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Abstract

Here the Bernoulli polynomials are exploited for acceleration of conver-

gence of two-dimensional Fourier series and periodic trigonometric interpola-

tions. The principal term of asymptotic expansion of L2− error is revealed.
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1 Introduction

Approximations of smooth but non periodic functions on the finite interval
[a, b] (f(a) 6= f(b)) by the partial sums of Fourier expansion or by periodic
trigonometric interpolation are non efficient due to slow L2-convergence and
essential influence of the Gibbs phenomenon at the end-points of the interval.
For corresponding trigonometric approximation the acceleration of conver-
gence can be reached by the method, based on application of Bernoulli poly-
nomials ([1]-[3]). The efficiency of the numerical realization of this method
is based on the calculation of the jumps f (k)(b) − f (k)(a) (k = 0, 1, · · ·) by
the Fourier (discrete Fourier) coefficients.
In [4] this approach was generalized for the functions of two variables.

The main difficulty was the calculation of jumps since we were not only
computing the jumps at the tops but also at the edges of the square.
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In [5] L2−convergence of similar polynomial-periodic approximations of
sufficiently smooth on [-1,1] functions by translates of a fixed periodic func-
tions was considered and exact formulae for the principal term of the corre-
sponding asymptotic expansions of errors were obtained.
Here we obtain exact asymptotic formulae for the principal term of L2−

error for approximations derived in [4].

2 Notation and Definitions

We put

fn =
1

2

Z 1

−1
f(x)e−iπnxdx, fn,m =

1

4

Z 1

−1

Z 1

−1
f(x, y)e−iπ(nx+my)dxdy,

f̌n,m =
1

(2N + 1)2

NX
k,s=−N

f(xk, xs)e
−iπ(nxk+mxs), xk =

2k

2N + 1
.

The Bernoulli polynomials on the interval [−1, 1] are determined from
the following recurrence relations

B0(x) = x/2, Bk(x) =
Z
Bk−1(x) dx,

Z 1

−1
Bk(x) dx = 0, k = 1, 2, · · · .

The Fourier coefficients of Bk have the form

(Bk)n =

(
0, n = 0
(−1)n+1
2(iπn)k+1

, n = ±1,±2, · · · (1)

Now denote

f (k,s)(x, y) =
∂k+s

∂xk∂ys
f(x, y),

uk(y) = f
(k+1,k+1)(1, y)− f (k+1,k+1)(−1, y),

vk(x) = f
(k+1,k+1)(x, 1)− f (k+1,k+1)(x,−1)

and

euk(y) = Z 1

−1
Bk(t)uk(y − t)dt, evk(x) = 1

2

Z 1

−1
Bk(t)vk(x− t)dt. (2)
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According to well-known Parseval’s equality (see [6], Chapter 2, §1) we have
Z 1

−1
|euk(y)|2dy = 2

π2k+2
X
n∈Z

0 |(uk)n|2
n2k+2

(3)

and Z 1

−1
|evk(x)|2dx = 2

π2k+2
X
n∈Z

0 |(vk)n|2
n2k+2

. (4)

Let Z be the set of integers and consider the following functions defined on
the interval [−1/2, 1/2]1

Φk(x) =
X
s∈Z

0 (−1)s
(x+ s)k+1

, k = 0, 1, · · · . (5)

It is easy to check that

Φk(x) = (−1)k
Φ
(k)
0 (x)

k!
, Φ0(x) =

πx− sin πx
x sin πx

. (6)

Finally by || · || we denote the standard norm of the space L2(−1, 1).

3 Acceleration of Trigonometric Approxima-

tions

Our investigations are based on the following

Lemma [4]. For any f ∈ C2q+2([−1, 1]× [−1, 1]), q ≥ −1 holds (n,m 6= 0)

fn,m =
(−1)n+1
4

qX
k=0

1

(iπn)k+1

Z 1

−1

³
f (k,0)(1, t)− f (k,0)(−1, t)

´
e−iπmtdt+

+
(−1)m+1

4

qX
s=0

1

(iπm)s+1

Z 1

−1

³
f (0,s)(t, 1)− f (0,s)(t,−1)

´
e−iπntdt−

−(−1)
n+m

4

qX
s=0

qX
k=0

∆k,s

(iπn)k+1(iπm)s+1
+

1Here and below the prime on summation indicates that the zero term is omitted.
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+
1

4(iπn)q+1(iπm)q+1

Z 1

−1

Z 1

−1
f (q+1,q+1)(t, z)e−iπnte−iπmzdzdt (7)

where

∆k,s = f
(k,s)(1, 1)− f (k,s)(−1, 1)− f (k,s)(1,−1) + f (k,s)(−1,−1).

