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Abstract. F. Schipp in 1969 proved almost everywhere p-strong summability

of Walsh-Fourier series and if λ(n) → ∞ there exists a function f ∈ L1[0, 1)

which Walsh partial sums Sk(x, f) satisfy the divergence condition

lim sup
n→∞

1

n

n∑
k=1

|Sk(x, f)|λ(k) = ∞

almost everywhere on [0, 1). In the present paper we show that this condition

may hold everywhere.

1. Introduction

In the study of almost everywhere convergence and summability of Fourier series
the trigonometric and Walsh systems have many common properties. Kolmogorov
[?] in 1926 constructed the first example of everywhere divergent trigonometric
Fourier series. The existence of the almost everywhere divergent Walsh-Fourier se-
ries first proved Stein [?]. Then Schipp [?] constructed an example of everywhere
divergent Walsh-Fourier series. A significant complement to these divergence the-
orems are the investigations on almost everywhere summability of Fourier series.

Let Φ(t) : [0,∞) → [0,∞), Φ(0) = 0, be an increasing continuous function. A
numerical series with partial sums s1, s2, . . . is said to be (strong) Φ-summable to
a number s, if

(1.1) lim
n→∞

1

n

n∑
k=1

Φ (|sk − s|) = 0.

We note that the condition (??) is as strong as rapidly growing is Φ, and in the case
of Φ(t) = tp, p > 0, the condition (??) coincides with Hp-summability, well known
in the theory of Fourier series. Marcinkiewicz-Zygmund in [?], [?] established the al-
most everywhere Hp-summability for an arbitrary trigonometric Fourier series (or-
dinary and conjugate). Oskolkov in [?] proved a.e. Φ-summability for trigonometric
Fourier series if Φ(t) = O(t/ log log t). Then Rodin [?] established the analogous
with Φ satisfying the condition

(1.2) lim sup
t→∞

log Φ(t)

t
<∞,

which is equivalent to the bound Φ(t) < exp(Ct) with some C > 0. Moreover, Rodin
invented an interesting property, that is almost everywhere BMO -boundedness of
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Fourier series, and the a.e. Φ-summability immediately follows from this results,
applying John-Nirenberg theorem. Karagulyan in [?, ?] proved that the condition
(??) is sharp for a.e. Φ-summability for Fourier series. That is if

(1.3) lim sup
t→∞

log Φ(t)

t
=∞,

then there exists an integrable function f ∈ L1(0, 2π) such that

lim sup
n→∞

1

n

n∑
k=1

Φ(|Sk(x, f)|) =∞, lim sup
n→∞

1

n

n∑
k=1

Φ(|S̃k(x, f)|) =∞,

hold everywhere on R, where Sk(x, f) and S̃k(x, f) are the ordinary and conjugate
partial sums of Fourier series of f(x).

Analogous problems are considered also for Walsh series. Almost everywhere Hp-
summability of Walsh-Fourier series with p > 0 was proved by F. Schipp [?]. The
almost everywhere Φ-summability with the condition (??) was proved by V. Rodin
[?] and F. Schipp [?]. Recently Gát, Goginava and Karagulyan [?] established,
that the bound (??) is sharp for a.e. Φ-summability of Walsh-Fourier series too.
Moreover, as in the trigonometric case [?], it is constructed a function f ∈ L1[0, 1)
such that

lim sup
n→∞

1

n

n∑
k=1

Φ (|Sk(x, f)|) =∞

holds everywhere on [0, 1), where Φ satisfies the condition (??) and Sk(x, f) are
the partial sums of Walsh-Fourier series of f(x). Let λ(n) → ∞ be an arbitrary
sequence. Schipp [?] constructed an example of function f ∈ L1[0, 1) such that

(1.4) lim sup
n→∞

1

n

n∑
k=1

|Sk(x, f)|λ(k) =∞

holds almost everywhere on [0, 1). Using a version of the basic lemma from [?], in
this paper we shall show that (??) may hold everywhere. That is

Theorem. For any sequence λ(n) → ∞, there exists a function f ∈ L1[0, 1) such
that (??) holds everywhere on [0, 1).

