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Abstract

We investigate rational trigonometric approximation of smooth functions

in a finite interval and show that by appropriate choice of parameters in

rational trigonometric approximant we obtain more precise approximation

compared with classic Fourier-Pade scheme.
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1 Introduction

It is well known that reconstruction of smooth in the finite interval function
f(x), x ∈ [−1, 1], by its finite number of Fourier coefficients

fn =
1

2

Z 1

−1
f(x)e−iπnxdx, n = 0,±1, · · · ,±N, 0 < N <∞ (1)

by the partial sum of Fourier expansion

SN(f) =
NX

n=−N
fne

iπnx (2)

is non efficient if the periodic extension (with the period 2) of f is not smooth
enough.
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If f(1) 6= f(−1), then uniform convergence of SN(f), N → ∞ in the
segment [−1, 1] is impossible due to the Gibbs phenomenon and the or-
der of L2-convergence in a segment inside of the interval (−1, 1) is much
greater than in the whole interval. In a case when f ∈ Cq+1[−1, 1], q ≥ 0,
f (k)(−1) = f (k)(1), k = 0, 1, ..., q and f (q+1)(−1) 6= f (q+1)(1) although the
uniform convergence takes place in the whole segment [−1, 1] its order in a
segment inside of (−1, 1) is higher.
The same is true for the well-known Fourier-Pade approximation ([1]-[3]).

Here the faster convergence is more sharp revealed compared with approxi-
mation by Fourier partial sums.
In [1],[2] we minimize L2 and uniform errors of a rational linear approxi-

mation in the whole interval by appropriate choice of parameters and receive
more precise approximation compared with Fourier-Pade approximation. Un-
fortunately, it leads to less efficient approximation inside of the interval.
In this article we show how it is possible to keep the results of [1],[2] and

simultaneously increase the precision inside of (−1, 1).

2 Preliminaries.

Consider a finite sequence of complex numbers as a vector θ := {θk}pk=−p, p ≥
1 and denote

∆0
n(θ) = fn, ∆

k
n(θ) = ∆k−1

n (θ) + θk sgn(n)∆
k−1
(|n|−1)sqn(n)(θ), k ≥ 1, (3)

where sgn(n) = 1 if n ≥ 0 and sgn(n) = −1 if n < 0.
Consider also the following rational approximation in [−1, 1] ([1],[2])

Sp,N(θ, f) :=
NX

n=−N
fne

iπnx − eiπ(N+1)x
pX
k=1

θk∆
k−1
N (θ)Qk

s=1(1 + θseiπx)
−

−e−iπ(N+1)x
pX
k=1

θ−k∆
k−1
−N (θ)Qk

s=1(1 + θ−se−iπx)
(4)

with error

Rp,N(θ, f) := f(x)− Sp,N(θ, f) = R+p,N (θ, f) +R−p,N(θ, f), (5)
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where

R±p,N(θ, f) :=
1Qp

k=1(1 + θ±ke±iπx)

∞X
n=N+1

∆p
±n(θ)e

±iπnx. (6)

If θ is a solution of the systems

∆p
n(θ) = 0, n = −N − p, · · · ,−N − 1 and n = N + 1, · · · , N + p, (7)

then approximation Sp,N (θ, f) is Fourier-Pade approximation ([3]).

3 Theoretical Results.

Let f ∈ Cq[−1, 1]. By definition, put

Ak(f) = f
(k)(1)− f (k)(−1), k = 0, · · · , q. (8)

By γk(p), k = 0, · · · , p, we denote the coefficients of the polynomial
pY
k=1

(1 + τkx) ≡
pX
k=0

γk(p)x
k. (9)

Lemma 1 ([1],[2]) Suppose f ∈ Cq+p[−1, 1], q ≥ 0, p ≥ 1, f (q+p+1) ∈
L1[−1, 1] and Aj(f) = 0 for j = 0, · · · , q − 1. If

θk = θ−k = 1−
τk
N
, k = 1, · · · , p, (10)

then asymptotic expansion

∆p
n(θ) = Aq(f)

(−1)n+p+1
2(iπ)q+1q!

pX
k=0

(q + p− k)!(−1)kγk(p)
Nk(n− k)q+1|n− k|p−k + o(n

−q−p−1) (11)

holds as N →∞, |n| ≥ N + 1.

If in (3) θk ≡ 1, |k| ≤ p, we put ∆k
n := ∆k

n(θ). Notice that ∆k
n are

well-known classic finite differences. From Lemma 1 we derive.

Lemma 2 Suppose f ∈ Cq+p[−1, 1], q ≥ 0, p ≥ 1, f (q+p+1) ∈ L1[−1, 1] and
Aj(f) = 0 for j = 0, · · · , q−1; then the following asymptotic expansion holds
(m→∞)

∆s
m = Aq(f)

(−1)m+s+1(q + s)!
2(iπm)q+1q!|m|s + o(m−s−q−1), s = 0, · · · , p. (12)
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Now we investigate pointwise and L2 convergence of approximations
Sp,N (θ, f) inside of (−1, 1).

