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Abstract

We consider boundary value problem for degenerate first order differential-
operator equation

Lu ≡ tαu′ − Pu = f, u(0)− µu(b) = 0,

where t ∈ (0, b), α ≥ 0, P : H → H is linear operator in separable
Hilbert space H, f ∈ L2,β((0, b), H), µ ∈ C. We prove that under some
conditions on the operator P and number µ boundary value problem has
unique generalized solution u ∈ L2,β((0, b), H) when 2α + β < 1, β ≥ 0
and for any f ∈ L2,β((0, b), H).

1 Introduction

In the present paper we consider boundary value problem for degenerate differential-
operator equations of the first order

Lu ≡ tαu′(t)− Pu = f(t), u(0)− µu(b) = 0, (1.1)

where t ∈ (0, b), α ≥ 0, µ ∈ C, P : H → H is a linear operator in separable
Hilbert space H f ∈ L2,β((0, b), H), β ≥ 0, i.e.,

‖f‖2β =

∫ b

0

tβ‖f(t)‖2H dt <∞.

We assume that the operator P : H → H has complete system of eigenfunctions
{ϕk}∞k=1, which form Riesz base in H, i.e., Pϕk = pkϕk, k ∈ N, all x ∈ H have
representation

x =

∞∑
k=1

xkϕk (1.2)
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and for some positive constants c1 and c2 is valid the inequality

c1

∞∑
k=1

|xk|2 ≤ ‖x‖2H ≤ c2
∞∑
k=1

|xk|2. (1.3)

Basics of the theory of differential-operator equations (i.e. ordinary differ-
ential equations with operator coefficients) of the first and second order can be
found in the monograph of S.G. Krein (see [6]). Differential-operator equations
of the first order have been considered in the articles of A.A. Dezin (see [2]), V.P.
Glushko (see [1]) and other autors. In the paper of N. Yataev (see [11]) have
been regarded operator equations of third order in weighted Sobolev space. In
the papers [8] and [9] of the author were considered degenerate operator equa-
tions of the fourth order in finite interval (0, b) and operator equations of order
2m on infinite interval (1,+∞). In the article [10] were regarded degenerate
operator equations with arbitrary weights. In this papers we explore Dirichlet
problem in corresponding weighted Sobolev spaces.

First we consider one-dimensional case of operator equation (1.1), i.e. when
Pu = pu, p ∈ C, and then we pass to the general case using general method of
A.A. Dezin (see [2]).

2 One-dimensional case

In this section we consider one dimensional case of boundary value problem
(1.1)

Su ≡ tαu′ − pu = f, u(0)− µu(b) = 0, (2.1)

were p and µ are constant complex numbers, α ≥ 0 and f ∈ L2,β(0, b).

We investigate the regular case (see [7]), when
∫ b
0

1
tα dt < ∞, i.e. α < 1.

Wanting to expand the space L2(0, b), we will assume in the future, that β ≥ 0.
Observe that for the weighted L2,β(0, b) spaces for β1 ≤ β2 we have continuous
embedding L2,β1

(0, b) ⊂ L2,β2
(0, b), which for β1 < β2 is not compact. We

explore the degeneration at the point t = 0, therefore we do not consider the
case µ =∞, i.e. the case when we consider the condition u(b) = 0.

We define the operator S : L2,β(0, b) → L2,β(0, b) as closure of the corre-
sponding differential operation S, first defined on smooth functions, satisfying
boundary condition u(0)− µu(b) = 0 (see. [7]).

Define maximal operator S̃ : L2,β(0, b)→ L2,β(0, b) as closure of differential
operation S in L2,β(0, b).

Define minimal operator S0 : L2,β(0, b)→ L2,β(0, b) as closure of differential
operation S in L2,β(0, b), initially defined on smooth functions which satisfy to
the conditions u(0) = u(b) = 0.

Definition 2.1 Operator S : L2,β(0, b)→ L2,β(0, b) is called proper operator if

S0 ⊂ S ⊂ S̃ (2.2)

and exists inverse operator S−1 : L2,β(0, b) → L2,β(0, b), defined on the whole
space L2,β(0, b).
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It follows from Definition 2.1, that inverse operator S−1 : L2,β(0, b) →
L2,β(0, b) is bounded, since it is closed operator, defined on the whole space
L2,β(0, b) (see [7]).

