ON A POINTWISE CONVERGENCE OF THE QUASI-PERIODIC TRIGONOMETRIC INTERPOLATION

LUSINE POGHOSYAN AND ARNAK POGHOSYAN

Abstract

The paper investigates the pointwise convergence of the quasi-periodic trigonometric interpolation and derives exact constant of the main term of asymptotic error for smooth functions.

1. Introduction

We continue investigation of the quasi-periodic (QP-) interpolation $I_{N, m}(f, x), m \geq 0$ (m is integer), $x \in[-1,1]$, which interpolates f on equidistant grid

$$
\begin{equation*}
x_{k}=\frac{k}{N},|k| \leq N \tag{1}
\end{equation*}
$$

and is exact for the following set of quasi-periodic functions

$$
\begin{equation*}
e^{i \pi n \sigma x},|n| \leq N, \sigma=\frac{2 N}{2 N+m+1} \tag{2}
\end{equation*}
$$

with period $2 / \sigma$ which tends to 2 as $N \rightarrow \infty$.
The idea of the QP-interpolation was suggested in [2]. Papers [7] and [8] considered the $L_{2}(-1,1)$-convergence of the QP-interpolation and its behavior at the endpoints $x= \pm 1$ in terms of the limit function. Some results concerning the convergence properties were presented also in [5] and [6].

Here, we explore the pointwise convergence of the QP-interpolation on $(-1,1)$ and obtain exact constant of the main term of asymptotic error. Some results of this research are reported also in [9].

2. The quasi-PERIODIC Interpolation

Let us clarify the basic requirements for derivation of the QP-interpolation (see (1) and (2)). Consider a new function $f^{*}(t)$ defined on $[-\sigma, \sigma]$ by the following change of variable

$$
f^{*}(t)=f\left(\frac{t}{\sigma}\right)=f(x), x \in[-1,1], t \in[-\sigma, \sigma], t=\sigma x .
$$

This implies interpolation of $f^{*}(t)$ on grid

$$
t_{k}=\sigma x_{k}=\frac{2 k}{2 N+m+1},|k| \leq N
$$

Key words and phrases. Trigonometric interpolation, quasi-periodic interpolation, pointwise convergence.
while interpolating $f(x)$ on grid (1). Thus, the QP-interpolation actually interpolates $f^{*}(t)$ on grid t_{k} and is exact for $e^{i \pi n t},|n| \leq N$. It is important to note that for $m>0$, the 2-periodic extension of grid t_{k} to the real line is non-uniform as

$$
t_{k}-t_{k-1}=\frac{2}{2 N+m+1}=h, k=-N+1, \ldots, N
$$

while

$$
1-t_{N}+t_{-N}-(-1)=(m+1) \frac{2}{2 N+m+1} \neq h
$$

This non-uniformity is the main reason of faster $\left(O\left(^{-q-m-1}\right)\right.$) pointwise convergence (see Theorem 1) of the QP-interpolation compared to the convergence ($O\left(N^{-q-1}\right)$ for even q or $O\left(N^{-q-2}\right)$ for odd q) of the classical trigonometric interpolation realized by uniform grids (see [3]). Wee see that as bigger is the value of m as more dense are the nodes on $(-1,1)$ and, as a result, is higher the accuracy. It is also worth noting that f^{*} depends on N and in convergence theorems it must be taken into account and although $f^{*} \rightarrow f$ as $N \rightarrow \infty$ but this dependence essentially changes interpolation properties.

First, let $m=0$. In this case, grid t_{k} is uniform. Hence, the QP-interpolation $I_{N, 0}(f, x)$ of f is the classical trigonometric interpolation $I_{N}^{*}\left(f^{*}, t\right)$ of f^{*} on uniform $\operatorname{grid} 2 k /(2 N+1)$, $|k| \leq N$ and thus

$$
\begin{aligned}
I_{N}^{*}\left(f^{*}, t\right) & =\sum_{n=-N}^{N}\left(\frac{1}{2 N+1} \sum_{k=-N}^{N} f^{*}\left(\frac{2 k}{2 N+1}\right) e^{-i \pi n \frac{2 k}{2 N+1}}\right) e^{i \pi n t} \\
& =\sum_{n=-N}^{N}\left(\frac{1}{2 N+1} \sum_{k=-N}^{N} f\left(\frac{k}{N}\right) e^{-i \pi n \sigma \frac{k}{N}}\right) e^{i \pi n \sigma x}=I_{N, 0}(f, x),
\end{aligned}
$$

where $t=\sigma x$. Theorem 2 explores the pointwise convergence of $I_{N, 0}$ on $(-1,1)$ and derives the exact constant of the main term of asymptotic error.

