, 2, ..., |V |.

Proof. Denote

bk+2m = 2−(k+2m)P
(
SζV = k + 2m

)
.

The relation (3) will be written as follows

P (SηV = k) =

[(|V |−k)/2]∑
m=0

Cm
k+2mbk+2m,

which is one of mutually inverse relations of Chebyshev type (see, for example, [14]).
Then

bk =
[(|V |−k)/2]∑

m=0

(−1)m
(
Cm
k+m + Cm−1

k+m−1

)
P (SηV = k + 2m) =

=
[(|V |−k)/2]∑

m=0

(−1)m
k + 2m

k +m
Cm
k+mP (SηV = k + 2m),
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which proves the relation (4). The expression for P
(
SζV = 0

)
follows from the

requirement
|V |∑
k=0

P
(
SζV = k

)
= 1.

5 Characteristic functions

Relations obtained in Theorem 2 allow to express the characteristic function of the
total spin SηV in terms of the probability distribution of the total spin SζV .

Theorem 4. The characteristic function fSηV (t) of the total spin SηV has the follow-
ing form

fSηV (t) =

|V |∑
k=0

(cos t)k P
(
SζV = k

)
.

Proof. For the sake of simplicity let us denote |V | = n,

P
(
SζV = j

)
= a

(n)
j , j = 0, n,

P (SηV = j) = b
(n)
j , j = −n, n.

By virtue of Theorem 2 one have

b
(n)
2k =

[n/2]∑
j=k

2−2jCj−k
2j a

(n)
2j , k = 0, 1, ..., [n/2] ,

b
(n)
2k−1 =

[n/2]∑
j=k

2−2j+1Cj−k
2j−1a

(n)
2j−1, k = 1, 2, ..., [n/2] ,

bk = b−k, k = −n, n.
Then

fSηV (t) = EeitS
η
V = b

(n)
0 +

[n/2]∑
k=1

(
eit2k + e−it2k

)
b

(n)
2k +

[n/2]∑
k=1

(
eit(2k−1) + e−it(2k−1)

)
· b(n)

2k−1 =

= b
(n)
0 +

[n/2]∑
j=1

2−2ja
(n)
2j

j∑
k=1

Cj−k
2j

(
eit2k + e−it2k

)
+

+
[n/2]∑
j=1

2−2j+1a
(n)
2j−1

j∑
k=1

Cj−k
2j−1

(
eit(2k−1) + e−it(2k−1)

)
.

It is not difficult to show, that

(
1 + e2it

)2j
= e2it

[
Cj

2j +

j∑
k=1

Cj−k
2j

(
eit2k + e−it2k

)]
.

Hence

j∑
k=1

Cj−s
2j

(
eit2k + e−it2k

)
= e−2itj

(
1 + e2it

)2j − Cj
2j =

(
e−it + eit

)2j − Cj
2j.
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Similarly, from

(
1 + e2it

)2j−1
= eit(2j−1)

j∑
k=1

Cj−k
2j−1

(
e−it(2k−1) + eit(2k−1)

)
we have

j∑
k=1

Cj−k
2j−1

(
e−it(2k−1) + eit(2k−1)

)
=
(
e−it + eit

)2j−1
.

Taking into account that b
(n)
0 =

[n/2]∑
j=0

2−2jCj
2ja

(n)
2j , we finally obtain

fSηV (t) =
n∑
j=0

(
e−it + eit

2

)j
a

(n)
j =

n∑
j=0

(cos t)j a
(n)
j .

The next theorem establishes the expression for the characteristic function of
the total spin SζV in terms of probability distribution of the total spin SηV . It is
interesting that in obtained expression the coefficients are the known Chebyshev
polynomials of the first kind.

Theorem 5. The characteristic function fSζV
(t) of the total spin SζV has the follow-

ing form

fSζV
(t) =

|V |∑
k=−|V |

cos
(
k arccos eit

)
P (SηV = k).

Proof. Here we will use the notations introduced in the proof of Theorem 4. By
virtue of the Theorem 3 one have

a
(n)
0 = b

(n)
0 + 2

[n/2]∑
m=0

(−1)m b
(n)
2m,

a
(n)
2k = (−1)k 22k

[n/2]∑
m=k

(−1)k
2m

k +m
Cm−k
m+k b

(n)
2m,

a
(n)
2k−1 = (−1)k 22k−1

[n/2]∑
m=k

(−1)m
2m− 1

m+ k − 1
Cm−k
m+k−1b

(n)
2m−1,

for any k = 1, 2, ..., n/2. Then

fSζV
(t) = EeitS

ζ
V = a

(n)
0 +

[n/2]∑
j=1

eit2ja
(n)
2j +

[n/2]∑
j=1

eit(2j−1)a
(n)
2j−1 =

= b
(n)
0 +

[n/2]∑
k=1

(−1)k b
(n)
2k

k∑
j=0

2k

k + j
Ck−j
k+j (−4e2it)

j
+

+
[n/2]∑
k=1

(−1)k b
(n)
2k−1

2eit

k∑
j=1

2k − 1

k + j − 1
Ck−j
k+j−1 (−4e2it)

j
.
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Denote k − j = s. One have

k∑
j=0

2k

k + j
Ck−j
k+j

(
−4e2it

)j
=
(
−4e2it

)k k∑
s=0

2k

2k − s
Cs

2k−s
(
−4e2it

)−s
and

k∑
j=1

2k − 1

k + j − 1
Ck−j
k+j−1

(
−4e2it

)j
=
(
−4e2it

)k k∑
s=0

2k − 1

2k − 1− s
Cs

2k−1−s
(
−4e2it

)−s
Hence

fSζV
(t) = b

(n)
0 +

n∑
k=1

2keitkb
(n)
k

[k/2]∑
s=0

k

k − s
Cs
k−s
(
−4e2it

)−s
.