We note also, that the problem of uniformly Φ-summability of trigonometric
Fourier series, when f(x) is a continuous function was considered by V. Totik [?, ?].
He proved that the condition (??) is necessary and sufficient for the uniformly Φ-
summability of Fourier series of continuous functions. For the Walsh series the
analogous problem is considered by S. Fridli and F. Schipp [?, ?], V. Rodin [?],
U. Goginava and L. Gogoladze [?].

2. Proof of theorem

Recall the definitions of Rademacher and Walsh functions (see [?] or [?]). We
consider the function

r0(x) =

{
1, if x ∈ [0, 1/2),
−1, if x ∈ [1/2, 1),

periodically continued over the real line. The Rademacher functions are defined by
rk(x) = r0(2kx), k = 0, 1, 2, . . .. Walsh system is obtained by all possible products
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of Rademacher functions. We shall consider the Paley ordering of Walsh system.
We set w0(x) ≡ 1. To define wn(x) when n ≥ 1 we write n in the dyadic form

(2.1) n =

k∑
j=0

εj2
j ,

where εk = 1 and εj = 0 or 1 if j = 0, 1, . . . , k − 1, and set

wn(x) =

k∏
j=0

(rj(x))εj .

The partial sums of Walsh-Fourier series of a function f ∈ L1[0, 1) have a formula

Sn(x, f) =

∫ 1

0

f(t)Dn(x⊕ t)dt,

where Dn(x) is the Dirichlet kernel and ⊕ denotes the dyadic addition. We note
that

D2k(x) =

{
2k, if x ∈ [0, 2−k),
0, if x ∈ [2−k, 1).

The Dirichlet kernel can be expressed by the modified Dirichlet kernel D∗n(x) by

Dn(x) = wn(x)D∗n(x).

If n ∈ N have the form (??), then we have

D∗n(x) =

k∑
j=0

εjD
∗
2j (x) =

k∑
j=0

εjrj(x)D2j (x).

We shall write a . b, if a < c · b and c > 0 is an absolute constant. The notation
IE stands for the indicator function of a set E. An interval is said to be a set of
the form [a, b). For a dyadic interval δ we denote by δ+ and δ− the left and right
halves of δ. We denote the spectrum of a Walsh polynomial P (x) =

∑m
k=0 akwk(x)

by

spP (x) = {k ∈ N ∪ 0 : ak 6= 0}.

The following lemma is proved in [?]. In its proof we use a well known inequality

(2.2)

∣∣∣∣∣
{
x ∈ (0, 1) :

∣∣∣∣∣
n∑
k=1

akrk(x)

∣∣∣∣∣ ≤ λ
}∣∣∣∣∣ ≥ 1− 2 exp

(
−λ2/4

n∑
k=1

a2
k

)
, λ > 0,

for Rademacher polynomials (see for example [?], chap. 2, theorem 5).

Lemma 1 ([?]). If n ∈ N, n > 50, then there exists a set En ⊂ [0, 1), which is a
union of some dyadic intervals of the length 2−n, satisfies the inequality

(2.3) |En| > 1− 2 exp(−n/36),

and for any x ∈ En there exists an integer m = m(x) < 2n such that

(2.4)

∫ x

0

D∗m(x⊕ t)dt ≥ n

30
.
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Proof. We define

(2.5) En =

x ∈ [0, 1) :

∣∣∣∣∣∣
n∑
j=1

rj(x)rj+1(x)

∣∣∣∣∣∣ < n

3

 .

Since φj(x) = rj(x)rj+1(x), j = 1, 2, . . . , n are independent functions, taking values
±1 equally, the inequality (??) holds for φj(x) functions too. Applying (??) in (??)
we will get the bound (??). Observe that for a fixed x ∈ En we have

(2.6) #{j ∈ N : 1 ≤ j ≤ n : rj(x)rj+1(x) = −1} > n/3,

where #A denotes the cardinality of a set A. On the other hand the value in (??)
characterizes the number of sign changes in the sequence r1(x), r2(x), . . . , rn+1(x).
Using this fact, we may fix integers 1 ≤ k1 < k2 < . . . < kν ≤ n, such that

(2.7) rki(x) = 1, rki+1(x) = −1, i = 1, 2, . . . , ν, ν ≥ n

6
− 1.

