Известия НАН Армении, Математика, том 54, н. 4, 2019, стр. 36 – 44

ON A WEAK TYPE ESTIMATE FOR SPARSE OPERATORS OF STRONG TYPE

G. A. KARAGULYAN, G. MNATSAKANYAN

Yerevan State University, Armenia¹ E-mails: g.karagulyan@ysu.am; mnatsakanyan g@yahoo.com

Abstract. We define sparse operators of strong type on abstract measure spaces with ball-bases. Weak and strong type inequalities for such operators are proved.

MSC2010 numbers: 42B20, 42B25, 28A25.

Keywords: Calderón-Zygmund operator; sparse operator; abstract measure space; ball-basis; weak type estimate.

1. Introduction

The sparse operators are very simple positive operators recently appeared in the study of weighted estimates of Calderón-Zygmund and other related operators. It was proved that some well-known operators (Calderón-Zygmund operators, martingale transforms, maximal function, Carleson operators, etc.) can be dominated by sparse operators, and this kind of dominations imply a series of deep results for the mentioned operators (see [1, 2, 4 - 7]). In particular, Lerner's [6] norm domination of the Calderón-Zygmund operators by sparse operators gave a simple alternative proof to the A_2 -conjecture solved by Hytönen [3]. Lacey [5] established a pointwise sparse domination for the Calderón-Zygmund operators with an optimal condition (Dini condition) on the modulus of continuity, getting a logarithmic gain to the result previously proved by Conde-Alonso and Rey [1]. The paper [5] also proves a pointwise sparse domination for the martingale transforms, providing a short approach to the A_2 -theorem proved by Treil-Thiele-Volberg [8]. For the Carleson operators norms sparse domination was proved by Di Plinio and Lerner [2], while the pointwise domination follows from a general result proved later in [4].

In this paper we consider sparse operators based on ball-bases in abstract measure spaces. The concept of ball-basis was introduced by the first author in [4]. Based on ball-basis the paper [4] defines a wide class of operators (including, in particular, the

¹Research was supported by a grant from Science Committee of Armenia 18T-1A081.

above mentioned operators) that can be pointwisely dominated by sparse operators. Some estimates of sparse operators in abstract spaces were obtained in [4]. In this paper we define a stronger version of sparse operators, and prove weak and strong type estimates for such operators.

We first recall the definition of the ball-basis from [4].

Definition 1.1. Let (X, \mathfrak{M}, μ) be a measure space. A family of sets $\mathfrak{B} \subset \mathfrak{M}$ is said to be a ball-basis if it satisfies the following conditions.

- B1) $0 < \mu(B) < \infty$ for any ball $B \in \mathfrak{B}$.
- B2) For any two points $x, y \in X$ there exists a ball $B \ni x, y$.
- B3) If $E \in \mathfrak{M}$, then for any $\varepsilon > 0$ there exists a finite or infinite sequence of balls B_k , k = 1, 2, ..., such that

$$\mu\left(E \triangle \bigcup_{k} B_{k}\right) < \varepsilon.$$

B4) For any $B \in \mathfrak{B}$ there is a ball $B^* \in \mathfrak{B}$ (called a hull of B) satisfying the conditions:

$$\bigcup_{A\in\mathfrak{B}:\,\mu(A)\leq 2\mu(B),\,A\cap B\neq\varnothing}A\subset B^*,\quad\mu(B^*)\leq \mathcal{K}\mu(B),$$

where K is a positive constant.

A ball-basis \mathfrak{B} is said to be doubling if there is a constant $\eta > 1$ such that for any $A \in \mathfrak{B}$, $A^* \neq X$, one can find a ball $B \in \mathfrak{B}$ to satisfy

$$(1.1) A \subseteq B, \quad \mu(B) \le \eta \cdot \mu(A).$$

In [4], it was shown that the condition (1.1) in the definition can equivalently be replaced by a stronger condition $\eta_1 \leq \mu(B)/\mu(A) \leq \eta_2$, where $\eta_2 > \eta_1 > 1$. It is well-known the non-standard features of non-doubling bases in many problems of analysis.