Our goal is to find the values of the numbers α ≥ 0, β ≥ 0, µ ∈ C such that
boundary value problem (2.1) has unique solution for any f ∈ L2,β(0, b), i.e. to
prove that the operator S : L2,β(0, b)→ L2,β(0, b) is proper operator.

It is easy to find, that the general solution of the differential equation in
(2.1) has the following form

u(t) = Ce−γt
1−α

+ e−γt
1−α

∫ t

0

τ−αeγτ
1−α

f(τ) dτ, (2.3)

where γ = p
1−α . Now, using boundary condition in (2.1) we obtain

C(1− µe−γb
α−1

) = µe−γb
1−α

∫ b

0

τ−αeγτ
1−α

f(τ) dτ. (2.4)

For µ = 0 we conclude from the formula (2.3) that C = 0. Thus the solution
of the boundary value problem (2.1) has the the following form

u(t) = e−γt
1−α

∫ t

0

τ−αeγτ
1−α

f(τ) dτ. (2.5)

Now we consider the case µ 6= 0. Then the equality 1 − µe−γb
1−α

= 0 is
equivalent to the equality eγb

1−α
= µ, i.e.

γb1−α = ln |µ|+ i argµ+ 2πmi, m ∈ Z.

Since γ = p
1−α , from the last equality we obtain

p(m,α) := bα−1(1− α)(ln |µ|+ i argµ+ 2πmi), m ∈ Z. (2.6)

By the formula (2.6) are defined the values of p, for which the equation (2.4)
is unsolvable with respect to C. In other words for this values of the number p
boundary value problem (2.1) is unsolvable for every f ∈ L2,β(0, b).

If p 6= p(m,α),m ∈ Z, then from the equality (2.4) we find uniquely the
number C. Thus the solution of boundary value problem (2.1) has the following
form

u(t) =
µe−γt

1−α

eγb1−α − µ

∫ b

0

τ−αeγτ
1−α

f(τ) dτ + e−γt
1−α

∫ t

0

τ−αeγτ
1−α

f(τ) dτ. (2.7)

Theorem 2.2 Generalized solution of boundary value problem (2.1) under con-
dition p 6= p(m,α),m ∈ Z exists and is unique for every f ∈ L2,β(0, b), when

α ≥ 0, β ≥ 0, 2α+ β < 1. (2.8)
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Proof. Now we explore the behaviour of the solution (2.7) depending on

α ≥ 0, β ≥ 0 for every function f ∈ L2,β(0, b). First note, that eγt
1−α

is

bounded function, since |eγt1−α | = eγ1t
1−α

, where γ = γ1 + iγ2, t ∈ (0, b) and
0 ≤ α < 1. Consequently, to estimate the expression (2.7) it is enough to

estimate the function F (t) :=
∫ t
0
τ−αf(τ) dτ f ∈ L2,β(0, b). Using inequality of

Cauchy we obtain

|F (t)|2 =

∣∣∣∣∫ t

0

τ−ατ−
β
2 τ

β
2 f(τ) dτ

∣∣∣∣2 ≤
∫ t

0

τ−2α−β dτ

∫ t

0

τβ |f(τ)|2 dτ +

≤ c1t
1−2α−β‖f‖2L2,β(0,b)

.

Thus is valid the following inequality

|F (t)| ≤ ct
1−2α−β

2 ‖f‖L2,β(0,b), (2.9)

so we conclude that for

α ≥ 0, β ≥ 0, 2α+ β < 1 (2.10)

the value of the function u(t), given by formula (2.7), is finite for t = 0 for any
f ∈ L2,β(0, b).

