Известия НАН Армении, Математика, том 54, н. 4, 2019, стр. $36-44$

# ON A WEAK TYPE ESTIMATE FOR SPARSE OPERATORS OF STRONG TYPE 

G. A. KARAGULYAN, G. MNATSAKANYAN<br>Yerevan State University, Armenia ${ }^{1}$<br>E-mails: g.karagulyan@ysu.am; mnatsakanyan_g@yahoo.com


#### Abstract

We define sparse operators of strong type on abstract measure spaces with ball-bases. Weak and strong type inequalities for such operators are proved.


MSC2010 numbers: 42B20, 42B25, 28A25.
Keywords: Calderón-Zygmund operator; sparse operator; abstract measure space; ball-basis; weak type estimate.

## 1. Introduction

The sparse operators are very simple positive operators recently appeared in the study of weighted estimates of Calderón-Zygmund and other related operators. It was proved that some well-known operators (Calderón-Zygmund operators, martingale transforms, maximal function, Carleson operators, etc.) can be dominated by sparse operators, and this kind of dominations imply a series of deep results for the mentioned operators (see [1, 2, 4-7]). In particular, Lerner's [6] norm domination of the Calderón-Zygmund operators by sparse operators gave a simple alternative proof to the $A_{2}$-conjecture solved by Hytönen [3]. Lacey [5] established a pointwise sparse domination for the Calderón-Zygmund operators with an optimal condition (Dini condition) on the modulus of continuity, getting a logarithmic gain to the result previously proved by Conde-Alonso and Rey [1]. The paper [5] also proves a pointwise sparse domination for the martingale transforms, providing a short approach to the $A_{2}$-theorem proved by Treil-Thiele-Volberg [8]. For the Carleson operators norms sparse domination was proved by Di Plinio and Lerner [2], while the pointwise domination follows from a general result proved later in [4].

In this paper we consider sparse operators based on ball-bases in abstract measure spaces. The concept of ball-basis was introduced by the first author in [4]. Based on ball-basis the paper [4] defines a wide class of operators (including, in particular, the

[^0]above mentioned operators) that can be pointwisely dominated by sparse operators. Some estimates of sparse operators in abstract spaces were obtained in [4]. In this paper we define a stronger version of sparse operators, and prove weak and strong type estimates for such operators.

We first recall the definition of the ball-basis from [4].
Definition 1.1. Let $(X, \mathfrak{M}, \mu)$ be a measure space. A family of sets $\mathfrak{B} \subset \mathfrak{M}$ is said to be a ball-basis if it satisfies the following conditions.

B1) $0<\mu(B)<\infty$ for any ball $B \in \mathfrak{B}$.
B2) For any two points $x, y \in X$ there exists a ball $B \ni x, y$.
B3) If $E \in \mathfrak{M}$, then for any $\varepsilon>0$ there exists a finite or infinite sequence of balls $B_{k}, k=1,2, \ldots$, such that

$$
\mu\left(E \triangle \bigcup_{k} B_{k}\right)<\varepsilon
$$

B4) For any $B \in \mathfrak{B}$ there is a ball $B^{*} \in \mathfrak{B}$ (called a hull of $B$ ) satisfying the conditions:

$$
\bigcup_{A \in \mathfrak{B}: \mu(A) \leq 2 \mu(B), A \cap B \neq \varnothing} A \subset B^{*}, \quad \mu\left(B^{*}\right) \leq \mathcal{K} \mu(B),
$$

where $\mathcal{K}$ is a positive constant.
A ball-basis $\mathfrak{B}$ is said to be doubling if there is a constant $\eta>1$ such that for any $A \in \mathfrak{B}, A^{*} \neq X$, one can find a ball $B \in \mathfrak{B}$ to satisfy

$$
\begin{equation*}
A \subsetneq B, \quad \mu(B) \leq \eta \cdot \mu(A) \tag{1.1}
\end{equation*}
$$

In [4], it was shown that the condition (1.1) in the definition can equivalently be replaced by a stronger condition $\eta_{1} \leq \mu(B) / \mu(A) \leq \eta_{2}$, where $\eta_{2}>\eta_{1}>1$. It is well-known the non-standard features of non-doubling bases in many problems of analysis.