Theorem 1 Let f ∈ Cq+p+2[−1, 1], q ≥ 0, p ≥ 1, f (q+p+3) ∈ L1[−1, 1] and
Aj(f) = 0 for j = 0, · · · , q − 1. If

θk = θ−k = 1−
τk
N
, k = 1, · · · , p, (13)

then for |x| < 1 the following asymptotic estimate holds (N →∞)

(−1)N+pN q+p+1Rp,N(θ, f) =

= Re

Ã
eiπ(N+1)x

iq+1(1 + eiπx)p+1

!
Aq(f)

q! πq+1

pX
k=0

(−1)kγk(p)(q + p− k)! + o(1). (14)

Proof. It is not hard to prove by induction that

∆p
n(θ) =

pX
k=0

(−1)kγk(p)
Nk

∆p−k
n−k.

Substituting this in (6), we obtain

R+p,N (θ, f) =
1Qp

k=1(1 + θkeiπx)

pX
k=0

(−1)kγk(p)
Nk

∞X
n=N+1

∆p−k
n−ke

iπnx. (15)

Applying twice Abel transformation to the last sum, we derive

∞X
n=N+1

∆p−k
n−ke

iπnx = −∆
p−k
N−ke

iπ(N+1)x

1 + eiπx
− ∆p−k+1

N−k e
iπ(N+1)x

(1 + eiπx)2
+

+
1

(1 + eiπx)2

∞X
n=N+1

∆p−k+2
n−k eiπnx. (16)

Using Lemma 2, it is easy to show that the last two terms in (16) are of the
order O(N−q−p−2+k), N → ∞, k = 0, · · · , p. Substituting the first term in
(16) in (15) and tending N to infinity, we obtain

N q+p+1R+p,N(θ, f) =
Aq(f)(−1)N+peiπ(N+1)x
2(iπ)q+1q!(1 + eiπx)p+1

pX
k=0

(−1)kγk(p)(q+ p− k)!+ o(1).
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This concludes the proof as the same arguments are valid for R−p,N (θ, f). •
Let f ∈ L2(−1, 1). By || · ||ε, 0 < ε ≤ 1 denote the L2-norm

||f ||ε =
µZ ε

−ε
|f(x)|2dx

¶1/2
.

From Theorem 1 we immediately derive the following.

Theorem 2 Under the conditions of Theorem 1 the following asymptotic
estimate holds for any 0 < ε < 1

lim
N→∞

N q+p+1||Rp,N (θ, f)||ε =

=
|Aq(f)

2p+1πq+1q!

¯̄̄̄
¯
pX
k=0

(−1)kγk(p)(q + p− k)!
¯̄̄̄
¯
ÃZ ε

−ε

dx

cos2p+2 πx
2

!1/2
. (17)

For comparison notice that in [1],[2] we show that under the conditions
of Theorem 1 (with additional condition τk > 0 and τi 6= τj , i 6= j) the
following holds

||Rp,N (θ, f)||1 =
const

N q+1/2
.

Hence approximation Sp,N (θ, f) with {θk} as in (13) is Np+1/2 times (N >>
1) more precise inside of (−1, 1) than in the whole interval (see introduction).
From Theorems 1,2 we see that it is natural to take parameters τk, |k| ≤ p

such that
pX
k=0

(−1)kγk(p)(q + p− k)! = 0.

For example, in the case p = 1, we get τ1 = q + 1 and

R1,N(θ, f) = o(N
−q−3), N →∞

inside of (−1, 1).
Now consider the case p = 1 in more details.
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4 The Case p = 1.

Theorem 3 Let f ∈ Cq+4[−1, 1], q ≥ 0, f (q+5) ∈ L1[−1, 1] and Aj(f) = 0
for j = 0, · · · , q − 1. If

θ±1 = 1−
q + 1

N
+
a±1
N2
, (18)

then for |x| < 1 the following holds

N q+3R±1,N (θ, f) =

= Aq(f)
(−1)N+1

³
a±1 − q(q+1)

2

´
2(±iπ)q+1

e±iπ(N+1)x

(1 + e±iπx)2
+

+Aq(f)
(−1)N(q + 1)
2(±iπ)q+1

e±iπ(N+1)x

(1 + e±iπx)3
+

+Aq+1(f)
(−1)N+1
2(±iπ)q+2

e±iπ(N+1)x

(1 + e±iπx)2
+ o(1), N →∞. (19)

Proof. We apply twice Abel transformation to R+1,N(θ, f) and obtain

R+1,N(θ, f) =

− ∆N (θ)

(1 + θ1eiπx)(1 + eiπx)
eiπ(N+1)x − ∆N(θ) +∆N−1(θ)

(1 + θ1eiπx)(1 + eiπx)2
eiπ(N+1)x+

+
1

(1 + θ1eiπx)(1 + eiπx)2

∞X
n=N+1

(∆n(θ) + 2∆n−1(θ) +∆n−2(θ))e
iπnx. (20)

