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Abstract. The paper investigates the pointwise convergence of the quasi-periodic trigono-

metric interpolation and derives exact constant of the main term of asymptotic error for

smooth functions.

1. Introduction

We continue investigation of the quasi-periodic (QP-) interpolation IN,m(f, x), m ≥ 0 (m

is integer), x ∈ [−1, 1], which interpolates f on equidistant grid

xk =
k

N
, |k| ≤ N (1)

and is exact for the following set of quasi-periodic functions

eiπnσx, |n| ≤ N, σ =
2N

2N +m+ 1
(2)

with period 2/σ which tends to 2 as N → ∞.

The idea of the QP-interpolation was suggested in [2]. Papers [7] and [8] considered the

L2(−1, 1)-convergence of the QP-interpolation and its behavior at the endpoints x = ±1

in terms of the limit function. Some results concerning the convergence properties were

presented also in [5] and [6].

Here, we explore the pointwise convergence of the QP-interpolation on (−1, 1) and obtain

exact constant of the main term of asymptotic error. Some results of this research are

reported also in [9].

2. The quasi-periodic interpolation

Let us clarify the basic requirements for derivation of the QP-interpolation (see (1) and

(2)). Consider a new function f ∗(t) defined on [−σ, σ] by the following change of variable

f ∗(t) = f

(
t

σ

)
= f(x), x ∈ [−1, 1], t ∈ [−σ, σ], t = σx.

This implies interpolation of f ∗(t) on grid

tk = σxk =
2k

2N +m+ 1
, |k| ≤ N,
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while interpolating f(x) on grid (1). Thus, the QP-interpolation actually interpolates f ∗(t)

on grid tk and is exact for eiπnt, |n| ≤ N . It is important to note that for m > 0, the

2-periodic extension of grid tk to the real line is non-uniform as

tk − tk−1 =
2

2N +m+ 1
= h, k = −N + 1, . . . , N,

while

1− tN + t−N − (−1) = (m+ 1)
2

2N +m+ 1
̸= h.

This non-uniformity is the main reason of faster (O(N−q−m−1)) pointwise convergence (see

Theorem 1) of the QP-interpolation compared to the convergence (O(N−q−1) for even q or

O(N−q−2) for odd q) of the classical trigonometric interpolation realized by uniform grids

(see [3]). Wee see that as bigger is the value of m as more dense are the nodes on (−1, 1)

and, as a result, is higher the accuracy. It is also worth noting that f ∗ depends on N and in

convergence theorems it must be taken into account and although f ∗ → f as N → ∞ but

this dependence essentially changes interpolation properties.

First, let m = 0. In this case, grid tk is uniform. Hence, the QP-interpolation IN,0(f, x)

of f is the classical trigonometric interpolation I∗N(f
∗, t) of f ∗ on uniform grid 2k/(2N +1),

|k| ≤ N and thus

I∗N(f
∗, t) =

N∑
n=−N

(
1

2N + 1

N∑
k=−N

f ∗
(

2k

2N + 1

)
e−iπn 2k

2N+1

)
eiπnt

=
N∑

n=−N

(
1

2N + 1

N∑
k=−N

f

(
k

N

)
e−iπnσ k

N

)
eiπnσx = IN,0(f, x),

where t = σx. Theorem 2 explores the pointwise convergence of IN,0 on (−1, 1) and derives

the exact constant of the main term of asymptotic error.

Now, let m > 0. Taking into account the above remarks, we write

IN,m(f, x) =
N∑

k=−N

f

(
k

N

)
ck(x), (3)

where ck are some unknowns to be determined. As (3) is exact for eiπnσx, we get the following

system of linear equations for determination of the unknowns

eiπnσx =
N∑

k=−N

eiπnσ
k
N ck(x), |n| ≤ N.