Proof can be done easily using integration by parts for variables x and y
consequently in fn,m.•
Application of (7) with (1) leads to the following expansion

f(x, y) = G(x, y) + F (x, y) (8)

where F ∈ C2q+2([−1, 1]× [−1, 1]) is some 2-periodic function and

G(x, y) =
qX
k=0

Bk(x)
³
f (k,0)(1, y)− f (k,0)(−1, y)

´
+

+
qX
s=0

Bs(y)
³
f (0,s)(x, 1)− f (0,s)(x,−1)

´
−

qX
s=0

qX
k=0

∆ksBk(x)Bs(y)−

−1
2

qX
k=0

Bk(x)
Z 1

−1

³
f (k,0)(1, t)− f (k,0)(−1, t)

´
dt−

−1
2

qX
s=0

Bs(y)
Z 1

−1

³
f (0,s)(t, 1)− f (0,s)(t,−1)

´
dt+

+
1

2

Z 1

−1
f(t, y)dt+

1

2

Z 1

−1
f(x, t)dt. (9)

Now consider the following q−accelerated decomposition

SqN(f) = G(x, y) +
NX

n,m=−N
(fn,m −Gn,m)eiπ(nx+my) (10)

and q−accelerated interpolation

IqN(f) = G(x, y) +
NX

n,m=−N
(f̌n,m − Ǧn,m)eiπ(nx+my). (11)

that correspond to the expansion (8).
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4 Asymptotic L2− errors of q−accelerated de-
composition and interpolation

First consider the approximation SqN (f) for q = −1 which is the partial sum
of Fourier expansion.

Theorem 1. If f ∈ C1([−1, 1]× [−1, 1]) then for q = −1

lim
N→∞

(2N + 1)||f − SqN (f)||2 = Kdec(q)
µZ 1

−1
|uq(x)|2 + |vq(x)|2 dx

¶
(12)

where

Kdec(q) =
2

π2
. (13)

Proof. Simple calculations lead to the following equality (here and below in
this proof q = −1)

||f − SqN (f)||2 = I1 + I2 + I3 (14)

where

I1 = 4
NX

n,m=−N

X
s∈Z

0|fn+s(2N+1),m|2, I2 = 4
NX

n,m=−N

X
r∈Z

0|fn,m+r(2N+1)|2,

I3 = 4
NX

n,m=−N

X
s∈Z

0 X
r∈Z

0|fn+s(2N+1),m+r(2N+1)|2.

For estimation of I1 note that

fn,m = J
1
n,m + J

2
n,m (15)

where (n 6= 0)
J1n,m =

(−1)n+1(uq)m
2iπn

,

J2n,m =
εn,m
4iπn

, εn,m =
Z 1

−1

Z 1

−1
f (1,0)(x, y)e−iπ(nx+my)dxdy.

Since

NX
n,m=−N

X
s∈Z

0 ¯̄̄
J2n+s(2N+1),m

¯̄̄2
≤ Const

N2

NX
n,m=−N

X
s∈Z

0 |εn+s(2N+1),m|2
|s− 1/2|2 ≤
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Const

N2

NX
m=−N

X
|n|>N

|εn,m|2 =
o(1)

N2
, N →∞

then taking into account the well known inequality

||a||− ||b|| ≤ ||a+ b|| ≤ ||a||+ ||b||

we obtain
lim
N→∞

(2N + 1)I1 =

4 lim
N→∞

NX
n,m=−N

X
s∈Z

0 ¯̄̄
J1n+s(2N+1),m

¯̄̄2
=
4

π2
X
n∈Z

|(uq)n|2 .

Similarly we have

lim
N→∞

(2N + 1)I2 =
4

π2
X
n∈Z

|(vq)n|2

and
lim
N→∞

(2N + 1)I3 = 0.

Finally

lim
N→∞

||f − SqN (f)||2 =
4

π2
X
n∈Z

³
|(uq)n|2 + |(vq)n|2

´
.

Application of Parseval’s equality completes the proof.•
Now consider the case q ≥ 0.

