ON A POINTWISE CONVERGENCE OF THE QUASI-PERIODIC
TRIGONOMETRIC INTERPOLATION

LUSINE POGHOSYAN AND ARNAK POGHOSYAN

ABSTRACT. The paper investigates the pointwise convergence of the quasi-periodic trigono-
metric interpolation and derives exact constant of the main term of asymptotic error for

smooth functions.

1. INTRODUCTION

We continue investigation of the quasi-periodic (QP-) interpolation Iy, (f,z), m >0 (m
is integer), x € [—1, 1], which interpolates f on equidistant grid

k
and is exact for the following set of quasi-periodic functions
, 2N
1ITNoT < N - - 2

with period 2/0 which tends to 2 as N — oc.

The idea of the QP-interpolation was suggested in [2]. Papers [7] and [8] considered the
Lo(—1,1)-convergence of the QP-interpolation and its behavior at the endpoints x = +1
in terms of the limit function. Some results concerning the convergence properties were
presented also in [5] and [6].

Here, we explore the pointwise convergence of the QP-interpolation on (—1, 1) and obtain
exact constant of the main term of asymptotic error. Some results of this research are
reported also in [9].

2. THE QUASI-PERIODIC INTERPOLATION

Let us clarify the basic requirements for derivation of the QP-interpolation (see (1) and
(2)). Consider a new function f*(¢) defined on [—o, o] by the following change of variable

o

t
ff)=f (—) = f(z), x € [-1,1], t € [-0,0], t = ox.
This implies interpolation of f*(¢) on grid

2%k
k| < N

t: = —-—
k 0T ON+tm+1 =

Y
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while interpolating f(z) on grid (1). Thus, the QP-interpolation actually interpolates f*(t)
on grid ¢, and is exact for ™ |n| < N. It is important to note that for m > 0, the
2-periodic extension of grid ¢; to the real line is non-uniform as

2
ty —tp1=————=h, k=—-N+1,..., N
k k—1 2N+m—i—1 ) +a ) )

while
2

2N+m—|—17§h

This non-uniformity is the main reason of faster (O(N~2"™~1)) pointwise convergence (see

11—ty +ty—(=1)=(m+1)

Theorem 1) of the QP-interpolation compared to the convergence (O(N~77!) for even ¢ or
O(N~772%) for odd q) of the classical trigonometric interpolation realized by uniform grids
(see [3]). Wee see that as bigger is the value of m as more dense are the nodes on (—1,1)
and, as a result, is higher the accuracy. It is also worth noting that f* depends on N and in
convergence theorems it must be taken into account and although f* — f as N — oo but
this dependence essentially changes interpolation properties.

First, let m = 0. In this case, grid ¢ is uniform. Hence, the QP-interpolation Iy (f, )
of f is the classical trigonometric interpolation I3 (f*,t) of f* on uniform grid 2k/(2N + 1),
|k] < N and thus

N N
It (f* t) Z 1 Z f* 2k e_iﬂ—n2]\27ﬁ—1 eiTrnt
N \2N+1 &~ 7 \2N +1

al 1 AN N
=, <2N+1 > 1 <N) ‘fmw]v) ™7 = Ino(f,x),

n=—N

where t = ox. Theorem 2 explores the pointwise convergence of Iy on (—1,1) and derives
the exact constant of the main term of asymptotic error.

Now, let m > 0. Taking into account the above remarks, we write

Inm(f,2) = Zf() z), (3)

ITNox

where ¢, are some unknowns to be determined. As (3) is exact for e , we get the following

system of linear equations for determination of the unknowns

wmaz _ Z z7rncr ‘n| < N.

k=—N

From here, we get (see details in [7])

N
1 2imt(Nz—k)
— _ IN+mt1
) = SN Tmy1 (é_ZNe

m 2im(+N)(N+m—k) 2inj(Nz4+s—N—m—1)
J— E 2N+m+1 E fUé s E 2N+m—+1 s
(=1
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where vzsl are the elements of the inverse of the following Vandermonde matrix

1 2im (04 N)
Vg =0y o, ap=eWNtmil s (=1 ... m, (4)

and have the following explicit form (see [1])

1 s—1
-1 _ J —
Ups = — — V0, €s=1,..,m. (5)
—
o [J(ew —aw)?
k=1
)