Now we prove that the inequality (2.9) is exact, i.e. for α ≥ 0, β ≥ 0,
2α+ β ≥ 1 exists function f ∈ L2,β(0, b), for which the function F (t) (thus also
the solution u(t)) for t → 0 is unbounded (tends to infinity). Let 2α + β > 1.
Then as a counterexample we can take, for example, the function f(t) = tγ and
choose the number γ such that tγ belongs to L2,β(0, b) but the value of F (t) at
the point t = 0 is not finite. Then we obtain the conditions β + 2γ + 1 > 0 and
γ < α− 1, i.e. γ ∈ (−β+1

2 , α− 1), since from the condition 2α+β > 1 it follows

that −β+1
2 < α−1. Now consider the case 2α+β = 1. Then as counterexample

we can take the function f(t) = tγ | ln t|δ. Then for 2γ + β = −1, i.e. γ = α− 1
and for −1 < δ < − 1

2 it is easy to clear, that f ∈ L2,β(0, b), but the value of
F (t) at the point t = 0 is not finite.

The proof is complete.
Now we estimate the function f(t), given by the formula (2.7), for f ∈

L2,β(0, b). Using inequality (2.9) we obtain

|u(t)| ≤
(
c1 + c2t

1−2α−β
2

)
‖f‖L2,β(0,b). (2.11)

Before considering operator equation (1.1) we explore the spectrum of the closed
operator S : L2,β(0, b) → L2,β(0, b). To do this we replace in boundary value
problem (2.1) the number p by the number p − λ and try to find the values
of λ ∈ C, for which boundary value problem (2.1) is uniquely solvable for any
f ∈ L2,β(0, b). It follows from the considerations for the case µ = 0 that each
number λ ∈ C belongs to the resolvent ρ(S) of the operator S. For the case
µ 6= 0 we require that

p− λ 6= p(m,α),m ∈ Z
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(see. formula (2.6)), i.e. for any m ∈ Z

λ 6= p− p(m,α), (2.12)

in both cases under condition (2.8). Thus the spectrum of the operator S :
L2,β(0, b)→ L2,β(0, b) is discrete and coinsides with the set of points

σ(S) = σp(S) = {λ ∈ C : λ = p− p(m,α),m ∈ Z}. (2.13)

3 Differential-operator equation

In this section we consider boundary value problem for differential-operator
equation

Lu ≡ tαu′(t)− Pu = f(t), u(0)− µu(b) = 0, (3.1)

where t ∈ (0, b), α ≥ 0, µ ∈ C, P : H → H is linear operator in the separable
Hilbert space H and f ∈ L2,β((0, b), H).

Note that wide class of linear operators P : H → H, having complete system
of eigenfunctions, which form Riesz base in H are so called Π-operators (see [4]).
We briefly describe these operators. Let V := [0, 2π]n ⊂ Rn and differential
expression with constant coefficients

P (−iD)u =
∑
|γ|≤m

pγD
αu,

is first defined on the functions C∞(V ), which are periodical (with period 2π)
with respect to each variable xk, k = 1, 2, ..., n. Define operator P : L2(V ) →
L2(V ) as closure of differential expression P (−iD), which are called Π-operators.
To each differential operator P (−iD) we can associate polynomial P (s), s ∈ Zn,
such that P (−iD)eis·x = P (s)eis·x, s · x = s1x1 + · · ·+ snxn.

Since the system of eigenfunctions {ϕk}k∈N of the operator P form Riesz
base in Hilbert space H, Pϕk = pkϕk, k ∈ N and

u(t) =

∞∑
k=1

uk(t)ϕk, (3.2)

from the boundary value problem (3.1) for operator equations we obtain infinite
chain of ordinary differential equations with the boundary conditions

Lkuk ≡ tαu′k(t)− pkuk = fk(t), uk(0)− µuk(b) = 0, k ∈ N. (3.3)

Definition 3.1 The function u ∈ L2,β((0, b), H)is called generalized solution of
the boundary value problem (3.1), if it can be represented by the formula (3.2),
where the functions uk(t), k ∈ N are generalized solutions of the boundary value
problem (3.1).
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Actually we defined the operator L : L2,β((0, b), H)→ L2,β((0, b), H) as closure
of corresponding differential expression 3.1, initially defined on the finite linear
combinations of uk(t)ϕk, where uk ∈ D(Lk), k ∈ N.

It follows from the general results of A.A. Dezin ([4]) that is valid the fol-
lowing theorem.