One can easily check that the family of Euclidean balls in $\mathbb{R}^{n}$ forms a ball-basis and it is doubling. An example of non-doubling ball-basis can serve us the martingalebasis defined as follows. Let $(X, \mathfrak{M}, \mu)$ be a measure space, and let $\left\{\mathfrak{B}_{n}: n \in \mathbb{Z}\right\}$ be a collection of measurable sets such that 1) each $\mathfrak{B}_{n}$ is a finite or countable partition of $X, 2)$ for each $n$ and $A \in \mathfrak{B}_{n}$ the set $A$ is a union of sets $\left.A^{\prime} \in \mathfrak{B}_{n+1}, 3\right)$ the collection $\mathfrak{B}=\cup_{n \in \mathbb{Z}} \mathfrak{B}_{n}$ generates the $\sigma$-algebra $\mathfrak{M}, 4$ ) for any points $x, y \in X$ there is a set $A \in \mathfrak{B}$ such that $x, y \in A$. One can easily check that $\mathfrak{B}$ satisfies all the ball-basis conditions B1)-B4). On the other hand, it is not always doubling. Obviously, it is
doubling if and only if $\mu(\operatorname{pr}(B)) \leq c \mu(B), B \in \mathfrak{B}$, where $\operatorname{pr}(B)$ (parent of $B$ ) denotes the minimal ball satisfying $B \subsetneq \operatorname{pr}(B)$.

Let $\mathfrak{B}$ be a ball-basis in a measure space $(X, \mathfrak{M}, \mu)$. For $f \in L^{r}(X), 1 \leq r<\infty$, and a ball $B \in \mathfrak{B}$ we set

$$
\langle f\rangle_{B, r}=\left(\frac{1}{\mu(B)} \int_{B}|f|^{r}\right)^{1 / r}, \quad\langle f\rangle_{B, r}^{*}=\sup _{A \in \mathfrak{B}: A \supset B}\langle f\rangle_{A, r} .
$$

A collection of balls $\mathcal{S} \subset \mathfrak{B}$ is said to be sparse or $\gamma$-sparse if for any $B \in \mathcal{S}$ there is a set $E_{B} \subset B$ such that $\mu\left(E_{B}\right) \geq \gamma \mu(B)$ and the sets $\left\{E_{B}: B \in \mathcal{S}\right\}$ are pairwise disjoint, where $0<\gamma<1$ is a constant. We associate with $\mathcal{S}$ the operators:

$$
\mathcal{A}_{\mathcal{S}, r} f(x)=\sum_{A \in \mathcal{S}}\langle f\rangle_{A, r} \cdot \mathbb{I}_{A}(x), \quad \mathcal{A}_{\mathcal{S}, r}^{*} f(x)=\sum_{A \in \mathcal{S}}\langle f\rangle_{A, r}^{*} \cdot \mathbb{I}_{A}(x),
$$

called sparse and strong type sparse operators, respectively. The weak- $L^{1}$ estimate of $\mathcal{A}_{s, 1}$ in $\mathbb{R}^{n}$ (case $r=1$ ) as well as its boundedness on $L^{p}(1<p<\infty)$ were proved by Lerner [6]. The $L^{p}$-boundedness of $\mathcal{A}_{s, r}$ for general ball-bases was shown by the first author in [4].

We will say that a constant is admissible if it depends only on $p$ and on the constants $\mathcal{K}$ and $\gamma$ from the above definitions, and the notation $a \lesssim b$ will stand for the inequality $a \leq c \cdot b$, where $c>0$ is an admissible constant. The main result of this paper is the weak- $L^{r}$ estimate of $\mathcal{A}_{\mathcal{S}, r}^{*}$ generated by general ball-bases. More precisely, we have the following result.