Here, 7, are the coefficients of the following polynomial
H(a: — ;) = Zvjxj.
, =

Jj=1

Explicit expression of ¢, leads to the following explicit representation of the QP-interpolation

N
]N,m(fy g;) — Z Fn’meiﬂnam7
n=—N

where
Fn,m - .]En,m - Z 9n,€f€+N,mv (6)
(=1
X 1 k _ _2imnk
= —— JR— 2N+m+1
Fun = gy ey 0 4 ()
k=—N
and
Bpg = ot > v;’sle%. (7)
s=1
From (4), (6) and (7), it follows that
FN+k,m:O, F—N—]{;ym:O, k:17,m (8)

Then, taking into account that as — a; = O(1/N), we get from (5)
U[SI =0 (N™1"), N = oo, 9)

and
One =0 (N™), N = oc. (10)

We denote by Ry, the error of the QP-interpolation

RN,m(fv ZL‘) = f(I‘) - [N,m(fv [L‘)
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3. CONVERGENCE ANALYSIS
Let f € C9—1,1] and
Ag(f) = fPQ) = (1) fO(=1), k=0,....¢q.
We denote by f, the n-th Fourier coefficient of f

1t :
= / flz)e "™ dx.
2J

5 ((N2) = () = () foers

k=

Let

First, we prove some lemmas.

Lemma 1. The following estimate holds for In| < N as N — oo

o ({(—1)%2%}00 ) - (=1)"(xp)* eninT 4 O (N~271)

s§=—00 2N +m + ]_)2]7

where B is a constant and p > 0.

Proof. According to definition of 4% (-), we have

on ({(_1)%%}) = (—1)"HPesNER Z (2]§>(_1)k6_2];1§,§+1

k=0
2p > tr.t
iwB(n+p) 7/7T/8 )k
= —1n+ 2N+m+1 k
(=1 Pemvims kz_o( > tzt'QN—l—m—i—l)t

iy TBED) = (=Di(irp)!
— (_1) +p PoaN+m+1 ; tl(

12N +m + 1)L
where
Wyt = Z (Z) (—DFE ~ pt, t = o0
and (see [10])
wpr =0, 0<t<p—1, w,,=(—1)"pl
These complete the proof.
Let f € C72™[—1 1]. We denote
fresr(z), xel-1,—0),
frla)=qf(E), xel-o0],
frignt(z), € (0,1],

where

frepi(x qimf ( >J‘7 frnel@) = qim f(j)'(l) (g B 1)3‘.

= 7
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Let
(_1>n+1

Balk) = gm e

Lemma 2. [8] Let fl+?™) ¢ AC[—1,1] for some m > 1, ¢ > 0 and

FO(—1) = f® (1) =0, k=0,...,q— 1.

Then, the following estimate holds for n, N — oo

q+2m i

(7 —k)!

fn= Z_: zjivj Z Ay (D + D7HN Fm + 1>an(k) +o(n-92m-L),

Let
e (_1)r(m+1)

Bi(070) = FO00 3D

Lemma 3. Let 2™ ¢ AC[—1,1] for some m > 1, ¢ > 0 and
fP>-1)=fP1)=0, k=0,...,g— 1.
Then, the following estimate holds as N — oo and |n| < N + 2m

(_1)n+1 q+m-+1 i i Akj (f) (m + 1)]—k
INFm i1 2= Ni 2= 2 k(imi(j - k)

— T(m+1) im(m—1)n m—! ®(T) _1 iTn T
y (Z (1) _ )k+1 I Z % (em + 1>

7o (2r + sy

Fn,m_f;:

7=0
—i49
_in(m—1)n 4~ ytam @l(:—zn(_l) m 2iw (N+L) 2vn(s—1)
—e 2N+m+l E ’—‘E (62N+m+1 _|_1> E vl €2N+m+1
T=m T /=1
Lo (N2

Proof. We have (details see in [8])

o0
Fom = Z f;+r(2N+m+1 ZQM Z fN+£+r @N4mt1), W E L

r=—o0 r=—00

which shows that
Fom — fa = Z frtr@N+mt1) — Z On e Z SN ttir@N£mt1)-
r#0 r=—00
Now, for |n| < N + 2m, according to Lemma 2, equations (7) and (10), we get