From here, we get (see details in [7])

ck(x) =
1

2N +m+ 1

(
N∑

ℓ=−N

e
2iπℓ(Nx−k)
2N+m+1

−
m∑
ℓ=1

e
2iπ(ℓ+N)(N+m−k)

2N+m+1

m∑
s=1

v−1
ℓ,s

N∑
j=−N

e
2iπj(Nx+s−N−m−1)

2N+m+1

)
,
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where v−1
ℓ,s are the elements of the inverse of the following Vandermonde matrix

vs,ℓ = αs−1
ℓ , αℓ = e

2iπ(ℓ+N)
2N+m+1 , s, ℓ = 1, . . . ,m, (4)

and have the following explicit form (see [1])

v−1
ℓ,s = − 1

αs
ℓ

m∏
k=1
k ̸=ℓ

(αℓ − αk)

s−1∑
j=0

γjα
j
ℓ , ℓ, s = 1, ...,m. (5)

Here, γj are the coefficients of the following polynomial

m∏
j=1

(x− αj) =
m∑
j=0

γjx
j.

Explicit expression of ck leads to the following explicit representation of the QP-interpolation

IN,m(f, x) =
N∑

n=−N

Fn,me
iπnσx,

where

Fn,m = f̌n,m −
m∑
ℓ=1

θn,ℓf̌ℓ+N,m, (6)

f̌n,m =
1

2N +m+ 1

N∑
k=−N

f

(
k

N

)
e−

2iπnk
2N+m+1

and

θn,ℓ = e
2iπ(ℓ+N)(N+m)

2N+m+1

m∑
s=1

v−1
ℓ,s e

2iπn(s−N−m−1)
2N+m+1 . (7)

From (4), (6) and (7), it follows that

FN+k,m = 0, F−N−k,m = 0, k = 1, ...,m. (8)

Then, taking into account that αs − αi = O(1/N), we get from (5)

v−1
ℓ,s = O

(
Nm−1

)
, N → ∞, (9)

and

θn,ℓ = O
(
Nm−1

)
, N → ∞. (10)

We denote by RN,m the error of the QP-interpolation

RN,m(f, x) = f(x)− IN,m(f, x).



4 LUSINE POGHOSYAN AND ARNAK POGHOSYAN

3. Convergence analysis

Let f ∈ Cq[−1, 1] and

Ask(f) = f (k)(1)− (−1)k+sf (k)(−1), k = 0, . . . , q.

We denote by fn the n-th Fourier coefficient of f

fn =
1

2

∫ 1

−1

f(x)e−iπnxdx.

Let

δpn
(
{fs}∞s=−∞

)
= δpn ({fs}) =

2p∑
k=0

(
2p

k

)
fn+p−k.

First, we prove some lemmas.

Lemma 1. The following estimate holds for |n| ≤ N as N → ∞

δpn

({
(−1)se

iπβs
2N+m+1

}∞

s=−∞

)
=

(−1)n(πβ)2p

(2N +m+ 1)2p
e

iπβn
2N+m+1 +O

(
N−2p−1

)
, (11)

where β is a constant and p > 0.

Proof. According to definition of δpn (·), we have

δpn

({
(−1)se

iπβs
2N+m+1

})
= (−1)n+pe

iπβ(n+p)
2N+m+1

2p∑
k=0

(
2p

k

)
(−1)ke−

iπβk
2N+m+1

= (−1)n+pe
iπβ(n+p)
2N+m+1

2p∑
k=0

(
2p

k

)
(−1)k

∞∑
t=0

(iπβ)t(−1)tkt

t!(2N +m+ 1)t

= (−1)n+pe
iπβ(n+p)
2N+m+1

∞∑
t=0

(−1)t(iπβ)t

t!(2N +m+ 1)t
ω2p,t,

where

ωp,t =

p∑
k=0

(p
k

)
(−1)kkt ∼ pt, t → ∞

and (see [10])

ωp,t = 0, 0 ≤ t ≤ p− 1, ωp,p = (−1)p p!.

These complete the proof. �

Let f ∈ Cq+2m[−1, 1]. We denote

f ∗(x) =


fleft(x), x ∈ [−1,−σ) ,

f
(
x
σ

)
, x ∈ [−σ, σ] ,

fright(x), x ∈ (σ, 1] ,

(12)

where

fleft(x) =

q+2m∑
j=0

f (j)(−1)

j!

(x
σ
+ 1
)j

, fright(x) =

q+2m∑
j=0

f (j)(1)

j!

(x
σ
− 1
)j

.
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Let

Bn(k) =
(−1)n+1

2(iπn)k+1
.