One can easily check that the family of Euclidean balls in \mathbb{R}^n forms a ball-basis and it is doubling. An example of non-doubling ball-basis can serve us the martingale-basis defined as follows. Let (X, \mathfrak{M}, μ) be a measure space, and let $\{\mathfrak{B}_n : n \in \mathbb{Z}\}$ be a collection of measurable sets such that 1) each \mathfrak{B}_n is a finite or countable partition of X, 2 for each n and $A \in \mathfrak{B}_n$ the set A is a union of sets $A' \in \mathfrak{B}_{n+1}, 3$ the collection $\mathfrak{B} = \bigcup_{n \in \mathbb{Z}} \mathfrak{B}_n$ generates the σ -algebra $\mathfrak{M}, 4$ for any points $x, y \in X$ there is a set $A \in \mathfrak{B}$ such that $x, y \in A$. One can easily check that \mathfrak{B} satisfies all the ball-basis conditions B1)-B4). On the other hand, it is not always doubling. Obviously, it is

doubling if and only if $\mu(\operatorname{pr}(B)) \leq c\mu(B)$, $B \in \mathfrak{B}$, where $\operatorname{pr}(B)$ (parent of B) denotes the minimal ball satisfying $B \subsetneq \operatorname{pr}(B)$.

Let \mathfrak{B} be a ball-basis in a measure space (X,\mathfrak{M},μ) . For $f\in L^r(X),\ 1\leq r<\infty$, and a ball $B\in\mathfrak{B}$ we set

$$\langle f \rangle_{B,r} = \left(\frac{1}{\mu(B)} \int_B |f|^r\right)^{1/r}, \quad \langle f \rangle_{B,r}^* = \sup_{A \in \mathfrak{B}: A \supset B} \langle f \rangle_{A,r}.$$

A collection of balls $S \subset \mathfrak{B}$ is said to be sparse or γ -sparse if for any $B \in S$ there is a set $E_B \subset B$ such that $\mu(E_B) \geq \gamma \mu(B)$ and the sets $\{E_B : B \in S\}$ are pairwise disjoint, where $0 < \gamma < 1$ is a constant. We associate with S the operators:

$$\mathcal{A}_{\mathcal{S},r}f(x) = \sum_{A \in \mathcal{S}} \langle f \rangle_{A,r} \cdot \mathbb{I}_A(x), \quad \mathcal{A}_{\mathcal{S},r}^*f(x) = \sum_{A \in \mathcal{S}} \langle f \rangle_{A,r}^* \cdot \mathbb{I}_A(x),$$

called sparse and strong type sparse operators, respectively. The weak- L^1 estimate of $\mathcal{A}_{\mathcal{S},1}$ in \mathbb{R}^n (case r=1) as well as its boundedness on L^p ($1) were proved by Lerner [6]. The <math>L^p$ -boundedness of $\mathcal{A}_{\mathcal{S},r}$ for general ball-bases was shown by the first author in [4].

We will say that a constant is admissible if it depends only on p and on the constants \mathcal{K} and γ from the above definitions, and the notation $a \lesssim b$ will stand for the inequality $a \leq c \cdot b$, where c > 0 is an admissible constant. The main result of this paper is the weak- L^r estimate of $\mathcal{A}_{S,r}^*$ generated by general ball-bases. More precisely, we have the following result.

Theorem 1.1. A sparse operator of strong type $\mathcal{A}_{S,r}^*$, $1 \leq r < \infty$, corresponding to a general ball-basis, is a bounded operator on L^p for $r , and satisfies the weak-<math>L^r$ estimate, that is,

(1.2)
$$\|\mathcal{A}_{S,r}^*(f)\|_p \lesssim \|f\|_p, \quad r$$

(1.3)
$$\mu\left\{\mathcal{A}_{S,r}^*(f) > \lambda\right\} \lesssim \frac{\|f\|_r^r}{\lambda^r}, \quad \lambda > 0.$$

The proof of L^p -boundedness of $\mathcal{A}_{8,r}^*$ is simple and uses the duality argument as in [6]. Lerner's [6] proof of weak- L^1 estimate in \mathbb{R}^n applies the standard Calderón-Zygmund decomposition argument. The Calderón-Zygmund decomposition may fail if the ball-basis is not doubling, so for the weak- L^r estimate in the case of general ball-basis we apply the function flattening technique displayed in Lemma 2.7. That is, we reconstruct the function $f \in L^r$ around the big values to get a λ -bounded function $g \in L^{2r}$, having ball averages of f dominated by those of g. As a result we will have $\|\mathcal{A}_{8,r}^*f\|_{r,\infty} \lesssim \|\mathcal{A}_{8,r}^*g\|_{2r,\infty}$, reducing the weak- L^r estimate of $\mathcal{A}_{8,r}^*$ to weak- L^{2r} .