Now, let $m>0$. Taking into account the above remarks, we write

$$
\begin{equation*}
I_{N, m}(f, x)=\sum_{k=-N}^{N} f\left(\frac{k}{N}\right) c_{k}(x), \tag{3}
\end{equation*}
$$

where c_{k} are some unknowns to be determined. As (3) is exact for $e^{i \pi n \sigma x}$, we get the following system of linear equations for determination of the unknowns

$$
e^{i \pi n \sigma x}=\sum_{k=-N}^{N} e^{i \pi n \sigma \frac{k}{N}} c_{k}(x),|n| \leq N .
$$

From here, we get (see details in [7])

$$
\begin{aligned}
c_{k}(x) & =\frac{1}{2 N+m+1}\left(\sum_{\ell=-N}^{N} e^{\frac{2 i \pi \ell(N x-k)}{2 N+m+1}}\right. \\
& \left.-\sum_{\ell=1}^{m} e^{\frac{2 i \pi(\ell+N)(N+m-k)}{2 N+m+1}} \sum_{s=1}^{m} v_{\ell, s}^{-1} \sum_{j=-N}^{N} e^{\frac{2 i \pi j(N x+s-N-m-1)}{2 N+m+1}}\right),
\end{aligned}
$$

where $v_{\ell, s}^{-1}$ are the elements of the inverse of the following Vandermonde matrix

$$
\begin{equation*}
v_{s, \ell}=\alpha_{\ell}^{s-1}, \alpha_{\ell}=e^{\frac{2 i \pi(\ell+N)}{2 N+m+1}}, s, \ell=1, \ldots, m \tag{4}
\end{equation*}
$$

and have the following explicit form (see [1])

$$
\begin{equation*}
v_{\ell, s}^{-1}=-\frac{1}{\alpha_{\ell}^{s} \prod_{\substack{k=1 \\ k \neq \ell}}^{m}\left(\alpha_{\ell}-\alpha_{k}\right)} \sum_{j=0}^{s-1} \gamma_{j} \alpha_{\ell}^{j}, \quad \ell, s=1, \ldots, m \tag{5}
\end{equation*}
$$

Here, γ_{j} are the coefficients of the following polynomial

$$
\prod_{j=1}^{m}\left(x-\alpha_{j}\right)=\sum_{j=0}^{m} \gamma_{j} x^{j}
$$

Explicit expression of c_{k} leads to the following explicit representation of the QP-interpolation

$$
I_{N, m}(f, x)=\sum_{n=-N}^{N} F_{n, m} e^{i \pi n \sigma x}
$$

where

$$
\begin{gather*}
F_{n, m}=\check{f}_{n, m}-\sum_{\ell=1}^{m} \theta_{n, \ell} \check{f}_{\ell+N, m} \tag{6}\\
\check{f}_{n, m}=\frac{1}{2 N+m+1} \sum_{k=-N}^{N} f\left(\frac{k}{N}\right) e^{-\frac{2 i \pi n k}{2 N+m+1}}
\end{gather*}
$$

and

$$
\begin{equation*}
\theta_{n, \ell}=e^{\frac{2 i \pi(\ell+N)(N+m)}{2 N+m+1}} \sum_{s=1}^{m} v_{\ell, s}^{-1} e^{\frac{2 i \pi n(s-N-m-1)}{2 N+m+1}} . \tag{7}
\end{equation*}
$$

From (4), (6) and (7), it follows that

$$
\begin{equation*}
F_{N+k, m}=0, \quad F_{-N-k, m}=0, k=1, \ldots, m . \tag{8}
\end{equation*}
$$

Then, taking into account that $\alpha_{s}-\alpha_{i}=O(1 / N)$, we get from (5)

$$
\begin{equation*}
v_{\ell, s}^{-1}=O\left(N^{m-1}\right), N \rightarrow \infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{n, \ell}=O\left(N^{m-1}\right), N \rightarrow \infty \tag{10}
\end{equation*}
$$

We denote by $R_{N, m}$ the error of the QP-interpolation

$$
R_{N, m}(f, x)=f(x)-I_{N, m}(f, x)
$$

3. Convergence analysis

Let $f \in C^{q}[-1,1]$ and

$$
A_{s k}(f)=f^{(k)}(1)-(-1)^{k+s} f^{(k)}(-1), k=0, \ldots, q
$$

We denote by f_{n} the n-th Fourier coefficient of f

$$
f_{n}=\frac{1}{2} \int_{-1}^{1} f(x) e^{-i \pi n x} d x
$$

Let

$$
\delta_{n}^{p}\left(\left\{f_{s}\right\}_{s=-\infty}^{\infty}\right)=\delta_{n}^{p}\left(\left\{f_{s}\right\}\right)=\sum_{k=0}^{2 p}\binom{2 p}{k} f_{n+p-k}
$$

First, we prove some lemmas.
Lemma 1. The following estimate holds for $|n| \leq N$ as $N \rightarrow \infty$

$$
\begin{equation*}
\delta_{n}^{p}\left(\left\{(-1)^{s} e^{\frac{i \pi \beta s}{2 N+m+1}}\right\}_{s=-\infty}^{\infty}\right)=\frac{(-1)^{n}(\pi \beta)^{2 p}}{(2 N+m+1)^{2 p}} e^{\frac{i \pi \beta n}{2 N+m+1}}+O\left(N^{-2 p-1}\right), \tag{11}
\end{equation*}
$$

where β is a constant and $p>0$.
Proof. According to definition of $\delta_{n}^{p}(\cdot)$, we have