Lemma 2. [8] Let f (q+2m) ∈ AC[−1, 1] for some m ≥ 1, q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for n,N → ∞

f ∗
n =

q+2m∑
j=q

1

2jN j

j∑
k=0

Akj(f)(m+ 1)j−k(2N +m+ 1)k

(j − k)!
Bn(k) + o(n−q−2m−1). (13)

Let

Φk,m(e
iπx) = e

iπ
2
(m−1)x

∞∑
r=−∞

(−1)r(m+1)

(2r + x)k+1
.

Lemma 3. Let f (q+2m) ∈ AC[−1, 1] for some m ≥ 1, q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds as N → ∞ and |n| ≤ N + 2m

Fn,m − f ∗
n =

(−1)n+1

2N +m+ 1

q+m+1∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!

×

(∑
r ̸=0

(−1)r(m+1)(
2r + 2n

2N+m+1

)k+1
− e−

iπ(m−1)n
2N+m+1

m−1∑
τ=0

Φ
(τ)
k,m(−1)

τ !

(
e

2iπn
2N+m+1 + 1

)τ
−e−

iπ(m−1)n
2N+m+1

q−j+2m∑
τ=m

Φ
(τ)
k,m(−1)

τ !

m∑
ℓ=1

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ m∑
s=1

v−1
ℓ,s e

2ıπn(s−1)
2N+m+1

)
+ o

(
N−q−m−2

)
.

(14)

Proof. We have (details see in [8])

Fn,m =
∞∑

r=−∞

f ∗
n+r(2N+m+1) −

m∑
ℓ=1

θn,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1), n ∈ Z (15)

which shows that

Fn,m − f ∗
n =

∑
r ̸=0

f ∗
n+r(2N+m+1) −

m∑
ℓ=1

θn,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1). (16)

Now, for |n| ≤ N + 2m, according to Lemma 2, equations (7) and (10), we get

∑
r ̸=0

f ∗
n+r(2N+m+1) =

(−1)n+1

2N +m+ 1

q+2m∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!

×
∑
r ̸=0

(−1)r(m+1)(
2r + 2n

2N+m+1

)k+1
+ o

(
N−q−2m−1

)
,

(17)
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and
m∑
ℓ=1

θn,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1) =

(−1)n+1

2N +m+ 1

q+2m∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!

× e−
iπ(m−1)n
2N+m+1

m∑
ℓ=1

Φk,m

(
e

2iπ(N+ℓ)
2N+m+1

) m∑
s=1

v−1
ℓ,s e

2ıπn(s−1)
2N+m+1 + o

(
N−q−m−2

)
.

Then, by the Taylor expansion

Φk,m

(
e

2ıπ(N+ℓ)
2N+m+1

)
=

2m∑
τ=0

Φ
(τ)
k,m(−1)

τ !
Φ

(τ)
k,m(−1)

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ
+O(N−2m−1),

we derive
m∑
ℓ=1

θn,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1) =

(−1)n+1

2N +m+ 1

q+2m∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!
e−

iπ(m−1)n
2N+m+1

×
2m∑
τ=0

Φ
(τ)
k,m(−1)

τ !

m∑
ℓ=1

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ m∑
s=1

v−1
ℓ,s e

2ıπn(s−1)
2N+m+1 + o

(
N−q−m−2

)
.

Finally, taking into account the following relations

m∑
ℓ=1

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ m−1∑
s=0

v−1
ℓ,s+1e

2ıπns
2N+m+1 =

(
e

2iπn
2N+m+1 + 1

)τ
, τ = 0, . . . ,m− 1,

we get

m∑
ℓ=1

θn,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1) =

(−1)n+1

2N +m+ 1

q+m+1∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!
e−

iπ(m−1)n
2N+m+1

×

(
m−1∑
τ=0

Φ
(τ)
k,m(−1)

τ !

(
e

2iπn
2N+m+1 + 1

)τ
+

q−j+2m∑
τ=m

Φ
(τ)
k,m(−1)

τ !

m∑
ℓ=1

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ m∑
s=1

v−1
ℓ,s e

2ıπn(s−1)
2N+m+1

)
+ o

(
N−q−m−2

)
.

Substituting this and (17) into (16), we get the required. �

Lemma 4. Let f (q+2m) ∈ AC[−1, 1] for some m ≥ 1, q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, ..., q − 1.

