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Abstract

We investigate rational trigonometric approximation of smooth functions
in a finite interval and show that by appropriate choice of parameters in
rational trigonometric approximant we obtain more precise approximation
compared with classic Fourier-Pade scheme.
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1 Introduction

It is well known that reconstruction of smooth in the finite interval function
f(z), = € [-1,1], by its finite number of Fourier coefficients

1 /1 ,
fo = 5/ flz)e ™z, n=0,41,---,+N, 0< N <oo (1)
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by the partial sum of Fourier expansion

Sn(f) = Z_N fae'™® (2)

is non efficient if the periodic extension (with the period 2) of f is not smooth
enough.



If f(1) # f(—1), then uniform convergence of Sy(f), N — oo in the
segment [—1,1] is impossible due to the Gibbs phenomenon and the or-
der of Ly-convergence in a segment inside of the interval (—1,1) is much
greater than in the whole interval. In a case when f € C?[—1,1], ¢ > 0,
f®(=1) = f®(1), k = 0,1,...,q and f@r(-1) # f@(1) although the
uniform convergence takes place in the whole segment [—1,1] its order in a
segment inside of (—1,1) is higher.

The same is true for the well-known Fourier-Pade approximation ([1]-[3]).
Here the faster convergence is more sharp revealed compared with approxi-
mation by Fourier partial sums.

In [1],[2] we minimize L, and uniform errors of a rational linear approxi-
mation in the whole interval by appropriate choice of parameters and receive
more precise approximation compared with Fourier-Pade approximation. Un-
fortunately, it leads to less efficient approximation inside of the interval.

In this article we show how it is possible to keep the results of [1],[2] and
simultaneously increase the precision inside of (—1,1).

2 Preliminaries.

Consider a finite sequence of complex numbers as a vector 0 := {6y }ﬁzfp, P>
1 and denote

AL(0) = fu, Dn(0) = AL7HO) + Orsgnim) Afjni-1ysgnim (0), £ =1, (3)

where sgn(n) =1if n > 0 and sgn(n) = -1 if n < 0.
Consider also the following rational approximation in [—1, 1] ([1],[2])
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with error
Ryn(0, f) := f(z) — Spn(0, f) = Rin (0, f) + R, (0, f), (5)



where

1 e ‘
R0, f) = . AR, (0)eFm™e, 6
6. = ey 2 A )
If 0 is a solution of the systems
AP@) =0, n=—-N-p,---,—N—1land n=N+1,--- ,N+p, (7)

then approximation S, x (6, f) is Fourier-Pade approximation ([3]).

3 Theoretical Results.

Let f € C1—1,1]. By definition, put

Ae(f) = fP1) = fB(=1), k=0,---,¢q. (8)
By %(p),k =0, -, p, we denote the coefficients of the polynomial
p p
[T +ma) =3 wlp)z". (9)
k=1 k=0

Lemma 1 (/1],/2]) Suppose f € CTP[-1,1], ¢ > 0, p > 1, flatp+l) ¢
Ly[-1,1] and A;(f) =0 for j=0,---,q—1. If
T
ekze—kzl_ﬁka ]f:l,"',p, (10)
then asymptotic expansion
(=)™ & (g+p = B)(=1)"n(p)
2(im)a+iql &= NF(n — k)ot|n — kP *

AL(0) = Aq(f) +o(n 7Y (11)

holds as N — oo, |[n| > N + 1.

If in 3) 6 = 1, |k| < p, we put AF := AF(f). Notice that Ak are
well-known classic finite differences. From Lemma 1 we derive.

Lemma 2 Suppose f € CTP[—1,1], ¢ >0, p > 1, flatP+D) ¢ [,[~1,1] and
Ai(f) =0 forj=0,---,q—1; then the following asymptotic expansion holds
(m — o)

(_1)m+s+1(q+s)!
2(imm)atigl|m|s

+o(m™1 ), s=0,---,p. (12)



Now we investigate pointwise and Ly convergence of approximations
Sy (0, f) inside of (—1,1).