Theorem 1.1. A sparse operator of strong type $\mathcal{A}_{\mathrm{s}, r}^{*}, 1 \leq r<\infty$, corresponding to a general ball-basis, is a bounded operator on $L^{p}$ for $r<p<\infty$, and satisfies the weak- $L^{r}$ estimate, that is,

$$
\begin{align*}
& \left\|\mathcal{A}_{\S, r}^{*}(f)\right\|_{p} \lesssim\|f\|_{p}, \quad r<p<\infty  \tag{1.2}\\
& \mu\left\{\mathcal{A}_{\S, r}^{*}(f)>\lambda\right\} \lesssim \frac{\|f\|_{r}^{r}}{\lambda^{r}}, \quad \lambda>0 \tag{1.3}
\end{align*}
$$

The proof of $L^{p}$-boundedness of $\mathcal{A}_{\mathcal{S}, r}^{*}$ is simple and uses the duality argument as in [6]. Lerner's [6] proof of weak- $L^{1}$ estimate in $\mathbb{R}^{n}$ applies the standard CalderónZygmund decomposition argument. The Calderón-Zygmund decomposition may fail if the ball-basis is not doubling, so for the weak- $L^{r}$ estimate in the case of general ball-basis we apply the function flattening technique displayed in Lemma 2.7. That is, we reconstruct the function $f \in L^{r}$ around the big values to get a $\lambda$-bounded function $g \in L^{2 r}$, having ball averages of $f$ dominated by those of $g$. As a result we will have $\left\|\mathcal{A}_{\mathcal{S}, r}^{*} f\right\|_{r, \infty} \lesssim\left\|\mathcal{A}_{\mathcal{S}, r}^{*} g\right\|_{2 r, \infty}$, reducing the weak- $L^{r}$ estimate of $\mathcal{A}_{\mathcal{S}, r}^{*}$ to weak- $L^{2 r}$.

## 2. AUXILIARY LEMMAS

Recall some definitions and propositions from [4]. We say that a set $E \subset X$ is bounded if $E \subset B$ for a ball $B \in \mathfrak{B}$.

Lemma 2.1 ([4]). Let $(X, \mathfrak{M}, \mu)$ be a measure space with a ball-basis $\mathfrak{B}$. If $E \subset X$ is bounded and $\mathcal{G}$ is a family of balls with $E \subset \bigcup_{G \in \mathcal{G}} G$, then there exists a finite or infinite sequence of pairwise disjoint balls $G_{k} \in \mathcal{G}$ such that $E \subset \bigcup_{k} G_{k}^{*}$.

Definition 2.1. For a set $E \in \mathfrak{M}$ a point $x \in E$ is said to be a density point if for any $\varepsilon>0$ there exists a ball $B \ni x$ such that $\mu(B \cap E)>(1-\varepsilon) \mu(B)$. We say that a measure space $(X, \mathfrak{M}, \mu)$ satisfies the density property if almost all points of any measurable set are density points.

Lemma 2.2 ([4]). Any ball-basis satisfies the density property.
The $L^{r}$ maximal function associated to the ball-basis $\mathfrak{B}$ we denote by

$$
M_{r} f(x)=\sup _{B \in \mathfrak{B}: x \in B}\langle f\rangle_{B, r}
$$

Lemma 2.3 ([4]). If $1 \leq r<p \leq \infty$, then the maximal function $M_{r}$ satisfies the strong $L^{p}$ and weak- $L^{r}$ inequalities.

Definition 2.2. We say that $B \in \mathfrak{B}$ is a $\lambda$-ball for a function $f \in L^{r}(X)$ if

$$
\langle f\rangle_{B, r}>\lambda
$$

If, in addition, there is no $\lambda$-ball $A \supset B$ satisfying $\mu(A) \geq 2 \mu(B)$, then $B$ is said to be a maximal $\lambda$-ball for $f$.

Lemma 2.4. Let the function $f \in L^{r}(X)$ have bounded support, and let $\lambda>0$. There exist pairwise disjoint maximal $\lambda$-balls $\left\{B_{k}\right\}$ such that

$$
\begin{equation*}
G_{\lambda}=\left\{x \in X: M_{r} f(x)>\lambda\right\} \subset \bigcup_{k} B_{k}^{*} \tag{2.1}
\end{equation*}
$$

Proof. Since $f$ has bounded support, one can easily check that the set $G_{\lambda}$ is also bounded. Besides, any $\lambda$-ball is in some maximal $\lambda$-ball. Thus we conclude that $G_{\lambda}=$ $\bigcup_{\alpha} B_{\alpha}$, where each $B_{\alpha}$ is a maximal $\lambda$-ball. Applying the above covering lemma, we find a sequence of pairwise disjoint balls $B_{k}$ such that

$$
G_{\lambda} \subset \bigcup_{k} B_{k}^{*}
$$

and so we have (2.1).