2. Auxiliary Lemmas

Recall some definitions and propositions from [4]. We say that a set $E \subset X$ is bounded if $E \subset B$ for a ball $B \in \mathfrak{B}$.

Lemma 2.1 ([4]). Let (X, \mathfrak{M}, μ) be a measure space with a ball-basis \mathfrak{B} . If $E \subset X$ is bounded and \mathfrak{G} is a family of balls with $E \subset \bigcup_{G \in \mathfrak{G}} G$, then there exists a finite or infinite sequence of pairwise disjoint balls $G_k \in \mathfrak{G}$ such that $E \subset \bigcup_k G_k^*$.

Definition 2.1. For a set $E \in \mathfrak{M}$ a point $x \in E$ is said to be a density point if for any $\varepsilon > 0$ there exists a ball $B \ni x$ such that $\mu(B \cap E) > (1 - \varepsilon)\mu(B)$. We say that a measure space (X, \mathfrak{M}, μ) satisfies the density property if almost all points of any measurable set are density points.

Lemma 2.2 ([4]). Any ball-basis satisfies the density property.

The L^r maximal function associated to the ball-basis \mathfrak{B} we denote by

$$M_r f(x) = \sup_{B \in \mathfrak{B}: x \in B} \langle f \rangle_{B,r}$$

Lemma 2.3 ([4]). If $1 \le r , then the maximal function <math>M_r$ satisfies the strong L^p and weak- L^r inequalities.

Definition 2.2. We say that $B \in \mathfrak{B}$ is a λ -ball for a function $f \in L^r(X)$ if

$$\langle f \rangle_{B,r} > \lambda.$$

If, in addition, there is no λ -ball $A \supset B$ satisfying $\mu(A) \geq 2\mu(B)$, then B is said to be a maximal λ -ball for f.

Lemma 2.4. Let the function $f \in L^r(X)$ have bounded support, and let $\lambda > 0$. There exist pairwise disjoint maximal λ -balls $\{B_k\}$ such that

(2.1)
$$G_{\lambda} = \{x \in X : M_r f(x) > \lambda\} \subset \bigcup_k B_k^*.$$

Proof. Since f has bounded support, one can easily check that the set G_{λ} is also bounded. Besides, any λ -ball is in some maximal λ -ball. Thus we conclude that $G_{\lambda} = \bigcup_{\alpha} B_{\alpha}$, where each B_{α} is a maximal λ -ball. Applying the above covering lemma, we find a sequence of pairwise disjoint balls B_k such that

$$G_{\lambda} \subset \bigcup_{k} B_{k}^{*}$$

and so we have (2.1).

Let $B \subset (a,b)$ be a Lebesgue measurable set. For a given positive real $\kappa \leq |B|$ denote

$$a(\kappa, B) = \inf\{a' : |(a, a') \cap B)| \ge \kappa\}, \quad L(\kappa, B) = (a, a(\kappa, G)) \cap B.$$

Observe that $L(\kappa, B)$ determines the "leftmost" set of measure κ in B and $a(\kappa, B)$ does not depend on the choice of a.

Lemma 2.5. Let $A \subset B \subset (a,b)$ be Lebesgue measurable sets on the real line, and let $0 < \kappa \le |A|$. Then we have

$$|L(\kappa, B) \triangle L(\kappa, A)| \le 2|B \setminus A|.$$

Proof. Obviously, we have $a \le a(\kappa, B) \le a(\kappa, A) \le b$. Since $|L(\kappa, B)| = |L(\kappa, B)|$, the sets

$$L(\kappa, B) \setminus L(\kappa, A) = ((a, a(\kappa, B)) \cap (B \setminus A)),$$

$$L(\kappa, A) \setminus L(\kappa, B) = ((a(\kappa, B), a(\kappa, A)) \cap A).$$

have the same measure. So, we get

$$|L(\kappa, B) \triangle L(\kappa, A)| = 2 \left| \left((a, a(\kappa, B)) \cap (B \setminus A) \right) \right| \le 2|B \setminus A|.$$