2m j ;i
S e = USRS (s 1
PN = 3N 4 T 2 NG 2 ()1 (j — )

r#0
>

T#O 2T+ 2N+ +1

T(m—i—l)

0 (qu72m71) ’

)kJrl

(13)

(14)

(15)

(16)
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and
() R L
Zenf > Bt = Nrml W

r=—00 = k=0

J Akj m4 1)7F
3 () )

_l’_
25—k (im)FH1(j — k)]

it(m—1)n 2im (N+4L) 2umn(s—1) 2
X @ ZNFm+1 E @km <62N+m+1> U €2N+'m+1 _|_0(N q—m— )

Then, by the Taylor expansion

2m 5 (7)
LT q) _1 i
D, (cFEH) -3 Penl D0 1) (B84 1) 4 oy,

we derive

n e J i—k
Z Z (-t Sl A (f)m + 1Y% _intmiyn
e TNteren-cme) T2N+m+1 Zj_q Ni £t 23 F ()1 (j — I s

r=—o00
2m cI)(T) 1 m m
- 2im(N+£) T 2irn(s—1)
% E M E <62N+m+1 + 1> E :Uz 16m +0 (N—q—m—2) '
7=0 T /=1 s=1

Finally, taking into account the following relations

m
2im (N+2L) 21tns 2imn T
E 62N+m+1 _|_ E fve +1€2N+m+1 e e2N+m+1 + 1 , T = 0, v ,m — 1,

/=1
we get
n +m+1 7 s '
( 1) +1 ¢ 1 Ak](f) (m + 1)‘7 _im(m—1)n
Z enfr_z_:oofN—i-é—l-r 2N+m+1) — ON +m +1 jz—; ﬁ ; 2j_k(i7r)k+l(j = k)!e 2N+m+1
m—1 7 (7)
x (z Hal) (e 1)
7=0
]+2m T) " 2im(N+£) T m 1 2imn(s—1) 9
+ Z Z (62N+m+1 -+ 1> ZUZS e 2N+m+1 + o0 (N—q—m— ) )
=1 s=1

Substituting this and (17) into (16), we get the required.
Lemma 4. Let f92™) ¢ AC[—1,1] for some m > 1, ¢ >0 and

SE=D)=fP(1)=0, k=0,...,¢— 1.

Then, the following estimates hold as N — oo

)N S 4 p o
FNp,m_Cq,m(f)(]Vq)ﬁ( m > +O(N q 2), p >0, (18)
and
FfNer,m = _Fpr,m + O (N7q7m72) y P Z 07 (19>
where .
Ao (f)(m + 1)1k m
Comlf) = S oD £ D2 gy (_y) (20)

2(1*k+12‘k7.(-k7m+1(q _ k)! k,m
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Proof. We have from (15)

o0 m oo
_ * *
FN—pm - E fN—p+7“(2N+m+1) - E 9N—p,€ E fN+e+r(2N+m+1)-
=1

r=—00 r=—00

We write in view of Lemma 2 and (10)

(v Z Ay (f)(m +1)7*

Fy_pm= — — .
NP, 2N +m+1 — N7 e 2=k (i) (5 — k)!
0 (_1)r(m+1) m ' o0 (_1>r(m+1)
x [ (=1) Z 2 —p) VT _Z(_l) On—ps Z 240 \
=T <2T + 2N+m+1> =1 e (QT + 2N+m+1>

Lo (N,

According to (7), we obtain

im(m—1)(N—p)

(= 1)+t gt2m (o dioe) i A (f)(m + 1)

Fx_pm = : .
NP = 9ON +m+1 = NJ £ 25k (im)MHL(j — k)
(N = i iy (N —p)s 21
: ( (38 = 3 i (55) 3 i B0 ) 2
=1 s=0
+o (N2,

Now, we simplify the expression in the brackets which we denote by S (see also (4))

m m—1
S = Bpm () = D P () Y vy 0107,
=1 s=0
< )@ )@
:Zresw(a ») k,m(2)+ res w (a—p) km(z)7
2 IS D e masy) T O (- o)
where w(z) = [[,~, (z — ay). Hence

_ L [uleta),

= 2 e () (2 - asy)

where I' contains the points {a,},”, and a_,. Then, we get

(im)™ (m + p)! / D (2) 1
= ? N m
S N™Qmi pl r (Z + 1)m+1 dz + 0 ( )

(im)m @™ (<1) (m +p
Nm

= ) +O0 (N~

m

Substituting this into (21), we get the first statement. The second one can be proved
similarly. U

Next theorems present the main results of this paper.
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Theorem 1. Let f92™ ¢ AC[-1,1] for somem > 1, ¢ > 0 and
fP(=1)=fP1)y=0, k=0,...,q—1.