Let $B \subset(a, b)$ be a Lebesgue measurable set. For a given positive real $\kappa \leq|B|$ denote

$$
\left.a(\kappa, B)=\inf \left\{a^{\prime}: \mid\left(a, a^{\prime}\right) \cap B\right) \mid \geq \kappa\right\}, \quad L(\kappa, B)=(a, a(\kappa, G)) \cap B
$$

Observe that $L(\kappa, B)$ determines the "leftmost"set of measure $\kappa$ in $B$ and $a(\kappa, B)$ does not depend on the choice of $a$.

Lemma 2.5. Let $A \subset B \subset(a, b)$ be Lebesgue measurable sets on the real line, and let $0<\kappa \leq|A|$. Then we have

$$
|L(\kappa, B) \triangle L(\kappa, A)| \leq 2|B \backslash A|
$$

Proof. Obviously, we have $a \leq a(\kappa, B) \leq a(\kappa, A) \leq b$. Since $|L(\kappa, B)|=|L(\kappa, B)|$, the sets

$$
\begin{aligned}
& L(\kappa, B) \backslash L(\kappa, A)=((a, a(\kappa, B)) \cap(B \backslash A)), \\
& L(\kappa, A) \backslash L(\kappa, B)=((a(\kappa, B), a(\kappa, A)) \cap A)
\end{aligned}
$$

have the same measure. So, we get

$$
|L(\kappa, B) \triangle L(\kappa, A)|=2|((a, a(\kappa, B)) \cap(B \backslash A))| \leq 2|B \backslash A| .
$$

Lemma 2.6. Let $(X, \mathfrak{M}, \mu)$ be a non-atomic measure space and $G_{k}$ be a finite or infinite sequence of measurable sets in $X$. If a sequence of numbers $\xi_{k} \geq 0$ satisfies $\sum_{k} \xi_{k}<\infty$ and the condition

$$
\begin{equation*}
\sum_{j: \mu\left(G_{j}\right) \leq \mu\left(G_{k}\right), G_{j} \cap G_{k} \neq \varnothing} \xi_{j} \leq \mu\left(G_{k}\right), \quad k=1,2, \ldots, \tag{2.2}
\end{equation*}
$$

then there exist pairwise disjoint measurable sets $\tilde{G}_{k} \subset G_{k}$ such that

$$
\begin{equation*}
\mu\left(\tilde{G}_{k}\right)=\xi_{k}, k=1,2, \ldots \tag{2.3}
\end{equation*}
$$

Proof. Without loss of generality we can suppose that $\mu\left(G_{k}\right)$ is decreasing. Since the measure space is non-atomic, we can also suppose that $G_{k}$ are Lebesgue measurable sets in $\mathbb{R}$. We first assume that the sequence $G_{k}, k=1,2, \ldots, n$, is finite. We apply backward induction. The existence of $\tilde{G}_{n} \subset G_{n}$ satisfying $\mu\left(\tilde{G}_{n}\right)=\xi_{n}$ follows from (2.2), since the latter implies $\xi_{n} \leq \mu\left(G_{n}\right)$ and we have that the measure is nonatomic. We define $\tilde{G}_{n}$ to be the leftmost set in $G_{n}$, that is, $\tilde{G}_{n}=L\left(\xi_{n}, G_{n}\right)$. Suppose by induction we have defined pairwise disjoint sets $\tilde{G}_{k} \subset G_{k}$ satisfying (2.3) for $l \leq k \leq n$. From (2.2) it follows that

$$
\mu\left(G_{l-1} \backslash \bigcup_{k=l}^{n} \tilde{G}_{k}\right) \geq \mu\left(G_{l-1}\right)-\sum_{l \leq j \leq n: G_{j} \cap G_{l-1} \neq \varnothing} \mu\left(\tilde{G}_{j}\right) \geq \xi_{l-1}
$$