By Lemma 1, the last term in (20) is of order O(N−q−4), N → ∞. Now
we need more precise asymptotic estimates for ∆N(θ) +∆N−1(θ) and ∆N (θ)
rather than in Lemma 1. Taking into account the well-known asymptotic
expansion of Fourier coefficients (n 6= 0)

fn =
(−1)n+1
2

mX
k=0

Ak(f)

(iπn)k+1
+

1

2(iπn)m+1

Z 1

−1
f (m+1)(x)e−iπnxdx (21)

by direct calculations we get

∆N(θ) = Aq(f)
(−1)N

³
a1 − q(q+1)

2

´
2(iπ)q+1N q+3

+
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+Aq+1(f)
(−1)N

2(iπ)q+2N q+3
+O(N−q−4), N →∞, (22)

∆N(θ) +∆N−1(θ) = ∆2
N −

a1
N
∆N−1 +

a1
N2

∆N−1 =

= Aq(f)
(−1)N+1(q + 1)
2(iπ)q+!N q+3

+O(N−q−4), N →∞. (23)

Substituting these formulae in (20) and tending N to infinity we obtain the
required result as the same arguments are valid for R−1,N(θ, f). •
From Theorem 3 it follows that if Aq(f) 6= 0 then by the choice

a±1 =
q(q + 1)

2
± 1

iπ

Aq+1(f)

Aq(f)
+

q + 1

1 + e±iπx
. (24)

and otherwise (Aq(f) = 0) by the choice

a±1 =
q(q + 1)

2
+

q + 1

1 + e±iπx
(25)

we derive approximation of the order

R1,N(θ, f) = o(N
−q−3), N →∞

inside of (−1, 1).
Note that in the first case S1,N(θ, f) is nonlinear as Fourier-Pade approx-

imation and in the second case it is linear approximation.
Now we represent a typical numerical example. Consider the following

simple function
f(x) = (1− x2) sin(x− 1). (26)

It is trivial to check that A0(f) = 0, A1(f) 6= 0. In Fig. 1 graphics of the errors
are represented while approximating (26) by Fourier-Pade approximation (a)
and by S1,N(θ, f) with θ±1 as in Theorem 3 with a±1 from (24). Here N = 32
and |x| ≤ 0.2. As we see approximation S1,N (θ, f) is 10 times more precise
than Fourier-Pade approximation.
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5.2×10−8

−0.2 0.2

4.2×10−9

a) b)

Fig.1. Graphics of the errors while approximating (26) by
Fourier-Pade approximation (a) and S1,N (θ, f) (b) for N = 32.

It is interesting to compare these approximations near the points of sin-
gularities x = ±1. In Fig. 2 we compare these approximations at the point
x = 1 for N = 32. Note that approximation S1,N (θ, f) is undefined at the
points x = ±1. Hence by increasing the precision of approximation S1,N (θ, f)
inside of (−1, 1) we simultaneously decrease the precision at the end points.

0.96 0.99

0.0029

0.96 0.99

0.0057

a) b)

Fig.2. Graphics of the errors while approximating (26) by

Fourier-Pade (a) and by S1,N (θ, f) (b) for N = 32.

In [2] we show that

θ±1 = 1−
τ

N
(27)

minimizes uniform or L2 errors of S1,N (θ, f) in the whole interval by appro-
priate choice of parameter τ . In Tables 1,2 we represent the corresponding
optimal values of τ . Note that τ depends on the smoothness of f .

q 1 2 3 4 5
τ 1.17728 2.23568 3.24768 4.26805 5.27982

Table 1. Optimal values of τ that minimize
L2-error in the whole interval.

q 1 2 3 4 5 6
τ 1.3533 2.3199 3.3020 4.2915 5.2845 6.2795
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Table 2. Optimal values of τ that minimize
uniform error in the whole interval.

Hence, we have two different choice for parameters θ±1. The first for
approximation inside of (-1,1) and the second for approximation at the end
points of the interval. Now we combine these two approaches and suggest,
for example, the following

θ±1 = σ(x)
µ
1− q + 1

N
+
a±1
N2

¶
+ (1− σ(x))

µ
1− τ

N

¶
(28)

where

σ(x) =
cos6 π

2
x

cos6 π
2
x+ sin6 π

2
x

and parameter τ can be taken from Tables 1,2 depending on the smoothness
of f .
In Fig. 3 we represent graphics of the errors while approximating (26)

by S1,N(θ, f) with (28) and τ = 1.3533 (a), τ = 1.17728 (b) for N = 32.
For such choice of parameter θ±1 convergence of S1,N(θ, f) inside of (−1, 1)
preserves (see Fig.1 b)) and meanwhile the uniform error in the whole interval
becomes 3 times and L2-error 1.7 times less compared with Fourier-Pade
approximation for N = 32.

0.990.96

0.00091

0.990.96

0.0015

a) b)

Fig.3. Graphics of the errors while approximating (26) by

S1,N (θ, f) with (28) and τ = 1.3533 (a), τ = 1.17728 (b) for N = 32.
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