Then, the following estimate holds for |x| <1 as N — oo

. (-~ | . =k (—1)F
RN,m(f? l‘) = ZOILm(f)W S11 (W(N + 1)0’[L’) ; k 92k+1 cog2k+2 %
e e (2)
: m—Fk— —
— S1n (7TNO':L.) Z < k ) 22k+3 COS2k+4%
k=0
where 1h = [2] and Cy(f) is defined by (20).

+o(N7T),

Proof. According to definition of f* (see (12)), we can write for fixed N

= i fre™e e (—1,1).

Hence,
Z f* z7rno‘a: [ 1’ 1].
Therefore,
N
RNm"b(f, I) = Z (f;: _ Fn,m)elﬂndw + Z f;ewrnaa:‘
n=-N In|>N

The following expansion of the error is easy to verify (see also [4] with similar transforma-

tions)

. u 01 ({Frm})
Ry m(f, 1) = ™" Ao B
N, (f ) kZ:O (1 + e—imfx)kJFl (1 + 6i7raa:>k+1

— VDo § | N(k{+1 m}) S
0 (1 + e—zwax) (1 + ezwow) (2?))
+ eiﬂNUﬂ)Xm: 5EN—1({Fn,m})

(1 + e*iﬂ'd’{b)k—i_l (1 + eiﬂa:p)k‘H

k=0

_ —z7r (N+1)oz i 5EN<{FTL m})

]_ +e 7,7er k+1 (1 + ezﬂaar)

k+1 + rNJTL(f’ .T),
k:O

where
N

Z 57T+1({f; . Fs,m})eimm

n=—N

— Z é‘;ﬁﬂ-l({f:})eiﬂanaﬁ.

[n|>N

1
(1 + e—iwam)m"‘l (]_ + eimfx)m"‘l
1
(1 + e—iﬂ'ovc)erl (1 + eiTrUCIJ)

TN,m(fa ZL‘) =

+

First, we show that

rm(f,2) = o(N"9" ), N — o0, [a] < 1. (24)
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Application of similar transformation leads to the following expansion for ry ., (f, x)
é‘m—i-l ({Fn m}) —inNox __ 5]7(’71-%1 ({me}) eiw(N+1)a$
(1 + e~ mroac)m""2 (1 + eiwam)m+2
5}”\71% ({an}) ginNow _ 5@;1 ({an}) e—im(N+1)ox
(1+ e*iﬂ'oz)m"a (1+ eiﬂg;p)m+2
1 N (25)
+ ; > 677;h+2 f;“ _ FS m eiﬂ'a’nz‘
(1 + efimfx)m+2 (1 + eiwo-;n)erQ Z ({ ) })

n=—N
1

+ : e : e Z 5zh+2({f:})eiwonx_
(1_|_6717rcr:v) + (1_|_ez7ram) + o

TN,m(fa JI)

According to estimate (13) of Lemma 2, we get

. 1 Ay (f)(m+ 1D)TE@RN +m A+ 1)k
VOED I DY i s

Jj=q k=
+ o(n472m ),

We have (see [3])

o ({Bu(k)} )

0

S ({Bs(k) 2 ) = O(n= 2" 7F9),
and hence,
FEF)) = O 5N 4 ot ), [n] > N, N = .

We see that the last term in the right-hand side of (25) is o(N 47" 1).
Then, according to estimate (14) of Lemma 3, we write

qgt+m+1 j Ak m+1)
57’?1—1—2 Fsm J
w (e = Jp) = 2N+m+1 ; Zwkm’““J—k‘)!Nj

2N +m + )R+ (im)k+t i
( )" (i) N Z Biyrn+m+1)(F)

9ok
r#0 t=—00
m—1 x(s)
@ it S im(m— oo
_ Z o 5m+2 ({(_1)t+1 <e21\72+7m+1 + 1) e*m&m?f} ) —
t=—0o0

g—j+2m (I)(T) m ,m—1 .