Theorem 2. If f ∈ C2q+3([−1, 1]× [−1, 1]), q ≥ 0 then

lim
N→∞

(2N + 1)2q+3||f − SqN (f)||2 =

= Kdec(q)
Z 1

−1

³
|euq(x)|2 + |evq(x)|2´ dx (16)

where

Kdec(q) =
22q+3

(2q + 3)π2q+4
. (17)

Proof. According (8)

||f − SqN (f)|| = ||F − SrN (F )||, r = −1.
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Besides
F0,m = 0, m 6= 0, Fn,0 = 0, n 6= 0.

Hence, from (14) with similar conclusions we obtain

lim
N→∞

(2N + 1)2q+3||f − SqN(f)||2 =
22q+4

π4q+6(2q + 3)

X
m∈Z

0 |(uq)m|2 + |(vq)m|2
m2q+2

.

The remaining follows from (2)− (4). •
Consider now the case q = −1 for q−accelerated interpolation which is

the classic trigonometric interpolation.
Theorem 3. If f ∈ C1([−1, 1]× [−1, 1]) then for q = −1

lim
N→∞

(2N + 1)||f − IqN(f)||2 = Kint(q)
Z 1

−1

³
|uq(x)|2 + |vq(x)|2

´
dx (18)

where

Kint(q) = Kdec(q) +
1

2π2

Z 1/2

−1/2

¯̄̄
Φ)(x)

¯̄̄2
dx. (19)

Proof. Taking into account the easy derived relation between Fourier and
discrete Fourier coefficients

f̌n,m =
X
r,s∈Z

fn+r(2N+1),m+s(2N+1)

we obtain (q = −1)

||f − IqN (f)||2 = I1 + I2 + I3 + I4

where I1, I2, I3 are the same as in the proof of Theorem 1 with the same
estimations and

I4 = 4
NX

n,m=−N
|I41 + I42 + I43|2

with
I41 =

X
p∈Z

0
fn+p(2N+1),m, I42 =

X
k∈Z

0
fn,m+k(2N+1)

I43 =
X
k,p∈Z

0
fn+p(2N+1),m+k(2N+1).
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For estimation of I41 we use (15) and obtain that the second term is of no
importance. The same is true for I42. Easy to check that the term I43 we
can omit. Finally

lim
N→∞

(2N + 1)||f − IqN(f)||2 =
X
n∈Z
(|(uq)n|2 + |(vq)n|2)×

×

⎛⎜⎝ 4
π2
+
1

π2

Z 1/2

−1/2

¯̄̄̄
¯̄X
r∈Z

0 (−1)r
x+ r

¯̄̄̄
¯̄
2

dx

⎞⎟⎠ .
The rest can be obtained from Parseval’s equality and from (5), (6).•
Now consider the case q ≥ 0. As the proof of the following Theorem

doesn’t contain any new idea we omit it.

Theorem 4. If f ∈ C2q+3([−1, 1]× [−1, 1]), q ≥ 0 then

lim
N→∞

(2N + 1)2q+3||f − IqN(f)||2 = Kint(q)
Z 1

−1
(|evq(x)|2 + |euq(x)|2)dx (20)

where

Kint(q) = Kdec(q) +
1

2π2q+4

Z 1/2

−1/2
|Φq+1(x)|2 dx. (21)

5 Numerical values

Note (see Theorems 1-4) that the constant Kint(q) differs from Kdec(q) only
by the component

δq =
1

2π2q+4

Z 1/2

−1/2
|Φq+1(x)|2 dx (22)

In Table below we represent the values ofKdec(q) andKint(q) for −1 ≤ q ≤ 4.

q -1 0 1 2 3 4
Kdec(q) 0.202 0.027 0.0066 0.00192 0.000607 0.00020143
Kint(q) 0.219 0.056 0.0078 0.00198 0.000608 0.00020145
Table.Numerical values of Kdec(q) and Kint(q) for −1 ≤ q ≤ 4.
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Hence δq is not essential for great values of q.

Remark 1. Up to now we suppose that the function G(x, y) is known. If
it doesn’t so then the problem of recovering this function by the known fn,m
or f̌n,m |n|, |m| ≤ N arises. This problem was successfully solved in [4] by
expanding all functions from one variable in G(x, y) into polynomial-periodic
approximation with the same idea as in [1], [2]. In that case approximaations
SqN(f) and I

q
N(f) will be given as polynomial-periodic approximations.

Remark 2. Note that without any complexity we can generalize Lemma
(and hence the results of this paper) assuming that f ∈ Cq+1 by x and
f ∈ Cp+1 by y. Besides it is possible to generalize (10) and (11) assuming
that |n| ≤ N and |m| ≤M in the corresponding summations andN,M →∞.
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