$$
\begin{aligned}
\delta_{n}^{p}\left(\left\{(-1)^{s} e^{\frac{i \pi \beta s}{2 N+m+1}}\right\}\right) & =(-1)^{n+p} e^{\frac{i \pi \beta(n+p)}{2 N+m+1}} \sum_{k=0}^{2 p}\binom{2 p}{k}(-1)^{k} e^{-\frac{i \pi \beta k}{2 N+m+1}} \\
& =(-1)^{n+p} e^{\frac{i \pi \beta(n+p)}{2 N+m+1}} \sum_{k=0}^{2 p}\binom{2 p}{k}(-1)^{k} \sum_{t=0}^{\infty} \frac{(i \pi \beta)^{t}(-1)^{t} k^{t}}{t!(2 N+m+1)^{t}} \\
& =(-1)^{n+p} e^{\frac{i \pi \beta(n+p)}{2 N+m+1}} \sum_{t=0}^{\infty} \frac{(-1)^{t}(i \pi \beta)^{t}}{t!(2 N+m+1)^{t}} \omega_{2 p, t},
\end{aligned}
$$

where

$$
\omega_{p, t}=\sum_{k=0}^{p}\binom{p}{k}(-1)^{k} k^{t} \sim p^{t}, t \rightarrow \infty
$$

and (see [10])

$$
\omega_{p, t}=0,0 \leq t \leq p-1, \omega_{p, p}=(-1)^{p} p!.
$$

These complete the proof.
Let $f \in C^{q+2 m}[-1,1]$. We denote

$$
f^{*}(x)= \begin{cases}f_{\text {left }}(x), & x \in[-1,-\sigma) \tag{12}\\ f\left(\frac{x}{\sigma}\right), & x \in[-\sigma, \sigma] \\ f_{\text {right }}(x), & x \in(\sigma, 1]\end{cases}
$$

where

$$
f_{l e f t}(x)=\sum_{j=0}^{q+2 m} \frac{f^{(j)}(-1)}{j!}\left(\frac{x}{\sigma}+1\right)^{j}, f_{\text {right }}(x)=\sum_{j=0}^{q+2 m} \frac{f^{(j)}(1)}{j!}\left(\frac{x}{\sigma}-1\right)^{j} .
$$

Let

$$
B_{n}(k)=\frac{(-1)^{n+1}}{2(i \pi n)^{k+1}} .
$$

Lemma 2. [8] Let $f^{(q+2 m)} \in A C[-1,1]$ for some $m \geq 1, q \geq 0$ and

$$
f^{(k)}(-1)=f^{(k)}(1)=0, k=0, \ldots, q-1
$$

Then, the following estimate holds for $n, N \rightarrow \infty$

$$
\begin{equation*}
f_{n}^{*}=\sum_{j=q}^{q+2 m} \frac{1}{2^{j} N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}(2 N+m+1)^{k}}{(j-k)!} B_{n}(k)+o\left(n^{-q-2 m-1}\right) . \tag{13}
\end{equation*}
$$

Let

$$
\Phi_{k, m}\left(e^{i \pi x}\right)=e^{\frac{i \pi}{2}(m-1) x} \sum_{r=-\infty}^{\infty} \frac{(-1)^{r(m+1)}}{(2 r+x)^{k+1}} .
$$

Lemma 3. Let $f^{(q+2 m)} \in A C[-1,1]$ for some $m \geq 1, q \geq 0$ and

$$
f^{(k)}(-1)=f^{(k)}(1)=0, k=0, \ldots, q-1
$$

Then, the following estimate holds as $N \rightarrow \infty$ and $|n| \leq N+2 m$

$$
\begin{align*}
F_{n, m} & -f_{n}^{*}=\frac{(-1)^{n+1}}{2 N+m+1} \sum_{j=q}^{q+m+1} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} \\
& \times\left(\sum_{r \neq 0} \frac{(-1)^{r(m+1)}}{\left(2 r+\frac{2 n}{2 N+m+1}\right)^{k+1}}-e^{-\frac{i \pi(m-1) n}{2 N+m+1}} \sum_{\tau=0}^{m-1} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!}\left(e^{\frac{2 i \pi n}{2 N+m+1}}+1\right)^{\tau}\right. \tag{14}\\
& \left.-e^{-\frac{i \pi(m-1) n}{2 N+m+1}} \sum_{\tau=m}^{q-j+2 m} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!} \sum_{\ell=1}^{m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau} \sum_{s=1}^{m} v_{\ell, s}^{-1} e^{\frac{2 \pi n n(s-1)}{2 N+m+1}}\right) \\
& +o\left(N^{-q-m-2}\right) .
\end{align*}
$$

Proof. We have (details see in [8])

$$
\begin{equation*}
F_{n, m}=\sum_{r=-\infty}^{\infty} f_{n+r(2 N+m+1)}^{*}-\sum_{\ell=1}^{m} \theta_{n, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*}, n \in \mathbb{Z} \tag{15}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
F_{n, m}-f_{n}^{*}=\sum_{r \neq 0} f_{n+r(2 N+m+1)}^{*}-\sum_{\ell=1}^{m} \theta_{n, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*} . \tag{16}
\end{equation*}
$$