Then, the following estimates hold as N → ∞

FN−p,m = Cq,m(f)
(−1)N+p+1

N q+m+1

(
m+ p

m

)
+O

(
N−q−m−2

)
, p ≥ 0, (18)

and

F−N+p,m = −FN−p,m +O
(
N−q−m−2

)
, p ≥ 0, (19)

where

Cq,m(f) =

q∑
k=0

Akq(f)(m+ 1)q−k

2q−k+1ikπk−m+1(q − k)!
Φ

(m)
k,m(−1). (20)
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Proof. We have from (15)

FN−p,m =
∞∑

r=−∞

f ∗
N−p+r(2N+m+1) −

m∑
ℓ=1

θN−p,ℓ

∞∑
r=−∞

f ∗
N+ℓ+r(2N+m+1).

We write in view of Lemma 2 and (10)

FN−p,m =
(−1)N+1

2N +m+ 1

q+2m∑
j=q

1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!

×

(−1)p
∞∑

r=−∞

(−1)r(m+1)(
2r + 2(N−p)

2N+m+1

)k+1
−

m∑
ℓ=1

(−1)ℓθN−p,ℓ

∞∑
r=−∞

(−1)r(m+1)(
2r + 2(N+ℓ)

2N+m+1

)k+1


+ o

(
N−q−m−2

)
.

According to (7), we obtain

FN−p,m =
(−1)N+p+1

2N +m+ 1

q+2m∑
j=q

e−
iπ(m−1)(N−p)

2N+m+1

N j

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!

×

(
Φk,m

(
e

2iπ(N−p)
2N+m+1

)
−

m∑
ℓ=1

Φk,m

(
e

2iπ(N+ℓ)
2N+m+1

)m−1∑
s=0

v−1
ℓ,s+1e

2iπ(N−p)s
2N+m+1

)
+ o

(
N−q−m−2

)
.

(21)

Now, we simplify the expression in the brackets which we denote by S (see also (4))

S = Φk,m (α−p)−
m∑
ℓ=1

Φk,m (αℓ)
m−1∑
s=0

v−1
ℓ,s+1α

s
−p

=
m∑
j=1

res
z=αj

ω (α−p) Φk,m(z)

ω(z) (z − α−p)
+ res

z=α−p

ω (α−p) Φk,m(z)

ω(z) (z − α−p)
,

where ω(z) =
∏m

ℓ=1 (z − αℓ). Hence

S =
1

2πi

∫
Γ

ω (α−p) Φk,m(z)

ω(z) (z − α−p)
dz,

where Γ contains the points {αℓ}mℓ=1 and α−p. Then, we get

S =
(iπ)m

Nm2πi

(m+ p)!

p!

∫
Γ

Φk,m(z)

(z + 1)m+1dz +O
(
N−m−1

)
=

(iπ)mΦ
(m)
k,m(−1)

Nm

(
m+ p

m

)
+O

(
N−m−1

)
.

Substituting this into (21), we get the first statement. The second one can be proved

similarly. �

Next theorems present the main results of this paper.
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Theorem 1. Let f (q+2m) ∈ AC[−1, 1] for some m ≥ 1, q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |x| < 1 as N → ∞

RN,m(f, x) = iCq,m(f)
(−1)N

N q+m+1

[
sin (π(N + 1)σx)

ḿ∑
k=0

(
m− k

k

)
(−1)k

22k+1 cos2k+2 πx
2

− sin (πNσx)
ḿ−1∑
k=0

(
m− k − 2

k

)
(−1)k

22k+3 cos2k+4 πx
2

]
+ o(N−q−m−1),

(22)

where ḿ =
[
m
2

]
and Cq,m(f) is defined by (20).

Proof. According to definition of f ∗ (see (12)), we can write for fixed N

f ∗(x) =
∞∑

n=−∞

f ∗
ne

iπnx, x ∈ (−1, 1).

Hence,

f(x) =
∞∑

n=−∞

f ∗
ne

iπnσx, x ∈ [−1, 1].

Therefore,

RN,m(f, x) =
N∑

n=−N

(f ∗
n − Fn,m)e

iπnσx +
∑
|n|>N

f ∗
ne

iπnσx.