Lemma 2.6. Let (X, \mathfrak{M}, μ) be a non-atomic measure space and G_k be a finite or infinite sequence of measurable sets in X. If a sequence of numbers $\xi_k \geq 0$ satisfies $\sum_k \xi_k < \infty$ and the condition

(2.2)
$$\sum_{j: \mu(G_j) \le \mu(G_k), G_j \cap G_k \ne \emptyset} \xi_j \le \mu(G_k), \quad k = 1, 2, \dots,$$

then there exist pairwise disjoint measurable sets $\tilde{G}_k \subset G_k$ such that

(2.3)
$$\mu(\tilde{G}_k) = \xi_k, k = 1, 2, \dots$$

Proof. Without loss of generality we can suppose that $\mu(G_k)$ is decreasing. Since the measure space is non-atomic, we can also suppose that G_k are Lebesgue measurable sets in \mathbb{R} . We first assume that the sequence G_k , $k=1,2,\ldots,n$, is finite. We apply backward induction. The existence of $\tilde{G}_n \subset G_n$ satisfying $\mu(\tilde{G}_n) = \xi_n$ follows from (2.2), since the latter implies $\xi_n \leq \mu(G_n)$ and we have that the measure is non-atomic. We define \tilde{G}_n to be the leftmost set in G_n , that is, $\tilde{G}_n = L(\xi_n, G_n)$. Suppose by induction we have defined pairwise disjoint sets $\tilde{G}_k \subset G_k$ satisfying (2.3) for $l \leq k \leq n$. From (2.2) it follows that

$$\mu\left(G_{l-1}\setminus\bigcup_{k=l}^{n}\tilde{G}_{k}\right)\geq\mu(G_{l-1})-\sum_{\substack{l\leq j\leq n:\ G_{j}\cap G_{l-1}\neq\varnothing}}\mu(\tilde{G}_{j})\geq\xi_{l-1}.$$

Hence we can define $\tilde{G}_{l-1} = L(\xi_{l-1}, G_{l-1} \setminus \bigcup_{k=l}^n \tilde{G}_k)$. To proceed the general case we apply the finite case that we have proved. Then for each n we find a family of pairwise disjoint sets $G_k^{(n)}$, k = 1, 2, ..., n such that $\mu(G_k^{(n)}) = \xi_k$ for $1 \le k \le n$. Applying Lemma 2.5 and analyzing once again the leftmost selection argument of the tilde sets, one can observe that

$$\mu(G_k^{(n+1)} \triangle G_k^{(n)}) \le \sum_{j=k}^n \mu(G_{n+1}^{(n+1)} \cap G_j^{(n)}) \le \xi_{n+1}.$$

So, we conclude that

$$\mu(G_k^{(m)} \triangle G_k^{(n)}) \le \sum_{k=n+1}^m \xi_k, \quad m > n \ge k.$$

The last inequality implies that for a fixed k the sequence $\mathbb{I}_{G_k^{(m)}}$ converges in L^1 -norm as $m \to \infty$. Moreover, one can see that the limiting function is again an indicator function of a set \tilde{G}_k , and the sequence \tilde{G}_k satisfies the conditions of the lemma. \square

Lemma 2.7. Let (X, \mathfrak{M}, μ) be a non-atomic measure space, and let $f \in L^r(X)$, $1 \leq r < \infty$, be a boundedly supported positive function. Then for any $\lambda > 0$ there exists a measurable set $E_{\lambda} \subset X$ such that

(2.4)
$$\mu(E_{\lambda}) \lesssim \|f\|_r^r / \lambda^r, \quad \{x \in X : M_r f(x) > \lambda\} \subset E_{\lambda},$$

and the function

$$(2.5) g(x) = f(x) \cdot \mathbb{I}_{X \setminus E_{\lambda}}(x) + \lambda \cdot \mathbb{I}_{E_{\lambda}}(x)$$

satisfies the conditions:

(2.6)
$$g(x) \leq \lambda$$
 a.e. on X , $\langle f \rangle_{B,r} \lesssim \langle g \rangle_{B^*,r}$ whenever $B \in \mathfrak{B}$, $B \not\subset E_{\lambda}$.