Now, for $|n| \leq N+2 m$, according to Lemma 2, equations (7) and (10), we get

$$
\begin{align*}
\sum_{r \neq 0} f_{n+r(2 N+m+1)}^{*} & =\frac{(-1)^{n+1}}{2 N+m+1} \sum_{j=q}^{q+2 m} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} \tag{17}\\
& \times \sum_{r \neq 0} \frac{(-1)^{r(m+1)}}{\left(2 r+\frac{2 n}{2 N+m+1}\right)^{k+1}}+o\left(N^{-q-2 m-1}\right),
\end{align*}
$$

and

$$
\begin{gathered}
\sum_{\ell=1}^{m} \theta_{n, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*}=\frac{(-1)^{n+1}}{2 N+m+1} \sum_{j=q}^{q+2 m} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} \\
\quad \times e^{-\frac{i \pi(m-1) n}{2 N+m+1}} \sum_{\ell=1}^{m} \Phi_{k, m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}\right) \sum_{s=1}^{m} v_{\ell, s}^{-1} e^{\frac{2 \pi n(s-1)}{2 N+m+1}}+o\left(N^{-q-m-2}\right)
\end{gathered}
$$

Then, by the Taylor expansion

$$
\Phi_{k, m}\left(e^{\frac{2 \pi(N+\ell)}{2 N+m+1}}\right)=\sum_{\tau=0}^{2 m} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!} \Phi_{k, m}^{(\tau)}(-1)\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau}+O\left(N^{-2 m-1}\right),
$$

we derive

$$
\begin{gathered}
\sum_{\ell=1}^{m} \theta_{n, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*}=\frac{(-1)^{n+1}}{2 N+m+1} \sum_{j=q}^{q+2 m} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} e^{-\frac{i \pi(m-1) n}{2 N+m+1}} \\
\quad \times \sum_{\tau=0}^{2 m} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!} \sum_{\ell=1}^{m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau} \sum_{s=1}^{m} v_{\ell, s}^{-1} e^{\frac{2 \pi n n(s-1)}{2 N+m+1}}+o\left(N^{-q-m-2}\right)
\end{gathered}
$$

Finally, taking into account the following relations

$$
\sum_{\ell=1}^{m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau} \sum_{s=0}^{m-1} v_{\ell, s+1}^{-1} e^{\frac{22 \pi n s}{2 N+m+1}}=\left(e^{\frac{2 i \pi n}{2 N+m+1}}+1\right)^{\tau}, \tau=0, \ldots, m-1
$$

we get

$$
\begin{aligned}
& \sum_{\ell=1}^{m} \theta_{n, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*}=\frac{(-1)^{n+1}}{2 N+m+1} \sum_{j=q}^{q+m+1} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} e^{-\frac{i \pi(m-1) n}{2 N+m+1}} \\
& \times\left(\sum_{\tau=0}^{m-1} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!}\left(e^{\frac{2 i \pi n}{2 N+m+1}}+1\right)^{\tau}\right. \\
&\left.+\sum_{\tau=m}^{q-j+2 m} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!} \sum_{\ell=1}^{m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau} \sum_{s=1}^{m} v_{\ell, s}^{-1} e^{\frac{2 \pi \pi n(s-1)}{2 N+m+1}}\right)+o\left(N^{-q-m-2}\right) .
\end{aligned}
$$

Substituting this and (17) into (16), we get the required.
Lemma 4. Let $f^{(q+2 m)} \in A C[-1,1]$ for some $m \geq 1, q \geq 0$ and

$$
f^{(k)}(-1)=f^{(k)}(1)=0, k=0, \ldots, q-1 .
$$

Then, the following estimates hold as $N \rightarrow \infty$

$$
\begin{equation*}
F_{N-p, m}=C_{q, m}(f) \frac{(-1)^{N+p+1}}{N^{q+m+1}}\binom{m+p}{m}+O\left(N^{-q-m-2}\right), p \geq 0, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-N+p, m}=-F_{N-p, m}+O\left(N^{-q-m-2}\right), p \geq 0, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{q, m}(f)=\sum_{k=0}^{q} \frac{A_{k q}(f)(m+1)^{q-k}}{2^{q-k+1} i^{k} \pi^{k-m+1}(q-k)!} \Phi_{k, m}^{(m)}(-1) . \tag{20}
\end{equation*}
$$

Proof. We have from (15)

$$
F_{N-p, m}=\sum_{r=-\infty}^{\infty} f_{N-p+r(2 N+m+1)}^{*}-\sum_{\ell=1}^{m} \theta_{N-p, \ell} \sum_{r=-\infty}^{\infty} f_{N+\ell+r(2 N+m+1)}^{*}
$$

We write in view of Lemma 2 and (10)

$$
\begin{aligned}
& F_{N-p, m}=\frac{(-1)^{N+1}}{2 N+m+1} \sum_{j=q}^{q+2 m} \frac{1}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} \\
& \times\left((-1)^{p} \sum_{r=-\infty}^{\infty} \frac{(-1)^{r(m+1)}}{\left(2 r+\frac{2(N-p)}{2 N+m+1}\right)^{k+1}}-\sum_{\ell=1}^{m}(-1)^{\ell} \theta_{N-p, \ell} \sum_{r=-\infty}^{\infty} \frac{(-1)^{r(m+1)}}{\left(2 r+\frac{2(N+\ell)}{2 N+m+1}\right)^{k+1}}\right) \\
& +o\left(N^{-q-m-2}\right)
\end{aligned}
$$