Hence we can define $\tilde{G}_{l-1}=L\left(\xi_{l-1}, G_{l-1} \backslash \bigcup_{k=l}^{n} \tilde{G}_{k}\right)$. To proceed the general case we apply the finite case that we have proved. Then for each $n$ we find a family of pairwise disjoint sets $G_{k}^{(n)}, k=1,2, \ldots, n$ such that $\mu\left(G_{k}^{(n)}\right)=\xi_{k}$ for $1 \leq k \leq n$. Applying Lemma 2.5 and analyzing once again the leftmost selection argument of the tilde sets, one can observe that

$$
\mu\left(G_{k}^{(n+1)} \triangle G_{k}^{(n)}\right) \leq \sum_{j=k}^{n} \mu\left(G_{n+1}^{(n+1)} \cap G_{j}^{(n)}\right) \leq \xi_{n+1}
$$

So, we conclude that

$$
\mu\left(G_{k}^{(m)} \triangle G_{k}^{(n)}\right) \leq \sum_{k=n+1}^{m} \xi_{k}, \quad m>n \geq k
$$

The last inequality implies that for a fixed $k$ the sequence $\mathbb{I}_{G_{k}^{(m)}}$ converges in $L^{1}$-norm as $m \rightarrow \infty$. Moreover, one can see that the limiting function is again an indicator function of a set $\tilde{G}_{k}$, and the sequence $\tilde{G}_{k}$ satisfies the conditions of the lemma.

Lemma 2.7. Let $(X, \mathfrak{M}, \mu)$ be a non-atomic measure space, and let $f \in L^{r}(X)$, $1 \leq r<\infty$, be a boundedly supported positive function. Then for any $\lambda>0$ there exists a measurable set $E_{\lambda} \subset X$ such that

$$
\begin{equation*}
\mu\left(E_{\lambda}\right) \lesssim\|f\|_{r}^{r} / \lambda^{r}, \quad\left\{x \in X: M_{r} f(x)>\lambda\right\} \subset E_{\lambda} \tag{2.4}
\end{equation*}
$$

and the function

$$
\begin{equation*}
g(x)=f(x) \cdot \mathbb{I}_{X \backslash E_{\lambda}}(x)+\lambda \cdot \mathbb{I}_{E_{\lambda}}(x) \tag{2.5}
\end{equation*}
$$

satisfies the conditions:

$$
\begin{equation*}
g(x) \leq \lambda \text { a.e. on } X, \quad\langle f\rangle_{B, r} \lesssim\langle g\rangle_{B^{*}, r} \text { whenever } B \in \mathfrak{B}, B \not \subset E_{\lambda} . \tag{2.6}
\end{equation*}
$$

Proof. Applying Lemma 2.4 we find a sequence of pairwise disjoint maximal $\lambda$ balls $B_{k}$ satisfying (2.1). Thus, applying the density property (Lemma 2.2), one can conclude that

$$
\begin{equation*}
f(x) \leq \lambda \text { for a.a. } x \in X \backslash \bigcup_{k} B_{k}^{*} \tag{2.7}
\end{equation*}
$$

Given $B_{k}$, we associate the family of balls

$$
\begin{equation*}
\mathfrak{B}_{k}=\left\{B \in \mathfrak{B}: B \cap B_{k}^{*} \neq \varnothing, \mu(B)>2 \mu\left(B_{k}^{*}\right)\right\} . \tag{2.8}
\end{equation*}
$$

Observe that if one of these families, say $\mathfrak{B}_{k_{0}}$, is empty, then in view of conditions $\mathrm{B} 2)$ and B4), one can easily check that $X \subset B_{k_{0}}^{* *}$. Then defining $E_{\lambda}=X$, the claim
of the lemma will be satisfied. Hence we can assume that each $\mathfrak{B}_{k}$ is nonempty, and so, there is a ball $G_{k} \in \mathfrak{B}_{k}$ such that

$$
\begin{equation*}
\mu\left(G_{k}\right) \leq 2 \inf _{B \in \mathfrak{B}_{k}} \mu(B) \tag{2.9}
\end{equation*}
$$