S Z(e;xm+ R (e ))
T=m =1 s=0 t=—e0
+o(N"T™ 2).

In view of the following estimate (see [3])

52’1” {Z Bt+r(2N+m+1)(k)} =0 (Ni?mikig))

r#0 t=—00

and according to Lemma 1 and (9), we have

5:?+2 ({Fsm - f:}) =0 (N_q_m_z)
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and the third term in the right-hand side of (25) is o( N=¢"™"1).
Now, we estimate the first two terms in the right-hand side of (25). We have

Wt .
" 2+ 2
5N+1 ({an}) = Z ( L )FN-&-ﬁz-i-l—lam-
k=0
Taking into account (8), we get
242 ,
i 2+ 2
o ({Fum}) = Z ( 1 )FN—Hh-H—k,m-
k=rh+1
In view of Lemma 4, we derive

(= 1)+ 2142

7 (Fanh) = Con D) e 3 R () (M o),

m
k=m+1

Taking into account the identity (see [10])

2?:2(_1)k i+ 2\ (m+ k=i =1\ _
k m -

k=rft1
we conclude that
5ﬁ’+1 {Fam}) =0 (N_q_m_Q) .
Similarly, we estimate the other terms and see that (24) is true.
Now, we return to the first four terms in the right hand-side of (23) which we denote by
Iy, 15, I3 and I, respectively.
We have for the first term in the right-hand side of (23)

2k 12k 2k 12k [ 2%
5?\7+1({Fn,m}) = Z ( s )FN+1+ks,m = Z ( s )FN+1+ks,m = Z (S + k + 1) FNfs,m-

s=0 s=k+1 s=0
Then,
[ _ irNox & 5%+1({Fnum})
1=¢ Z —imoz)\k+1 imrox\k+1
oo (L e7moe) 7 (1 4 efmor)
™ k—1
: 1 2k
itNox
= F —S,m:-
c ;22’“*20082’“*2 e ;<S+k‘+1> N=s,

In view of Lemma 4, we get

1 k—1
_ <_1>N+1 inNox 1 s 2k m+s
I = Cq,m(f)We Z 22k+2 og2k+2 ToT Z(_l) s+k+1 m

k=1 2 s=0

+ O(N~T™m2),
We apply identity (see [10])

) e ()

N
—

@
Il
o
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and obtain

Nq+m+1 — k 22k+4 C082k+4 7T527LE

Similarly, in view of relations (8), we have for the third term in right-hand side of (23)
and Lemma 4 that

2k 9%k k—1 2%k
6EN_1({Fn,m}) = Z ( s )F—N—l-i-k—s,m = Z ( s )F—N—l—i-k—s,m

s=0 s=0

k—1 k—1
ok 2k
= F_ Sm:—E Fyn_sm+ O(N-T ™2,
— (k:—l—s) Nt 5_0(k+s+1) N-sm + O )

Then,

. " 5" Fom
[3 _ e—zﬁNax Z fol({ , })

(1 + e—i7r033>k+1 (1 + eiﬂam)k+1

k=0
m k—1

; 1 2k
_ —imtNox z : —g—m—2
k=0 s=0

(_1)N+1 —intNox - m — k -2 <_1)k —q—m—2
- _C%m(f)We Z L 22K +4 o2t 22z +O(N™1 )-

k=0

Now, we can write

,_.

(_1)N+1 h—

sin(rNox) ( ) (=1 + O(N—T™2),

92k+3 og2k+4 TOT
k=0 2

I + I :iCq,m(f)W

Similarly,

Nat+m+l 92k+1 C052k+2 ng‘

which completes the proof. O
Similarly, the case m = 0 can be considered.

Theorem 2. Let f9*) € AC[—1,1] for some ¢ > 0 and

Then, the following estimate holds for |x| <1 as N — oo

N sinm la/2] k ad —1)®
Ravolfs) = Agg () o) in Ve S CU s 1)L,M+o<N-q-1>. (26)

20PN cos B 4 (q — 2k)lm2htl £~ (s+1
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