According to (7), we obtain

$$
\begin{align*}
F_{N-p, m} & =\frac{(-1)^{N+p+1}}{2 N+m+1} \sum_{j=q}^{q+2 m} \frac{e^{-\frac{i \pi(m-1)(N-p)}{2 N+m+1}}}{N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!} \\
& \times\left(\Phi_{k, m}\left(e^{\frac{2 i \pi(N-p)}{2 N+m+1}}\right)-\sum_{\ell=1}^{m} \Phi_{k, m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}\right) \sum_{s=0}^{m-1} v_{\ell, s+1}^{-1} e^{\frac{2 i \pi(N-p) s}{2 N+m+1}}\right) \tag{21}\\
& +o\left(N^{-q-m-2}\right)
\end{align*}
$$

Now, we simplify the expression in the brackets which we denote by S (see also (4))

$$
\begin{aligned}
S & =\Phi_{k, m}\left(\alpha_{-p}\right)-\sum_{\ell=1}^{m} \Phi_{k, m}\left(\alpha_{\ell}\right) \sum_{s=0}^{m-1} v_{\ell, s+1}^{-1} \alpha_{-p}^{s} \\
& =\sum_{j=1}^{m} \underset{z=\alpha_{j}}{\operatorname{res}} \frac{\omega\left(\alpha_{-p}\right) \Phi_{k, m}(z)}{\omega(z)\left(z-\alpha_{-p}\right)}+\operatorname{res}_{z=\alpha_{-p}}^{\operatorname{res}} \frac{\omega\left(\alpha_{-p}\right) \Phi_{k, m}(z)}{\omega(z)\left(z-\alpha_{-p}\right)}
\end{aligned}
$$

where $\omega(z)=\prod_{\ell=1}^{m}\left(z-\alpha_{\ell}\right)$. Hence

$$
S=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\omega\left(\alpha_{-p}\right) \Phi_{k, m}(z)}{\omega(z)\left(z-\alpha_{-p}\right)} d z
$$

where Γ contains the points $\left\{\alpha_{\ell}\right\}_{\ell=1}^{m}$ and α_{-p}. Then, we get

$$
\begin{aligned}
S & =\frac{(i \pi)^{m}}{N^{m} 2 \pi i} \frac{(m+p)!}{p!} \int_{\Gamma} \frac{\Phi_{k, m}(z)}{(z+1)^{m+1}} d z+O\left(N^{-m-1}\right) \\
& =\frac{(i \pi)^{m} \Phi_{k, m}^{(m)}(-1)}{N^{m}}\binom{m+p}{m}+O\left(N^{-m-1}\right)
\end{aligned}
$$

Substituting this into (21), we get the first statement. The second one can be proved similarly.

Next theorems present the main results of this paper.

Theorem 1. Let $f^{(q+2 m)} \in A C[-1,1]$ for some $m \geq 1, q \geq 0$ and

$$
f^{(k)}(-1)=f^{(k)}(1)=0, \quad k=0, \ldots, q-1
$$

Then, the following estimate holds for $|x|<1$ as $N \rightarrow \infty$

$$
\begin{align*}
R_{N, m}(f, x) & =i C_{q, m}(f) \frac{(-1)^{N}}{N^{q+m+1}}\left[\sin (\pi(N+1) \sigma x) \sum_{k=0}^{\dot{m}}\binom{m-k}{k} \frac{(-1)^{k}}{2^{2 k+1} \cos ^{2 k+2} \frac{\pi x}{2}}\right. \\
& \left.-\sin (\pi N \sigma x) \sum_{k=0}^{\dot{m}-1}\binom{m-k-2}{k} \frac{(-1)^{k}}{2^{2 k+3} \cos ^{2 k+4} \frac{\pi x}{2}}\right]+o\left(N^{-q-m-1}\right), \tag{22}
\end{align*}
$$

where $\dot{m}=\left[\frac{m}{2}\right]$ and $C_{q, m}(f)$ is defined by (20).
Proof. According to definition of f^{*} (see (12)), we can write for fixed N

$$
f^{*}(x)=\sum_{n=-\infty}^{\infty} f_{n}^{*} e^{i \pi n x}, x \in(-1,1) .
$$

Hence,

$$
f(x)=\sum_{n=-\infty}^{\infty} f_{n}^{*} e^{i \pi n \sigma x}, x \in[-1,1] .
$$

Therefore,

$$
R_{N, m}(f, x)=\sum_{n=-N}^{N}\left(f_{n}^{*}-F_{n, m}\right) e^{i \pi n \sigma x}+\sum_{|n|>N} f_{n}^{*} e^{i \pi n \sigma x}
$$