From $\lambda$-maximality of $B_{k}$ and the inequality $\mu\left(G_{k}\right)>2 \mu\left(B_{k}^{*}\right)$, we get $B_{k}^{*} \subset G_{k}^{*}$, $\langle f\rangle_{G_{k}^{*}, r} \leq \lambda$. This implies

$$
\begin{equation*}
\frac{1}{\lambda^{r}} \int_{G_{k}^{*}} f^{r} \leq \mu\left(G_{k}^{*}\right) \leq c \cdot \mu\left(G_{k}\right) \tag{2.10}
\end{equation*}
$$

where $c>0$ is an admissible constant. Denote

$$
D_{1}=B_{1}^{*}, \quad D_{k}=B_{k}^{*} \backslash \cup_{1 \leq j \leq k-1} B_{j}^{*}, k \geq 2
$$

and consider the numerical sequence $\xi_{k}=\frac{\delta}{\lambda^{r}} \int_{D_{k}} f^{r}, k=1,2, \ldots$, for some constant $\delta>0$. Taking into account (2.10), for a small admissible constant $\delta>0$ we obtain

$$
\begin{aligned}
\bigcup_{j: \mu\left(G_{j}\right) \leq \mu\left(G_{k}\right), G_{j} \cap G_{k} \neq \varnothing} \xi_{j} & =\frac{\delta}{\lambda^{r}} \bigcup_{j: \mu\left(G_{j}\right) \leq \mu\left(G_{k}\right), G_{j} \cap G_{k} \neq \varnothing} \int_{D_{j}} f^{r} \\
& \leq \frac{\delta}{\lambda^{r}} \int_{G_{k}^{*}} f^{r} \leq c \delta \mu\left(G_{k}\right) \leq \mu\left(G_{k}\right)
\end{aligned}
$$

which gives condition (2.2). Since our measure space in non-atomic, applying Lemma 2.6 , we find pairwise disjoint subsets $\tilde{G}_{k} \subset G_{k}$ such that

$$
\begin{equation*}
\mu\left(\tilde{G}_{k}\right)=\frac{\delta}{\lambda^{r}} \int_{D_{k}} f^{r}, \quad k=1,2, \ldots \tag{2.11}
\end{equation*}
$$

The disjointness of the sets $D_{k}$ implies

$$
\begin{equation*}
\sum_{k} \mu\left(\tilde{G}_{k}\right)=\frac{\delta}{\lambda^{r}} \sum_{k} \int_{D_{k}} f^{r} \lesssim \frac{\|f\|_{r}^{r}}{\lambda^{r}} \tag{2.12}
\end{equation*}
$$

From the $\lambda$-maximality and disjointness property of $B_{k}$, we get

$$
\begin{equation*}
\mu\left(\bigcup_{k} B_{k}^{* *}\right) \lesssim \sum_{k} \mu\left(B_{k}\right) \leq \frac{1}{\lambda^{r}} \sum_{k} \int_{B_{k}} f^{r} \leq \frac{\|f\|_{r}^{r}}{\lambda^{r}} \tag{2.13}
\end{equation*}
$$

Denote $E_{\lambda}=\left(\bigcup_{k} \tilde{G}_{k}\right) \bigcup\left(\bigcup_{k} B_{k}^{* *}\right)$. From (2.12) and (2.13) we get $\mu\left(E_{\lambda}\right) \lesssim\|f\|_{r}^{r} / \lambda^{r}$, and (2.7) implies (2.6). Hence it remains to prove that the function $g$ satisfies (2.6). Take a ball $B \in \mathfrak{B}$ with $B \not \subset E_{\lambda}$. First of all observe that for each $B_{k}$ satisfying $B \cap B_{k}^{*} \neq \varnothing$ we have $\mu(B)>2 \mu\left(B_{k}^{*}\right)$, since otherwise we would have $B \subset B_{k}^{* *} \subset E_{\lambda}$, which is not true. Thus, whenever $B \cap B_{k}^{*} \neq \varnothing$ we have $B \in \mathfrak{B}_{k}$, then we get $\mu\left(G_{k}\right) \leq 2 \mu(B)$, and so $\tilde{G}_{k} \subset G_{k} \subset B^{*}$. Besides, from (2.7) and the definition of $g$ it
follows that $f(x) \leq g(x)$ a.e. on $X \backslash \cup_{k} B_{k}^{*}$. Hence, using (2.11) and the disjointness of $\tilde{G}_{k}$, we can write