The following expansion of the error is easy to verify (see also [4] with similar transforma-

tions)

RN,m(f, x) = eiπNσx

ḿ∑
k=0

δkN+1({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

− eiπ(N+1)σx

ḿ∑
k=0

δkN({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

+ e−iπNσx

ḿ∑
k=0

δk−N−1({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

− e−iπ(N+1)σx

ḿ∑
k=0

δk−N({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

+ rN,m(f, x),

(23)

where

rN,m(f, x) =
1

(1 + e−iπσx)ḿ+1 (1 + eiπσx)ḿ+1

N∑
n=−N

δḿ+1
n ({f ∗

s − Fs,m})eiπσnx

+
1

(1 + e−iπσx)ḿ+1 (1 + eiπσx)ḿ+1

∑
|n|>N

δḿ+1
n ({f ∗

s })eiπσnx.

First, we show that

rN,m(f, x) = o(N−q−m−1), N → ∞, |x| < 1. (24)
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Application of similar transformation leads to the following expansion for rN,m(f, x)

rN,m(f, x) =
δḿ+1
−N−1 ({Fn,m}) e−iπNσx − δḿ+1

N ({Fn,m}) eiπ(N+1)σx

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

+
δḿ+1
N+1 ({Fn,m}) eiπNσx − δḿ+1

−N ({Fn,m}) e−iπ(N+1)σx

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

+
1

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

N∑
n=−N

δḿ+2
n ({f ∗

s − Fs,m})eiπσnx

+
1

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

∑
|n|>N

δḿ+2
n ({f ∗

s })eiπσnx.

(25)

According to estimate (13) of Lemma 2, we get

δḿ+2
n ({f ∗

s }) =
q+2m∑
j=q

1

2jN j

j∑
k=0

Akj(f)(m+ 1)j−k(2N +m+ 1)k

(j − k)!
δḿ+2
n

(
{Bs(k)}∞s=−∞

)
+ o(n−q−2m−1).

We have (see [3])

δḿ+2
n ({Bs(k)}∞s=−∞) = O(n−2ḿ−k−5),

and hence,

δḿ+2
n ({f ∗

s }) = O(n−2ḿ−5N−q) + o(n−q−2m−1), |n| > N, N → ∞.

We see that the last term in the right-hand side of (25) is o(N−q−m−1).

Then, according to estimate (14) of Lemma 3, we write

δḿ+2
n ( {Fs,m − f ∗

s }) =
1

2N +m+ 1

q+m+1∑
j=q

j∑
k=0

Akj(f)(m+ 1)j−k

2j−k(iπ)k+1(j − k)!N j

×

(2N +m+ 1)k+1(iπ)k+1

2k
δḿ+2
n

{∑
r ̸=0

Bt+r(2N+m+1)(k)

}∞

t=−∞


−

m−1∑
s=0

Φ
(s)
k,m(−1)

s!
δḿ+2
n

({
(−1)t+1

(
e

2iπt
2N+m+1 + 1

)s
e−

iπ(m−1)t
2N+m+1

}∞

t=−∞

)
−

q−j+2m∑
τ=m

Φ
(τ)
k,m(−1)

τ !

m∑
ℓ=1

(
e

2iπ(N+ℓ)
2N+m+1 + 1

)τ m−1∑
s=0

v−1
ℓ,s+1δ

ḿ+2
n

({
(−1)t+1e

ıπt(2s−m+1)
2N+m+1

}∞

t=−∞

))
+ o(N−q−m−2).

In view of the following estimate (see [3])

δḿ+2
n

{∑
r ̸=0

Bt+r(2N+m+1)(k)

}∞

t=−∞

 = O
(
N−2ḿ−k−5

)
and according to Lemma 1 and (9), we have

δḿ+2
n ({Fs,m − f ∗

s }) = o
(
N−q−m−2

)
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and the third term in the right-hand side of (25) is o(N−q−m−1).

Now, we estimate the first two terms in the right-hand side of (25). We have

δḿ+1
N ({Fn,m}) =

2ḿ+2∑
k=0

(
2ḿ+ 2

k

)
FN+ḿ+1−k,m.

Taking into account (8), we get

δḿ+1
N ({Fn,m}) =

2ḿ+2∑
k=ḿ+1

(
2ḿ+ 2

k

)
FN+ḿ+1−k,m.