Let us transform the known expression of the Chebyshev polynomials (see, for
example, [15]). We obtain

cos (k arccosx) =

[k/2]∑
s=0

(−1)s
k

k − s
Cs
k−s2

k−2s−1xk−2s = 2k−1xk
[k/2]∑
s=0

k

k − s
Cs
k−s ·

(
−4x2

)−s
.

Then

fSζV
(t) = b

(n)
0 + 2

n∑
k=1

cos
(
k arccos eit

)
b

(n)
k .

Since b
(n)
k = b

(n)
−k , we finally obtain

fSζV
(t) =

n∑
k=−n

cos
(
k arccos eit

)
b

(n)
k .

6 On the limit theorems

As it was mentioned above the limiting distribution Qβ∗cr,h
∗
cr of the martingale model

at the critical point is unique. Hence it is ergodic ( [16]). Since the potential Φ̃ is
translation invariant the corresponding to this model martingale–difference random
field (ηt) is homogenous. Hence the random field (ηt) satisfies the conditions of
Theorem 1, and therefore CLTS for the martingale model holds also at the critical
point (β∗cr, h

∗
cr).

However the result of the Theorem 4 allows to easily obtain the direct proof of
the asymptotic normality of the total spin SηV .

Theorem 6. Let f
SηV /
√
DSηV

(t) be a characteristic function of the normalized total

spin
SηV√
DSηV

. Then

f
SηV /
√
DSηV

(t)→ e−t
2/2 as V ↑ Zd.

10



Proof. Since random field (ζt) is homogenous let us denote P (ζt = 1) = p, t ∈ Zd.
It is clear that MSζV = p |V |. Since (ηt) is a martingale–difference random field we
have MSηV = 0 and

DSηV = E (SηV )2 =
∑
t∈V

Eη2
t =

∑
t∈V

P
(
η2
t = 1

)
=
∑
t∈V

P (ζt = 1) = p |V | .

Here we used the relation ζt = |ηt| = η2
t , t ∈ Zd.

By virtue of the Theorem 4 one can write

f
SηV /
√
DSηV

(t) = E exp

{
it

SηV√
p |V |

}
=

|V |∑
j=0

(
cos

t√
p |V |

)j

P
(
SζV = j

)
.

Further sequentially applying the Maclaurin series to functions

cosx = 1− x2

2
+ o

(
x4
)

and
(1 + x)j = 1 + jx+ o

(
x2
)
,

we obtain (
cos

t√
p |V |

)j

= 1− j · t2

2p |V |
+ j · o

(
|V |−2)+ o

(
|V |−4) .

Then

f
SηV /
√
DSηV

(t) =
n∑
j=0

(
1− j · t2

2p |V |
+ j · o

(
|V |−2)+ o

(
|V |−4))P (SζV = j

)
=

= 1− t2

2p |V |
ESζV + o

(
|V |−2)ESζV + o

(
|V |−4) = 1− t2

2
+ o

(
|V |−1) ,

and the assertion of the theorem follows.

In [17] it was shown that for Gibbs random fields corresponding to bounded finite
range potential the local limit theorem for the total spin (LLTS) follows from the
central limit theorem. Thereby for the martingale model LLTS is also valid.

Now we return to the consideration of the Ising model. Since ξt = 2ζt − 1 for
any t ∈ Zd we have SξV = 2SζV − |V | for each V ∈ W . This observation leads to the
following results.

Theorem 7. The probability distribution of total spin SξV by means of probability
distribution of total spin SηV is given by the following formula

P
(
SξV = k

)
= 2(k+|V |)/2

[(n−|V |)/4]∑
j=0

(−1)j
k + |V |+ 4j

k + |V |+ 2j
Cj
k+|V |

2
+j
P

(
SηV =

k + |V |
2

+ 2j

)
,

for any − |V | ≤ k ≤ |V |.

Theorem 8. The characteristic function fSξV
(t) of the total spin SξV has the follow-

ing form

fSξV
(t) = e−it|V |

|V |∑
k=−|V |

cos
(
k arccos e2it

)
P (SηV = k).

11



It is known that CLTS for the Ising model holds for non critical values of (β, h)
(see, for example [18]). Let us note that the results of Theorems 7 – 8 also give a
possibility to prove same result for the Ising model by virtue of their validity for the
martingale model.

It is known that when h = 0 and β ↑ βcr the correlation between components of
random field (ξt) corresponding to the Ising model grows and one can not consider
the components of (ξt) as a weakly dependent random variables. Hence it is assumed
that CLTS can not be valid at the critical point for the Ising model. In the same
time for the martingale model CLTS and LLTS hold for any values of parameters.
This fact gives us a hope to find by proposed method a limiting law for the Ising
model total spin at the critical point.
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Abstract

A martingale model associated with the Ising model is considered. The char-
acteristic function of the martingale model total spin was expressed in terms
of the Ising model total spin distribution and vice versa. The direct proof of
central limit theorem for the martingale model total spin was obtained. The
possible way of proving the central limit theorem for the Ising model total
spin was specified.
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