$$
\begin{aligned}
& \langle f\rangle_{B, r}^{r}=\frac{1}{\mu(B)}\left(\int_{B \cap\left(\cup_{k} B_{k}^{*}\right)} f^{r}+\int_{B \backslash \cup_{k} B_{k}^{*}} f^{r}\right) \leq \frac{1}{\mu(B)}\left(\sum_{k: B_{k}^{*} \cap B \neq \varnothing_{B \cap D_{k}}} \int_{B} f^{r}+\int_{B \backslash \cup_{k} B_{k}^{*}} g^{r}\right) \\
& \leq \frac{1}{\mu(B)}\left(\sum_{k: B_{k}^{*} \cap B \neq \varnothing} \int_{D_{k}} f^{r}+\int_{B} g^{r}\right)=\frac{1}{\mu(B)}\left(\sum_{k: B_{k}^{*} \cap B \neq \varnothing} \frac{\lambda^{r} \mu\left(\tilde{G}_{k}\right)}{\delta}+\int_{B} g^{r}\right) \\
& =\frac{1}{\delta \mu\left(B^{*}\right)}\left(\sum_{k: B_{k}^{*} \cap B \neq \varnothing} \int_{\tilde{G}_{k}} g^{r}+\int_{B^{*}} g^{r}\right) \lesssim\langle g\rangle_{B^{*}, r}^{r} .
\end{aligned}
$$

This implies (2.6).

## 3. Proof of Theorem 1.1

Proof of $L^{p}$-boundedness. For any $B \in \mathcal{S}$ we have $\langle f\rangle_{B, r}^{*} \leq M_{r} f(x)$ for all $x \in B$, and therefore $\langle f\rangle_{B, r}^{*} \leq\left\langle M_{r} f\right\rangle_{B, r}, B \in \mathfrak{B}$. Let $E_{B}$ be the disjoint portions of the sparse collection of balls satisfying $\mu\left(E_{B}\right) \geq \gamma \cdot \mu(B)$. Also, suppose that $r<p<\infty$ and $q=p /(p-1)$. Thus, for positive functions $f \in L^{p}$ and $g \in L^{q}(X)$, we can write

$$
\begin{aligned}
& \int_{X} \mathcal{A}_{\mathcal{S}, r}^{*} f \cdot g d \mu \leq \sum_{B \in \mathcal{S}}\left\langle M_{r} f\right\rangle_{B, r} \int_{B} g d \mu=\sum_{B \in \mathcal{S}}\left\langle M_{r} f\right\rangle_{B, r} \cdot\langle g\rangle_{B, 1} \cdot \mu(B) \\
& \leq \gamma^{-1} \sum_{B \in \mathcal{S}}\left\langle M_{r} f\right\rangle_{B, r} \cdot\left(\mu\left(E_{B}\right)\right)^{1 / p} \cdot\langle g\rangle_{B, 1} \cdot\left(\mu\left(E_{B}\right)\right)^{1 / q} \\
& \leq \gamma^{-1}\left(\sum_{B \in \mathcal{S}}\left\langle M_{r} f\right\rangle_{B, r}^{p} \cdot \mu\left(E_{B}\right)\right)^{1 / p} \cdot\left(\sum_{B \in \mathcal{S}}\langle g\rangle_{B, 1}^{q} \cdot \mu\left(E_{B}\right)\right)^{1 / q} \\
& \leq \gamma^{-1}\left\|M_{r}\left(M_{r} f\right)\right\|_{p}\left\|M_{1}(g)\right\|_{q} \lesssim\left\|M_{r} f\right\|_{p} \cdot\|g\|_{q} \lesssim\|f\|_{p} \cdot\|g\|_{q}
\end{aligned}
$$

which completes the proof of $L^{p}$-boundedness.
Proof of weak- $L^{r}$ estimate. Without loss of generality, we can assume that our measure space $(X, \mathfrak{M}, \mu)$ is non-atomic, since any measure space can be extended to a nonatomic measure space by splitting the atoms as follows. Suppose $A \subset \mathfrak{M}$ is the family of atomic elements of the measure space $(X, \mathfrak{M}, \mu)$, that is, for any $a \in A$ we have $\mu(a)>0$ and there is no proper $\mathfrak{M}$-measurable set in $a$. We can suppose that each atom is continuum and let $\left(a, \mathfrak{M}_{a}, \mu_{a}\right)$ be a a non-atomic measure space on $a \in A$ such that $\mu_{a}(a)=\mu(a)$. Denote by $\mathfrak{M}^{\prime}$ the $\sigma$-algebra on $X$ generated by $\mathfrak{M}$ and by all $\mathfrak{M}_{a}$, $a \in A$. Let $\mu^{\prime}$ be an extension of $\mu$ such that $\mu^{\prime}(E)=\mu_{a}(E)$ for any $\mathfrak{M}_{a}$-measurable
set $E \subset a$. Hence, $\left(X, \mathfrak{M}^{\prime}, \mu^{\prime}\right)$ provides a non-atomic extension of the measure space $(X, \mathfrak{M}, \mu)$.