In view of Lemma 4, we derive

δḿ+1
N ({Fn,m}) = Cq,m(f)

(−1)N+ḿ

N q+m+1

2ḿ+2∑
k=ḿ+1

(−1)k
(
2ḿ+ 2

k

)(
m+ k − ḿ− 1

m

)
+O

(
N−q−m−2

)
.

Taking into account the identity (see [10])

2ḿ+2∑
k=ḿ+1

(−1)k
(
2ḿ+ 2

k

)(
m+ k − ḿ− 1

m

)
= 0,

we conclude that

δḿ+1
N ({Fn,m}) = O

(
N−q−m−2

)
.

Similarly, we estimate the other terms and see that (24) is true.

Now, we return to the first four terms in the right hand-side of (23) which we denote by

I1, I2, I3 and I4, respectively.

We have for the first term in the right-hand side of (23)

δkN+1({Fn,m}) =
2k∑
s=0

(
2k

s

)
FN+1+k−s,m =

2k∑
s=k+1

(
2k

s

)
FN+1+k−s,m =

k−1∑
s=0

(
2k

s+ k + 1

)
FN−s,m.

Then,

I1 = eiπNσx

ḿ∑
k=0

δkN+1({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

= eiπNσx

ḿ∑
k=0

1

22k+2 cos2k+2 πσx
2

k−1∑
s=0

(
2k

s+ k + 1

)
FN−s,m.

In view of Lemma 4, we get

I1 = Cq,m(f)
(−1)N+1

N q+m+1
eiπNσx

ḿ∑
k=1

1

22k+2 cos2k+2 πσx
2

k−1∑
s=0

(−1)s
(

2k

s+ k + 1

)(
m+ s

m

)
+O(N−q−m−2).

We apply identity (see [10])

k−1∑
s=0

(−1)s
(

2k

s+ k + 1

)(
m+ s

m

)
= (−1)k+1

(
m− k − 1

k − 1

)
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and obtain

I1 = Cq,m(f)
(−1)N+1

N q+m+1
eiπNσx

ḿ−1∑
k=0

(
m− k − 2

k

)
(−1)k

22k+4 cos2k+4 πσx
2

+O(N−q−m−2).

Similarly, in view of relations (8), we have for the third term in right-hand side of (23)

and Lemma 4 that

δk−N−1({Fn,m}) =
2k∑
s=0

(
2k

s

)
F−N−1+k−s,m =

k−1∑
s=0

(
2k

s

)
F−N−1+k−s,m

=
k−1∑
s=0

(
2k

k − 1− s

)
F−N+s,m = −

k−1∑
s=0

(
2k

k + s+ 1

)
FN−s,m +O(N−q−m−2).

Then,

I3 = e−iπNσx

ḿ∑
k=0

δk−N−1({Fn,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

= −e−iπNσx

ḿ∑
k=0

1

22k+2 cos2k+2 πσx
2

k−1∑
s=0

(
2k

k + s+ 1

)
FN−s +O(N−q−m−2)

= −Cq,m(f)
(−1)N+1

N q+m+1
e−iπNσx

ḿ−1∑
k=0

(
m− k − 2

k

)
(−1)k

22k+4 cos2k+4 πσx
2

+O(N−q−m−2).

Now, we can write

I1 + I3 = iCq,m(f)
(−1)N+1

N q+m+1
sin(πNσx)

ḿ−1∑
k=0

(
m− k − 2

k

)
(−1)k

22k+3 cos2k+4 πσx
2

+O(N−q−m−2).

Similarly,

I2 + I4 = −iCq,m(f)
(−1)N+1

N q+m+1
sin(π(N + 1)σx)

ḿ∑
k=0

(
m− k

k

)
(−1)k

22k+1 cos2k+2 πσx
2

+O(N−q−m−2)

which completes the proof. �

Similarly, the case m = 0 can be considered.

Theorem 2. Let f (q+1) ∈ AC[−1, 1] for some q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |x| < 1 as N → ∞

RN,0(f, x)=A0q(f)
(−1)N

2q+2N q+1

sin πNx

cos πx
2

[q/2]∑
k=0

(−1)k

(q − 2k)!π2k+1

∞∑
s=−∞

(−1)s(
s+ 1

2

)2k+1
+ o(N−q−1). (26)
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