Theorem 1 Let f € C9P+2[—11], ¢ >0, p > 1, flt?+3) ¢ L,[-1,1] and
A](f) :OfOTJZO,,q—l ]f

e—ek:1—ﬁ k=1, (13)

then for |x| < 1 the following asymptotic estimate holds (N — o)

(—D)NPNTPHR, N (0, f) =

:Re< et )“f z D) (g +p— B) +o(1).  (14)
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Proof. It is not hard to prove by induction that

2 (=D m(p) yp-
AP(G) = T)Aﬁ_i-
k=0
Substituting this in (6), we obtain
R;N<97f) = — 1 : i (_]‘ Z AP k zﬂnm (15)
’ k=1 (1 + Ope™) (= n=N+1

Applying twice Abel transformation to the last sum, we derive

i APk gimna AR K eim e _ I
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T ;Y Apk (16)
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Using Lemma 2, it is easy to show that the last two terms in (16) are of the
order O(N~9P=2tk) ' N — oo, k = 0,---,p. Substituting the first term in
(16) in (15) and tending N to infinity, we obtain

—1)Ntpein(N+1)z P
A(z<7rf))q€r1q1>(1+em:;+1 Z(—l)k’yk(p)(q+p—k)!+0(1),

NTPERS (0, f) =

4



This concludes the proof as the same arguments are valid for R, (0, f). @
Let f € Ly(—1,1). By || - ||s, 0 < € < 1 denote the Ly-norm

1= ([ 1)

From Theorem 1 we immediately derive the following.

Theorem 2 Under the conditions of Theorem 1 the following asymptotic
estimate holds for any 0 < e <1

lim_ NTPHYIR N (0, )| =

c dx 1/2
(/_5 —_> - 1)

For comparison notice that in [1],[2] we show that under the conditions
of Theorem 1 (with additional condition 7, > 0 and 7; # 75, @ # j) the
following holds

~ A S (1 = k)

const

[ Ry, (0, )l |1 = Neiz

Hence approximation S, x (6, f) with {6} as in (13) is NP2 times (N >>
1) more precise inside of (—1, 1) than in the whole interval (see introduction).

From Theorems 1,2 we see that it is natural to take parameters 7, |k| < p
such that

p
> (=D ) g+p—k)!=0.
k=0
For example, in the case p =1, we get 1, = ¢+ 1 and
Rin(0, f) = o(N"%), N — oo

inside of (—1,1).
Now consider the case p = 1 in more details.



4 The Case p = 1.

Theorem 3 Let f € C7H[—1,1], ¢ > 0, @) € Ly[-1,1] and A;(f) =0

forj=0,--,q—1.1If
+1 a
9i1=1—qT+%, (18)

then for |xz| < 1 the following holds
NTREN (0, f) =

(—1)N+ (ail _ %) o Eim(N+1)z .
2(Fim)atl (1 + etime)?2

(—].)N(q—l—l) eiiﬂ(NJrl)z
+Aq<f) 2(:|:i7T>Q+1 (1 + 6:|:i7r:c)3+

(_1)N+1 e:l:iﬂ(N—l-l)x

2(Lim)at? (1 + etinz)?

= Aq(f)

+Aq+1(f)

+o0(1), N — o0. (19)

Proof. We apply twice Abel transformation to Ry (6, f) and obtain
Rir,N(ev f) =

AN(H) 6i7r(N+1):17 . AN<0) + AN—1<9) eiw(N+1)w+
(1 +916iwx)(1 +eiww) (1 +916iwx)(1 +eiﬂm)2
1 o0 A
+ ‘ . AL (0) +2A,-1(0) + Apa(6))e™. (20
(l—l—Qle’”)(l—l—eZ”)? n:%—i_l( ( ) 1( ) 2( )) ( )
By Lemma 1, the last term in (20) is of order O(N79%), N — oco. Now
we need more precise asymptotic estimates for Ay (0) + Ay_1(0) and Ay(0)
rather than in Lemma 1. Taking into account the well-known asymptotic
expansion of Fourier coefficients (n # 0)