The following expansion of the error is easy to verify (see also [4] with similar transformations)

$$
\begin{align*}
R_{N, m}(f, x) & =e^{i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{N+1}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}} \\
& -e^{i \pi(N+1) \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{N}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}} \tag{23}\\
& +e^{-i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{-N-1}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}} \\
& -e^{-i \pi(N+1) \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{-N}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}}+r_{N, m}(f, x),
\end{align*}
$$

where

$$
\begin{aligned}
r_{N, m}(f, x) & =\frac{1}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+1}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+1}} \sum_{n=-N}^{N} \delta_{n}^{\dot{m}+1}\left(\left\{f_{s}^{*}-F_{s, m}\right\}\right) e^{i \pi \sigma n x} \\
& +\frac{1}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+1}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+1}} \sum_{|n|>N} \delta_{n}^{\dot{m}+1}\left(\left\{f_{s}^{*}\right\}\right) e^{i \pi \sigma n x} .
\end{aligned}
$$

First, we show that

$$
\begin{equation*}
r_{N, m}(f, x)=o\left(N^{-q-m-1}\right), N \rightarrow \infty,|x|<1 . \tag{24}
\end{equation*}
$$

Application of similar transformation leads to the following expansion for $r_{N, m}(f, x)$

$$
\begin{align*}
r_{N, m}(f, x) & =\frac{\delta_{-N-1}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right) e^{-i \pi N \sigma x}-\delta_{N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right) e^{i \pi(N+1) \sigma x}}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+2}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+2}} \\
& +\frac{\delta_{N+1}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right) e^{i \pi N \sigma x}-\delta_{-N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right) e^{-i \pi(N+1) \sigma x}}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+2}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+2}} \\
& +\frac{1}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+2}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+2}} \sum_{n=-N}^{N} \delta_{n}^{\dot{m}+2}\left(\left\{f_{s}^{*}-F_{s, m}\right\}\right) e^{i \pi \sigma n x} \tag{25}\\
& +\frac{1}{\left(1+e^{-i \pi \sigma x}\right)^{\dot{m}+2}\left(1+e^{i \pi \sigma x}\right)^{\dot{m}+2}} \sum_{|n|>N} \delta_{n}^{\dot{m}+2}\left(\left\{f_{s}^{*}\right\}\right) e^{i \pi \sigma n x}
\end{align*}
$$

According to estimate (13) of Lemma 2, we get

$$
\begin{aligned}
\delta_{n}^{\dot{m}+2}\left(\left\{f_{s}^{*}\right\}\right) & =\sum_{j=q}^{q+2 m} \frac{1}{2^{j} N^{j}} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}(2 N+m+1)^{k}}{(j-k)!} \delta_{n}^{\dot{n}+2}\left(\left\{B_{s}(k)\right\}_{s=-\infty}^{\infty}\right) \\
& +o\left(n^{-q-2 m-1}\right) .
\end{aligned}
$$

We have (see [3])

$$
\delta_{n}^{\dot{m}+2}\left(\left\{B_{s}(k)\right\}_{s=-\infty}^{\infty}\right)=O\left(n^{-2 \dot{m}-k-5}\right),
$$

and hence,

$$
\delta_{n}^{\dot{m}+2}\left(\left\{f_{s}^{*}\right\}\right)=O\left(n^{-2 \dot{m}-5} N^{-q}\right)+o\left(n^{-q-2 m-1}\right),|n|>N, N \rightarrow \infty .
$$

We see that the last term in the right-hand side of (25) is $o\left(N^{-q-m-1}\right)$.
Then, according to estimate (14) of Lemma 3, we write

$$
\begin{aligned}
& \delta_{n}^{\dot{m}+2}\left(\left\{F_{s, m}-f_{s}^{*}\right\}\right)=\frac{1}{2 N+m+1} \sum_{j=q}^{q+m+1} \sum_{k=0}^{j} \frac{A_{k j}(f)(m+1)^{j-k}}{2^{j-k}(i \pi)^{k+1}(j-k)!N^{j}} \\
& \times\left(\frac{(2 N+m+1)^{k+1}(i \pi)^{k+1}}{2^{k}} \delta_{n}^{\dot{m}+2}\left(\left\{\sum_{r \neq 0} B_{t+r(2 N+m+1)}(k)\right\}_{t=-\infty}^{\infty}\right)\right. \\
&-\sum_{s=0}^{m-1} \frac{\Phi_{k, m}^{(s)}(-1)}{s!} \delta_{n}^{\dot{m}+2}\left(\left\{(-1)^{t+1}\left(e^{\frac{2 i \pi t}{2 N+m+1}}+1\right)^{s} e^{-\frac{i \pi(m-1) t}{2 N+m+1}}\right\}_{t=-\infty}^{\infty}\right)- \\
&\left.\quad \sum_{\tau=m}^{q-j+2 m} \frac{\Phi_{k, m}^{(\tau)}(-1)}{\tau!} \sum_{\ell=1}^{m}\left(e^{\frac{2 i \pi(N+\ell)}{2 N+m+1}}+1\right)^{\tau} \sum_{s=0}^{m-1} v_{\ell, s+1}^{-1} \delta_{n}^{\dot{n}+2}\left(\left\{(-1)^{t+1} e^{\frac{2 \pi t(2 s-m+1)}{2 N+m+1}}\right\}_{t=-\infty}^{\infty}\right)\right) \\
& \quad+o\left(N^{-q-m-2}\right) .
\end{aligned}
$$