Proof. Applying Lemma 2.4 we find a sequence of pairwise disjoint maximal λ -balls B_k satisfying (2.1). Thus, applying the density property (Lemma 2.2), one can conclude that

(2.7)
$$f(x) \le \lambda \text{ for a.a. } x \in X \setminus \bigcup_{k} B_k^*.$$

Given B_k , we associate the family of balls

$$\mathfrak{B}_k = \{ B \in \mathfrak{B} : B \cap B_k^* \neq \emptyset, \, \mu(B) > 2\mu(B_k^*) \}.$$

Observe that if one of these families, say \mathfrak{B}_{k_0} , is empty, then in view of conditions B2) and B4), one can easily check that $X \subset B_{k_0}^{**}$. Then defining $E_{\lambda} = X$, the claim

of the lemma will be satisfied. Hence we can assume that each \mathfrak{B}_k is nonempty, and so, there is a ball $G_k \in \mathfrak{B}_k$ such that

(2.9)
$$\mu(G_k) \le 2 \inf_{B \in \mathfrak{B}_k} \mu(B).$$

From λ -maximality of B_k and the inequality $\mu(G_k) > 2\mu(B_k^*)$, we get $B_k^* \subset G_k^*$, $\langle f \rangle_{G_k^*,r} \leq \lambda$. This implies

(2.10)
$$\frac{1}{\lambda^r} \int_{G_L^*} f^r \le \mu(G_k^*) \le c \cdot \mu(G_k),$$

where c > 0 is an admissible constant. Denote

$$D_1 = B_1^*, \quad D_k = B_k^* \setminus \bigcup_{1 \le j \le k-1} B_i^*, \ k \ge 2,$$

and consider the numerical sequence $\xi_k = \frac{\delta}{\lambda^r} \int_{D_k} f^r$, k = 1, 2, ..., for some constant $\delta > 0$. Taking into account (2.10), for a small admissible constant $\delta > 0$ we obtain

$$\bigcup_{j: \mu(G_j) \le \mu(G_k), G_j \cap G_k \neq \emptyset} \xi_j = \frac{\delta}{\lambda^r} \bigcup_{j: \mu(G_j) \le \mu(G_k), G_j \cap G_k \neq \emptyset} \int_{D_j} f^r \le \frac{\delta}{\lambda^r} \int_{G_i^*} f^r \le c \delta \mu(G_k) \le \mu(G_k),$$

which gives condition (2.2). Since our measure space in non-atomic, applying Lemma 2.6, we find pairwise disjoint subsets $\tilde{G}_k \subset G_k$ such that

(2.11)
$$\mu(\tilde{G}_k) = \frac{\delta}{\lambda^r} \int_{D_r} f^r, \quad k = 1, 2, \dots$$

The disjointness of the sets D_k implies

(2.12)
$$\sum_{k} \mu(\tilde{G}_{k}) = \frac{\delta}{\lambda^{r}} \sum_{k} \int_{D_{k}} f^{r} \lesssim \frac{\|f\|_{r}^{r}}{\lambda^{r}}.$$

From the λ -maximality and disjointness property of B_k , we get

(2.13)
$$\mu\left(\bigcup_{k} B_{k}^{**}\right) \lesssim \sum_{k} \mu\left(B_{k}\right) \leq \frac{1}{\lambda^{r}} \sum_{k} \int_{B_{k}} f^{r} \leq \frac{\|f\|_{r}^{r}}{\lambda^{r}}.$$