(= i Ar(f)

1 1 .
(m—+1) —iTne 21
> (rn)o 1 2(mn)ymt [ I @ e

by direct calculations we get

fn:

k=0




(=D

Stmyrenes O, N — oo, (22)

+Ag1(f)

a1

AN(0) + An-1(0) = AN — =An_1 + %AN—l =

N
(=) g+1)

2(im)a+ Na+s +O(N™"%), N — c0. (23)

= Aq(f )
Substituting these formulae in (20) and tending N to infinity we obtain the
required result as the same arguments are valid for Ry v (0, f).
From Theorem 3 it follows that if A,(f) # 0 then by the choice

glg+1) 1 An(f) g+l
= + — — 24
at1 9 it Ag(f) =T (24)
and otherwise (A,(f) = 0) by the choice
+1 +1
= et q (25)

2 1 + e:l:irrx

we derive approximation of the order
Run(0,f) = o(N7%), N — oo

inside of (—1,1).

Note that in the first case S v (6, f) is nonlinear as Fourier-Pade approx-
imation and in the second case it is linear approximation.

Now we represent a typical numerical example. Consider the following
simple function

f(z) = (1 —2?)sin(z — 1). (26)

It is trivial to check that Ag(f) = 0, A;(f) # 0. In Fig. 1 graphics of the errors
are represented while approximating (26) by Fourier-Pade approximation (a)
and by S y(0, f) with 65, as in Theorem 3 with ay; from (24). Here N = 32
and |z| < 0.2. As we see approximation S; n(6, f) is 10 times more precise
than Fourier-Pade approximation.
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Fig.1. Graphics of the errors while approximating (26) by
Fourier-Pade approximation (a) and Si n (6, f) (b) for N = 32.

It is interesting to compare these approximations near the points of sin-
gularities © = +1. In Fig. 2 we compare these approximations at the point
x = 1 for N = 32. Note that approximation S; x(0, f) is undefined at the
points = £1. Hence by increasing the precision of approximation Sy n (6, f)

inside of (—1,1) we simultaneously decrease the precision at the end points.
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Fig.2.  Graphics of the errors while approximating (26) by
Fourier-Pade (a) and by Si n(6, f) (b) for N = 32.

In [2] we show that
-

01 =1— N (27)

minimizes uniform or Ly errors of Sy y(6, f) in the whole interval by appro-
priate choice of parameter 7. In Tables 1,2 we represent the corresponding
optimal values of 7. Note that 7 depends on the smoothness of f.

1 2 3 4 )
7| L.1I7728 | 2.23568 | 3.24768 | 4.26805 | 5.27982

Q

Table 1. Optimal values of 7 that minimize
Lo-error in the whole interval.

7| 1.3533 | 2.3199 | 3.3020 | 4.2915 | 5.2845 | 6.2795




Table 2. Optimal values of 7 that minimize
uniform error in the whole interval.

Hence, we have two different choice for parameters 6y;. The first for
approximation inside of (-1,1) and the second for approximation at the end
points of the interval. Now we combine these two approaches and suggest,
for example, the following

1
P— (1 _ % 4 %) (1 - o)) (1 _ %) (28)
where .
B cos g:c
o(x) = cos® 2z + sin® Zx

and parameter 7 can be taken from Tables 1,2 depending on the smoothness
of f.

In Fig. 3 we represent graphics of the errors while approximating (26)
by Sin(0, f) with (28) and 7 = 1.3533 (a), 7 = 1.17728 (b) for N = 32.
For such choice of parameter 61, convergence of S; n(0, f) inside of (—1,1)
preserves (see Fig.1 b)) and meanwhile the uniform error in the whole interval
becomes 3 times and Ls-error 1.7 times less compared with Fourier-Pade
approximation for N = 32.
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Fig.3.  Graphics of the errors while approximating (26) by
S1n (0, ) with (28) and 7 = 1.3533 (a), 7 = 1.17728 (b) for N = 32.
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