In view of the following estimate (see [3])

$$
\delta_{n}^{\dot{m}+2}\left(\left\{\sum_{r \neq 0} B_{t+r(2 N+m+1)}(k)\right\}_{t=-\infty}^{\infty}\right)=O\left(N^{-2 \dot{m}-k-5}\right)
$$

and according to Lemma 1 and (9), we have

$$
\delta_{n}^{\dot{m}+2}\left(\left\{F_{s, m}-f_{s}^{*}\right\}\right)=o\left(N^{-q-m-2}\right)
$$

and the third term in the right-hand side of (25) is $o\left(N^{-q-m-1}\right)$.
Now, we estimate the first two terms in the right-hand side of (25). We have

$$
\delta_{N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right)=\sum_{k=0}^{2 \dot{m}+2}\binom{2 \dot{m}+2}{k} F_{N+\dot{m}+1-k, m} .
$$

Taking into account (8), we get

$$
\delta_{N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right)=\sum_{k=\dot{m}+1}^{2 \dot{m}+2}\binom{2 \dot{m}+2}{k} F_{N+\dot{m}+1-k, m} .
$$

In view of Lemma 4, we derive
$\delta_{N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right)=C_{q, m}(f) \frac{(-1)^{N+\dot{m}}}{N^{q+m+1}} \sum_{k=\dot{m}+1}^{2 \dot{m}+2}(-1)^{k}\binom{2 \dot{m}+2}{k}\binom{m+k-\dot{m}-1}{m}+O\left(N^{-q-m-2}\right)$.
Taking into account the identity (see [10])

$$
\sum_{k=\dot{m}+1}^{2 \dot{m}+2}(-1)^{k}\binom{2 \dot{m}+2}{k}\binom{m+k-\dot{m}-1}{m}=0,
$$

we conclude that

$$
\delta_{N}^{\dot{m}+1}\left(\left\{F_{n, m}\right\}\right)=O\left(N^{-q-m-2}\right) .
$$

Similarly, we estimate the other terms and see that (24) is true.
Now, we return to the first four terms in the right hand-side of (23) which we denote by I_{1}, I_{2}, I_{3} and I_{4}, respectively.
We have for the first term in the right-hand side of (23)

$$
\delta_{N+1}^{k}\left(\left\{F_{n, m}\right\}\right)=\sum_{s=0}^{2 k}\binom{2 k}{s} F_{N+1+k-s, m}=\sum_{s=k+1}^{2 k}\binom{2 k}{s} F_{N+1+k-s, m}=\sum_{s=0}^{k-1}\binom{2 k}{s+k+1} F_{N-s, m} .
$$

Then,

$$
\begin{aligned}
I_{1} & =e^{i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{N+1}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}} \\
& =e^{i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{1}{2^{2 k+2} \cos ^{2 k+2} \frac{\pi \sigma x}{2}} \sum_{s=0}^{k-1}\binom{2 k}{s+k+1} F_{N-s, m} .
\end{aligned}
$$

In view of Lemma 4, we get

$$
\begin{aligned}
I_{1} & =C_{q, m}(f) \frac{(-1)^{N+1}}{N^{q+m+1}} e^{i \pi N \sigma x} \sum_{k=1}^{\dot{m}} \frac{1}{2^{2 k+2} \cos ^{2 k+2} \frac{\pi \sigma x}{2}} \sum_{s=0}^{k-1}(-1)^{s}\binom{2 k}{s+k+1}\binom{m+s}{m} \\
& +O\left(N^{-q-m-2}\right) .
\end{aligned}
$$

We apply identity (see [10])

$$
\sum_{s=0}^{k-1}(-1)^{s}\binom{2 k}{s+k+1}\binom{m+s}{m}=(-1)^{k+1}\binom{m-k-1}{k-1}
$$

and obtain

$$
I_{1}=C_{q, m}(f) \frac{(-1)^{N+1}}{N^{q+m+1}} e^{i \pi N \sigma x} \sum_{k=0}^{\dot{m}-1}\binom{m-k-2}{k} \frac{(-1)^{k}}{2^{2 k+4} \cos ^{2 k+4} \frac{\pi \sigma x}{2}}+O\left(N^{-q-m-2}\right)
$$