Suppose δj is the dyadic interval of the length 2−j containing the point x. Observe
that (??) is equivalent to the condition

(2.8) x ∈
((
δkj
)+)−

.

This implies ((
δkj
)+)+

⊂ [0, x),(2.9)

rkj (x⊕ t) = 1, t ∈ δkj ∩ [0, x).(2.10)

Now consider the integer

m = 2k1 + 2k2 + . . .+ 2kν .

Using (??) and (??), we obtain∫ x

0

D∗m(x⊕ t)dt =

ν∑
j=1

∫ x

0

rkj (x⊕ t)D2kj (x⊕ t)dt

=

ν∑
j=1

2kj
∫
δkj∩[0,x)

rkj (x⊕ t)dt

≥
ν∑
j=1

2kj
∫
(
(δkj )

+
)+
rkj (x⊕ t)dt

=

ν∑
j=1

2kj−2|δkj | =
ν

4
>

n

30
.

�

Lemma 2. Let λ(n)→∞ be an arbitrary sequence. Then for any integer n > n0

there exists a Walsh polynomial f(x) = fn(x) such that

‖f‖1 ≤ 4, sp f(x) ⊂ [p(n), q(n)],(2.11)

sup
N∈[p(n),2q(n)]

#{k ∈ N : 1 ≤ k ≤ N, |Sk(x, f)| > n/40}
N

& 2−2n,(2.12)
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where n0 is an absolute constant and q(n) > p(n) are positive integers such that

(2.13) min
k≥p(n)

λ(k) > n.

Proof. We define

θk =
k − 1

2n
+
k − 1

4n
∈ ∆k =

[
k − 1

2n
,
k

2n

)
, k = 1, 2, . . . , 2n,

and a positive integer s ∈ N, satisfying

(2.14) min
k≥2s

λ(k) > n, s > n.

Let En be the set obtained in ??. We define f(x) by

(2.15) f(x) = 2γ · I(En)c(x)rs(x) +
1

2n

2n∑
j=1

(
Du2n

(x⊕ θj)−Duj (x⊕ θj)
)
,

where s is defined in (??) and

γ =
[

log2(exp(n/36))
]
,(2.16)

uj = 2s+10j , j = 0, 1, . . . , 2n.(2.17)

We have

sp
(
I(En)c(x)rs(x)

)
⊂ [2s, 2s+1) = [u0, 2u0),

sp
(
Du2n

(x⊕ θj)−Duj (x⊕ θj)
)
⊂ (uj , u2n ] ⊂ [u0, u2n ],

and therefore

sp f(x) ⊂ [p(n), q(n)], p(n) = u0 = 2s, q(n) = u2n .

Using (??) and (??), we obtain

‖f‖1 ≤ 2γ(1− |En|) + 2 ≤ exp(n/36) · 2 exp(−n/36) + 2 = 4.

From the expression (??) it follows that any value taken by f(x) is either 0 or a
sum of different numbers of the form ±2k with k ≥ γ. This implies

|f(x)| ≥ 2γ ≥ exp(n/36)

2
>

n

40
, n > n0 = 150,

whenever

(2.18) x ∈ supp f = (En)c
⋃2n−1⋃

j=1

(θj ⊕ suppDuj )

 .

On the other hand if l ≥ q(n) and x satisfies (??), then we have

|Sl(x, f)| = |f(x)| > n

40
.

Thus we obtain

#{k ∈ N : 1 ≤ k ≤ 2q(n), |Sk(x, f)| > n/40}
2q(n)

≥ 1

2
> 2−2n,

which implies (??). Now consider the case when (??) doesn’t hold. We may suppose
that

(2.19) x ∈ ∆k \ supp f, 1 ≤ k ≤ 2n.
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According to Lemma ??, there exists an integer m = m(x) < 2n satisfying the
inequality (??). Together with m we consider

p = p(x) = m(x)(1 + 2n) < 22n.

Using the definition of θj , observe that

wm(θk) = wm

(
k − 1

2n

)
,

wm·2n(θk) = wm·2n

(
k − 1

4n

)
= wm

(
k − 1

2n

)
,

and therefore we get

(2.20) wp(θk) = wm(θk)wm·2n(θk) = 1, k = 1, 2, . . . , 2n.