Theorem 3.2 Operator equation (3.1) is uniquely solvable for any f ∈ L2,β((0, b), H)
if and only if the boundary value problems (3.3) for any fk ∈ L2,β(0, b), k ∈ N
are uniquely solvable and uniformly with respect to k ∈ N are fulfilled the in-
equalities

‖uk‖L2,β(0,b) ≤ c‖fk‖L2,β(0,b), c > 0. (3.4)

Now we give sufficient condition to fulfill conditions (3.4).

Theorem 3.3 For uniformly fulfillment with respect to k ∈ N of the inequalities
(3.4) for µ = 0 are sufficient the conditions

Re pk ≥M, k ∈ N, (3.5)

for some M ∈ R. For the case µ 6= 0 are sufficient the conditions

|eγkb
1−α
− µ| ≥ ε, |Re pk| ≤ K, (3.6)

for every k ∈ N and some numbers ε > 0,K > 0, where γk = pk
1−α .

Proof. For the case µ = 0 the solutions uk(t), k ∈ N of the boundary value
problems (3.3) have the form (2.5) (with replacement γ by γk and f by fk,
k ∈ N). Let γ1k = Re γk = Re pk

1−α . For the |uk(t)|2 similar to the reasoning of the
proof of Theorem 2.2 we get

|uk(t)|2 ≤
∫ t

0

τ−2α−βe−2γ
1
k(t

1−α−τ1−α) dτ · ‖fk‖2L2,β(0,b)
.

Since the expression t1−α − τ1−α ≥ 0 for 0 ≤ τ ≤ t, under fulfillment of the
conditions (3.5) uniformly with respect to k ∈ N are valid the inequalities (3.4)
due to conditions 0 < 2α+ β < 1, β ≥ 0 (see Theorem 2.2).

Let now µ 6= 0. The solutions uk(t), k ∈ N of the boundary value problems
(3.3) have the form (2.5) (with substitution f by fk, k ∈ N). Estimating this
solutions, using inequalities (3.6), similar to the first case we get

|uk(t)|2 ≤
( |µ|
ε

∫ b

0

τ−2α−βe−2γ
1
k(t

1−α−τ1−α) dτ+

+

∫ t

0

τ−2α−βe−2γ
1
k(t

1−α−τ1−α) dτ
)
· ‖fk‖2L2,β(0,b)

.

In contrast to the previous case (µ = 0) here the expression t1−α − τ1−α does
not save sign for 0 ≤ t ≤ b, therefore we have to require with the first condition
in (3.6) more strong condition |Re pk| ≤ K, k ∈ N, which ensure fulfilment of
the inequalities (3.4).

The proof is complete.
We also give the corresponding counterexample.

6



Example 3.4 Consider Cauchy problem (3.1) for α = 0, β = 0, µ = 0, where
as operator P we take closed operator

P ≡ −D2
x, Dx =

d

dx
,D(P ) = {u ∈ L2(0, π), u′′ ∈ L2(0, π), u(0) = u(π) = 0}.

(3.7)

It is easy to calculate that the numbers pk = k2, k ∈ N are eigenvalues for
the operator P and the role of the eigenfunctions ϕk, k ∈ N play the functions
sin(kx), k ∈ N. Observe that this system forms orthogonal base in L2(0, b). It
is easy to verify that unique solutions of the boundary value problems

u′k(t)− k2uk(t) = ek
2t, uk(0) = 0, k ∈ N.

are the functions uk(t) = tek
2t, k ∈ N (see formula (2.5)) and are true the

following exact inequalities

‖uk‖L2(0,b) ≤
cek

2b

k
‖fk‖L2(0,b), c > 0.

It follows from the last inequality and Theorem 3.2 that unique solvability
of boundary value problem (3.7) is violated, since the number sequence ck =
cek

2b

k , k ∈ N tends to infinity for k →∞.
Observe also that if we take in Example 3.4 the operator P ≡ D2

x (with the
same domain of definition as above), then it is easy to verify that uniformly with
respect to k ∈ N are true the inequalities (3.4). Therefore this boundary value
problem will be correct. Here we have ”inverse” and ”direct” Cauchy problems
for the heat equation, and we once again proved incorrectness of the ”inverse”
Cauchy problem for the heat equation.
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