Now let $f$ be a $\mathfrak{M}$-measurable function. The balls are $\mathfrak{M}$-measurable, and so they can not contain an atom $a$ partially. Thus, the left and right sides of inequality (1.3) are not changed if we consider $\left(X, \mathfrak{M}^{\prime}, \mu^{\prime}\right)$ instead of the initial measure space. Hence, we can suppose that $(X, \mathfrak{M}, \mu)$ is itself non-atomic. Applying Lemma 2.7, we find a function $g$ satisfying the conditions of the lemma. From (2.6) we get $\langle f\rangle_{B, r}^{*} \leq\langle g\rangle_{B, r}^{*}$ for any $B \in \mathcal{S}$ with $B \not \subset E_{\lambda}$ and hence, $\mathcal{A}_{\mathcal{S}, r}^{*} f(x) \leq \mathcal{A}_{\mathcal{S}, r}^{*} g(x), x \in X \backslash E_{\lambda}$. Therefore, using the $L^{2 r}$ bound of $\mathcal{A}_{\mathcal{S}, r}^{*}$, we obtain

$$
\begin{aligned}
& \mu\left\{x \in X: \mathcal{A}_{S, r}^{*} f(x)>\lambda\right\} \leq \mu\left(E_{\lambda}\right)+\mu\left\{x \in X \backslash E_{\lambda}: \mathcal{A}_{S, r}^{*} g(x)>\lambda\right\} \\
& \lesssim \frac{\|f\|_{r}^{r}}{\lambda^{r}}+\frac{1}{\lambda^{2 r}} \int_{X \backslash E_{\lambda}}|g|^{2 r} \leq \frac{\|f\|_{r}^{r}}{\lambda^{r}}+\frac{\lambda^{r}}{\lambda^{2 r}} \int_{X \backslash E_{\lambda}} f^{r} \leq \frac{2\|f\|_{r}^{r}}{\lambda^{r}}
\end{aligned}
$$

This completes the proof of theorem 1.1.

## СПИСок ЛИТЕРАТУРы

[1] J. M. Conde-Alonso, G. Rey, "A pointwise estimate for positive dyadic shifts and some applications", Jour. Math. Ann., 365, no. 3 -4, 1111 - 1135 (2016) http://dx.doi.org.prx.library.gatech.edu/10.1007/s00208-015-1320-y.
[2] F. P. Di, A. K. Lerner, "On weighted norm inequalities for the Carleson and Walsh-Carleson operator", J. Lond. Math. Soc. (2), 90, no. 3, 654 - 674 (2014).
[3] T. P. Hytönen, "The sharp weighted bound for general Calderón-Zygmund operators", Jour. Ann. of Math. (2), 175, no. 3, 1473 - 1506 (2012).
[4] G. A. Karagulyan, "An abstract theory of singular operators", Trans. Amer. Math. Soc., accepted.
[5] M. T. Lacey, "An elementary proof of the $A_{2}$ bound", Israel J. Math., 217, no. 1, 181 - 195, (2017) http://dx.doi.org.prx.library.gatech.edu/10.1007/s11856-017-1442-x.
[6] A. K. Lerner, "On an estimate of Calderón-Zygmund operators by dyadic positive operators", J. Anal. Math., 121, 141 - 161 (2013).
[7] A. K. Lerner, "A simple proof of the $A_{2}$ conjecture", Int. Math. Res. Not. IMRN, no. 14, 3159 - 3170 (2013).
[8] Ch. Thiele, S. Treil, A. Volberg, "Weighted martingale multipliers in the non-homogeneous setting and outer measure spaces", Adv. Math., 285, 1155 - 1188 (2015).

Поступила 26 октября 2018
После доработки 25 февраля 2019
Принята к публикации 25 апреля 2019


[^0]:    ${ }^{1}$ Research was supported by a grant from Science Committee of Armenia 18T-1A081.