Denote $E_{\lambda} = \left(\bigcup_{k} \tilde{G}_{k}\right) \bigcup \left(\bigcup_{k} B_{k}^{**}\right)$. From (2.12) and (2.13) we get $\mu(E_{\lambda}) \lesssim \|f\|_{r}^{r}/\lambda^{r}$, and (2.7) implies (2.6). Hence it remains to prove that the function g satisfies (2.6). Take a ball $B \in \mathfrak{B}$ with $B \not\subset E_{\lambda}$. First of all observe that for each B_{k} satisfying $B \cap B_{k}^{*} \neq \emptyset$ we have $\mu(B) > 2\mu(B_{k}^{*})$, since otherwise we would have $B \subset B_{k}^{**} \subset E_{\lambda}$, which is not true. Thus, whenever $B \cap B_{k}^{*} \neq \emptyset$ we have $B \in \mathfrak{B}_{k}$, then we get $\mu(G_{k}) \leq 2\mu(B)$, and so $\tilde{G}_{k} \subset G_{k} \subset B^{*}$. Besides, from (2.7) and the definition of g it

follows that $f(x) \leq g(x)$ a.e. on $X \setminus \bigcup_k B_k^*$. Hence, using (2.11) and the disjointness of \tilde{G}_k , we can write

$$\begin{split} &\langle f \rangle_{B,r}^r = \frac{1}{\mu(B)} \left(\int\limits_{B \cap (\cup_k B_k^*)} f^r + \int\limits_{B \setminus \cup_k B_k^*} f^r \right) \leq \frac{1}{\mu(B)} \left(\sum\limits_{k: B_k^* \cap B \neq \varnothing} \int\limits_{B \cap D_k} f^r + \int\limits_{B \setminus \cup_k B_k^*} g^r \right) \\ &\leq \frac{1}{\mu(B)} \left(\sum\limits_{k: B_k^* \cap B \neq \varnothing} \int\limits_{D_k} f^r + \int_B g^r \right) = \frac{1}{\mu(B)} \left(\sum\limits_{k: B_k^* \cap B \neq \varnothing} \frac{\lambda^r \mu(\tilde{G}_k)}{\delta} + \int_B g^r \right) \\ &= \frac{1}{\delta \mu(B^*)} \left(\sum\limits_{k: B_k^* \cap B \neq \varnothing} \int\limits_{\tilde{G}_k} g^r + \int_{B^*} g^r \right) \lesssim \langle g \rangle_{B^*, r}^r. \end{split}$$
 This implies (2.6).

This implies (2.6).

3. Proof of Theorem 1.1

Proof of L^p -boundedness. For any $B \in \mathcal{S}$ we have $\langle f \rangle_{B,r}^* \leq M_r f(x)$ for all $x \in B$, and therefore $\langle f \rangle_{B,r}^* \leq \langle M_r f \rangle_{B,r}$, $B \in \mathfrak{B}$. Let E_B be the disjoint portions of the sparse collection of balls satisfying $\mu(E_B) \geq \gamma \cdot \mu(B)$. Also, suppose that r andq=p/(p-1). Thus, for positive functions $f\in L^p$ and $g\in L^q(X)$, we can write

$$\int_{X} \mathcal{A}_{S,r}^{*} f \cdot g d\mu \leq \sum_{B \in \mathbb{S}} \langle M_{r} f \rangle_{B,r} \int_{B} g d\mu = \sum_{B \in \mathbb{S}} \langle M_{r} f \rangle_{B,r} \cdot \langle g \rangle_{B,1} \cdot \mu(B)$$

$$\leq \gamma^{-1} \sum_{B \in \mathbb{S}} \langle M_{r} f \rangle_{B,r} \cdot (\mu(E_{B}))^{1/p} \cdot \langle g \rangle_{B,1} \cdot (\mu(E_{B}))^{1/q}$$

$$\leq \gamma^{-1} \left(\sum_{B \in \mathbb{S}} \langle M_{r} f \rangle_{B,r}^{p} \cdot \mu(E_{B}) \right)^{1/p} \cdot \left(\sum_{B \in \mathbb{S}} \langle g \rangle_{B,1}^{q} \cdot \mu(E_{B}) \right)^{1/q}$$

$$\leq \gamma^{-1} \|M_{r} (M_{r} f)\|_{p} \|M_{1} (g)\|_{q} \lesssim \|M_{r} f\|_{p} \cdot \|g\|_{q} \lesssim \|f\|_{p} \cdot \|g\|_{q},$$

which completes the proof of L^p -boundedness.