Similarly, in view of relations (8), we have for the third term in right-hand side of (23) and Lemma 4 that

$$
\begin{aligned}
& \delta_{-N-1}^{k}\left(\left\{F_{n, m}\right\}\right)=\sum_{s=0}^{2 k}\binom{2 k}{s} F_{-N-1+k-s, m}=\sum_{s=0}^{k-1}\binom{2 k}{s} F_{-N-1+k-s, m} \\
& \quad=\sum_{s=0}^{k-1}\binom{2 k}{k-1-s} F_{-N+s, m}=-\sum_{s=0}^{k-1}\binom{2 k}{k+s+1} F_{N-s, m}+O\left(N^{-q-m-2}\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
I_{3} & =e^{-i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{\delta_{-N-1}^{k}\left(\left\{F_{n, m}\right\}\right)}{\left(1+e^{-i \pi \sigma x}\right)^{k+1}\left(1+e^{i \pi \sigma x}\right)^{k+1}} \\
& =-e^{-i \pi N \sigma x} \sum_{k=0}^{\dot{m}} \frac{1}{2^{2 k+2} \cos ^{2 k+2} \frac{\pi \sigma x}{2}} \sum_{s=0}^{k-1}\binom{2 k}{k+s+1} F_{N-s}+O\left(N^{-q-m-2}\right) \\
& =-C_{q, m}(f) \frac{(-1)^{N+1}}{N^{q+m+1}} e^{-i \pi N \sigma x} \sum_{k=0}^{\dot{m}-1}\binom{m-k-2}{k} \frac{(-1)^{k}}{2^{2 k+4} \cos ^{2 k+4} \frac{\pi \sigma x}{2}}+O\left(N^{-q-m-2}\right) .
\end{aligned}
$$

Now, we can write

$$
I_{1}+I_{3}=i C_{q, m}(f) \frac{(-1)^{N+1}}{N^{q+m+1}} \sin (\pi N \sigma x) \sum_{k=0}^{\dot{m}-1}\binom{m-k-2}{k} \frac{(-1)^{k}}{2^{2 k+3} \cos ^{2 k+4} \frac{\pi \sigma x}{2}}+O\left(N^{-q-m-2}\right)
$$

Similarly,

$$
I_{2}+I_{4}=-i C_{q, m}(f) \frac{(-1)^{N+1}}{N^{q+m+1}} \sin (\pi(N+1) \sigma x) \sum_{k=0}^{\dot{m}}\binom{m-k}{k} \frac{(-1)^{k}}{2^{2 k+1} \cos ^{2 k+2} \frac{\pi \sigma x}{2}}+O\left(N^{-q-m-2}\right)
$$

which completes the proof.
Similarly, the case $m=0$ can be considered.
Theorem 2. Let $f^{(q+1)} \in A C[-1,1]$ for some $q \geq 0$ and

$$
f^{(k)}(-1)=f^{(k)}(1)=0, \quad k=0, \ldots, q-1 .
$$

Then, the following estimate holds for $|x|<1$ as $N \rightarrow \infty$

$$
\begin{equation*}
R_{N, 0}(f, x)=A_{0 q}(f) \frac{(-1)^{N}}{2^{q+2} N^{q+1}} \frac{\sin \pi N x}{\cos \frac{\pi x}{2}} \sum_{k=0}^{[q / 2]} \frac{(-1)^{k}}{(q-2 k)!\pi^{2 k+1}} \sum_{s=-\infty}^{\infty} \frac{(-1)^{s}}{\left(s+\frac{1}{2}\right)^{2 k+1}}+o\left(N^{-q-1}\right) . \tag{26}
\end{equation*}
$$

References

[1] I. Gohberg, and V. Olshevsky, The fast generalized Parker-Traub algorithm for inversion of Vandermonde and related matrices, J. of Complexity 13(2)(1997), 208-234.
[2] A. Nersessian, and N. Hovhannesyan, Quasiperiodic interpolation, Reports of the National Academy of Sciences of Armenia 101(2)(2001), 115-121.
[3] A. Poghosyan, Asymptotic behavior of the Krylov-Lanczos interpolation, Analysis and Applications 7(2) (2009), 199-211.
[4] A. Poghosyan, On a fast convergence of the rational-trigonometric-polynomial interpolation, Advances in Numerical Analysis, vol. 2013, article ID 315748, 13 pages, DOI:10.1155/2013/315748.
[5] L. Poghosyan, On a convergence of the quasi-periodic interpolation, The International Workshop on Functional Analysis, October 12-14, 2012, Timisoara, Romania.
[6] L. Poghosyan, On a convergence of the quasi-periodic interpolation, The III International Conference of the Georgian Mathematical Union, Batumi, Georgia, September 2-9, 2012.
[7] L. Poghosyan, On L_{2}-convergence of the quasi-periodic interpolation, Reports of the National Academy of Sciences of Armenia 113(3)(2013), 240-247.
[8] L. Poghosyan, and A. Poghosyan, Asymptotic estimates for the quasi-periodic interpolations, Armenian Journal of Mathematics, $\boldsymbol{5}(1)(2013), 34-57$.
[9] L. Poghosyan, and A. Poghosyan, Convergence acceleration of the quasi-periodic interpolation by rational and polynomial corrections (abstract), Second International Conference Mathematics in Armenia: Advances and Perspectives, 24-31 August, 2013, Tsaghkadzor, Armenia.
[10] J. Riordan, Combinatorial Identities, Wiley, New York, 1979.

Institute of mathematics, of National Academy of Sciences of Armenia, Bagramian ave. 24/5, 0019 Yerevan, Armenia

E-mail address: lusine@instmath.sci.am
Institute of mathematics, of National Academy of Sciences of Armenia, Bagramian ave. 24/5, 0019 Yerevan, Armenia

E-mail address: arnak@instmath.sci.am