Define

(2.21) L(x) = {l ∈ N : l = p+ µ · 22n, µ ∈ N}.

Once again using the definition of θk as well as (??), we conclude

(2.22) wl(θk) = wp(θk)wµ·22n(θk) = 1, k = 1, 2, . . . , 2n, l ∈ L(x).

Suppose

(2.23) l ∈ L(x) ∩ [uk−1, uk), k ≤ 2n.

Since x is taken outside of supp f , we have

(2.24)

Sl(x, f) =
1

2n

k−1∑
j=1

Dl(x⊕ θj)−
k−1∑
j=1

Duj (x⊕ θj)


=

1

2n

k−1∑
j=1

Dl(x⊕ θj).

On the other hand by (??) we get

(2.25)

1

2n

∣∣∣∣∣∣
k−1∑
j=1

Dl(x⊕ θj)

∣∣∣∣∣∣ =
1

2n

∣∣∣∣∣∣
k−1∑
j=1

wl (θj)D
∗
l (x⊕ θj)

∣∣∣∣∣∣
=

1

2n

∣∣∣∣∣∣
k−1∑
j=1

D∗l (x⊕ θj)

∣∣∣∣∣∣ .
Using the definition of D∗l (x), observe that

D∗l (x) = D∗p(x) +D∗µ·22n(x) = D∗m(x) +D∗m·2n(x) +D∗µ·22n(x).

Since the supports of the functions D∗m·2n(t) and D∗µ·22n(t) are in ∆1, we conclude

(2.26) D∗l (x⊕ θj) = D∗m(x⊕ θj), x ∈ ∆k, j 6= k.
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Thus, applying Lemma ?? and (??), we obtain the bound

(2.27)

1

2n

∣∣∣∣∣∣
k−1∑
j=1

Dl(x⊕ θj)

∣∣∣∣∣∣ =
1

2n

∣∣∣∣∣∣
k−1∑
j=1

D∗m(x⊕ θj)

∣∣∣∣∣∣
≥
∫ x

0

D∗m(x⊕ t)dt− 1 >
n

30
− 1 >

n

40
, n > n0 = 150,

which holds whenever l satisfies (??). Taking into account of (??) and (??), we get

#{l ∈ N : 1 ≤ l ≤ uk, |Sl(x, f)| > n/40}
uk

≥ # (L(x) ∩ [uk−1, uk))

uk
& 2−2n,

which completes the proof of lemma. �

Proof of theorem. We may choose numbers {nk}∞k=1 such that

p(nk+1) > 2q(nk),(2.28)

1

22nk
·
( nk

50 · 2k
)nk

> k,(2.29)

nk+1 > 800k2kq(nk),(2.30)

where p(n) and q(n) are the sequences determined in Lemma ??. Applying Lemma ??,
we get polynomials gk(x) = fnk(x), which satisfy (??) for any x ∈ [0, 1). We have

f(x) =

∞∑
k=1

2−kgk(x) ∈ L1[0, 1).

The condition (??) provides increasing spectrums of these polynomials. Thus, if
p(nk) < l ≤ q(nk), then we have

(2.31)
|Sl(x, f)| =

∣∣∣∣∣∣
∞∑
j=1

2−jSl(x, gj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k−1∑
j=1

2−jgj(x) + 2−kSl(x, gk)

∣∣∣∣∣∣
≥2−k|Sl(x, gk)| − 4(k − 1)q(nk−1).

Applying Lemma ??, for any x ∈ [0, 1) we may find a number Nk ∈ [p(nk), 2q(nk)]
such that

#{l ∈ N : p(nk) < l ≤ Nk, |Sl(x, gk)| > nk/40} & Nk
22nk

.

Thus, using also (??) and (??), we conclude

#{l ∈ N : p(nk) < l ≤ Nk, |Sl(x, f)| > nk/50 · 2k} & Nk
22nk

and finally, using (??) we obtain

1

Nk

Nk∑
j=1

|Sj(x, f)|λ(j) &
1

Nk
· Nk

22nk
·
( nk

50 · 2k
)nk
≥ k, k = 1, 2, . . . .

This implies the divergence of λ-power means at a point x ∈ [0, 1) taken arbitrarily,
which completes the proof of the theorem. �
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