Proof of weak- L^r estimate. Without loss of generality, we can assume that our measure space (X, \mathfrak{M}, μ) is non-atomic, since any measure space can be extended to a nonatomic measure space by splitting the atoms as follows. Suppose $A \subset \mathfrak{M}$ is the family of atomic elements of the measure space (X,\mathfrak{M},μ) , that is, for any $a\in A$ we have $\mu(a) > 0$ and there is no proper \mathfrak{M} -measurable set in a. We can suppose that each atom is continuum and let $(a, \mathfrak{M}_a, \mu_a)$ be a a non-atomic measure space on $a \in A$ such that $\mu_a(a) = \mu(a)$. Denote by \mathfrak{M}' the σ -algebra on X generated by \mathfrak{M} and by all \mathfrak{M}_a , $a \in A$. Let μ' be an extension of μ such that $\mu'(E) = \mu_a(E)$ for any \mathfrak{M}_a -measurable

set $E \subset a$. Hence, (X, \mathfrak{M}', μ') provides a non-atomic extension of the measure space (X, \mathfrak{M}, μ) .

Now let f be a \mathfrak{M} -measurable function. The balls are \mathfrak{M} -measurable, and so they can not contain an atom a partially. Thus, the left and right sides of inequality (1.3) are not changed if we consider (X,\mathfrak{M}',μ') instead of the initial measure space. Hence, we can suppose that (X,\mathfrak{M},μ) is itself non-atomic. Applying Lemma 2.7, we find a function g satisfying the conditions of the lemma. From (2.6) we get $\langle f \rangle_{B,r}^* \leq \langle g \rangle_{B,r}^*$ for any $B \in \mathcal{S}$ with $B \not\subset E_{\lambda}$ and hence, $\mathcal{A}_{\mathcal{S},r}^* f(x) \leq \mathcal{A}_{\mathcal{S},r}^* g(x)$, $x \in X \setminus E_{\lambda}$. Therefore, using the L^{2r} bound of $\mathcal{A}_{\mathcal{S},r}^*$, we obtain

$$\begin{split} &\mu\{x\in X:\,\mathcal{A}_{\mathbb{S},r}^*f(x)>\lambda\}\leq \mu(E_\lambda)+\mu\{x\in X\setminus E_\lambda:\,\mathcal{A}_{\mathbb{S},r}^*g(x)>\lambda\}\\ &\lesssim \frac{\|f\|_r^r}{\lambda^r}+\frac{1}{\lambda^{2r}}\int_{X\setminus E_\lambda}|g|^{2r}\leq \frac{\|f\|_r^r}{\lambda^r}+\frac{\lambda^r}{\lambda^{2r}}\int_{X\setminus E_\lambda}f^r\leq \frac{2\|f\|_r^r}{\lambda^r}. \end{split}$$

This completes the proof of theorem 1.1.

Список литературы

- [1] J. M. Conde-Alonso, G. Rey, "A pointwise estimate for positive dyadic shifts and some applications", Jour. Math. Ann., **365**, no. 3 -4, 1111 1135 (2016) http://dx.doi.org.prx.library.gatech.edu/10.1007/s00208-015-1320-y.
- [2] F. P. Di, A. K. Lerner, "On weighted norm inequalities for the Carleson and Walsh-Carleson operator", J. Lond. Math. Soc. (2), 90, no. 3, 654 674 (2014).
- [3] T. P. Hytönen, "The sharp weighted bound for general Calderón-Zygmund operators", Jour. Ann. of Math. (2), 175, no. 3, 1473 1506 (2012).
- [4] G. A. Karagulyan, "An abstract theory of singular operators", Trans. Amer. Math. Soc., accepted.
- [5] M. T. Lacey, "An elementary proof of the A_2 bound", Israel J. Math., **217**, no. 1, 181 195, (2017) http://dx.doi.org.prx.library.gatech.edu/10.1007/s11856-017-1442-x.
- [6] A. K. Lerner, "On an estimate of Calderón-Zygmund operators by dyadic positive operators",
 J. Anal. Math., 121, 141 161 (2013).
- [7] A. K. Lerner, "A simple proof of the A_2 conjecture", Int. Math. Res. Not. IMRN, no. 14, 3159 3170 (2013).
- [8] Ch. Thiele, S. Treil, A. Volberg, "Weighted martingale multipliers in the non-homogeneous setting and outer measure spaces", Adv. Math., 285, 1155 1188 (2015).

Поступила 26 октября 2018

После доработки 25 февраля 2019

Принята к публикации 25 апреля 2019