On a Convergence of a Rational Trigonometric Approximation

A.Poghosyan

July 24, 2005

Abstract

We investigate rational trigonometric approximation of smooth functions in a finite interval and show that by appropriate choice of parameters in rational trigonometric approximant we obtain more precise approximation compared with classic Fourier-Pade scheme.

Mathematics subject classification 2000: 41A20, 41A21. Key words and phrases: Rational approximation, Pade approximation.

1 Introduction

It is well known that reconstruction of smooth in the finite interval function $f(x), x \in [-1, 1]$, by its finite number of Fourier coefficients

$$f_n = \frac{1}{2} \int_{-1}^{1} f(x) e^{-i\pi nx} dx, \ n = 0, \pm 1, \cdots, \pm N, \ 0 < N < \infty$$
(1)

by the partial sum of Fourier expansion

$$S_N(f) = \sum_{n=-N}^{N} f_n e^{i\pi nx}$$
(2)

is non efficient if the periodic extension (with the period 2) of f is not smooth enough.

If $f(1) \neq f(-1)$, then uniform convergence of $S_N(f)$, $N \to \infty$ in the segment [-1,1] is impossible due to the Gibbs phenomenon and the order of L_2 -convergence in a segment inside of the interval (-1,1) is much greater than in the whole interval. In a case when $f \in C^{q+1}[-1,1]$, $q \ge 0$, $f^{(k)}(-1) = f^{(k)}(1)$, k = 0, 1, ..., q and $f^{(q+1)}(-1) \neq f^{(q+1)}(1)$ although the uniform convergence takes place in the whole segment [-1,1] its order in a segment inside of (-1,1) is higher.

The same is true for the well-known Fourier-Pade approximation ([1]-[3]). Here the faster convergence is more sharp revealed compared with approximation by Fourier partial sums.

In [1],[2] we minimize L_2 and uniform errors of a rational linear approximation in the whole interval by appropriate choice of parameters and receive more precise approximation compared with Fourier-Pade approximation. Unfortunately, it leads to less efficient approximation inside of the interval.

In this article we show how it is possible to keep the results of [1], [2] and simultaneously increase the precision inside of (-1, 1).

2 Preliminaries.

Consider a finite sequence of complex numbers as a vector $\theta := \{\theta_k\}_{k=-p}^p, \ p \ge 1$ and denote

$$\Delta_n^0(\theta) = f_n, \ \Delta_n^k(\theta) = \Delta_n^{k-1}(\theta) + \theta_{k\,sgn(n)} \Delta_{(|n|-1)sqn(n)}^{k-1}(\theta), \ k \ge 1,$$
(3)

where sgn(n) = 1 if $n \ge 0$ and sgn(n) = -1 if n < 0.

Consider also the following rational approximation in [-1, 1] ([1],[2])

$$S_{p,N}(\theta, f) := \sum_{n=-N}^{N} f_n e^{i\pi nx} - e^{i\pi(N+1)x} \sum_{k=1}^{p} \frac{\theta_k \Delta_N^{k-1}(\theta)}{\prod_{s=1}^k (1+\theta_s e^{i\pi x})} - e^{-i\pi(N+1)x} \sum_{k=1}^{p} \frac{\theta_{-k} \Delta_{-N}^{k-1}(\theta)}{\prod_{s=1}^k (1+\theta_{-s} e^{-i\pi x})}$$
(4)

with error

$$R_{p,N}(\theta, f) := f(x) - S_{p,N}(\theta, f) = R_{p,N}^+(\theta, f) + R_{p,N}^-(\theta, f),$$
(5)

where

$$R_{p,N}^{\pm}(\theta, f) := \frac{1}{\prod_{k=1}^{p} (1 + \theta_{\pm k} e^{\pm i\pi x})} \sum_{n=N+1}^{\infty} \Delta_{\pm n}^{p}(\theta) e^{\pm i\pi nx}.$$
 (6)

If θ is a solution of the systems

$$\Delta_n^p(\theta) = 0, \ n = -N - p, \cdots, -N - 1 \ and \ n = N + 1, \cdots, N + p,$$
(7)

then approximation $S_{p,N}(\theta, f)$ is Fourier-Pade approximation ([3]).

3 Theoretical Results.

Let $f \in C^{q}[-1, 1]$. By definition, put

$$A_k(f) = f^{(k)}(1) - f^{(k)}(-1), \ k = 0, \cdots, q.$$
(8)

By $\gamma_k(p), k = 0, \dots, p$, we denote the coefficients of the polynomial

$$\prod_{k=1}^{p} (1 + \tau_k x) \equiv \sum_{k=0}^{p} \gamma_k(p) x^k.$$
(9)

Lemma 1 ([1],[2]) Suppose $f \in C^{q+p}[-1,1]$, $q \ge 0$, $p \ge 1$, $f^{(q+p+1)} \in L_1[-1,1]$ and $A_j(f) = 0$ for $j = 0, \dots, q-1$. If

$$\theta_k = \theta_{-k} = 1 - \frac{\tau_k}{N}, \quad k = 1, \cdots, p, \tag{10}$$

then asymptotic expansion

$$\Delta_n^p(\theta) = A_q(f) \frac{(-1)^{n+p+1}}{2(i\pi)^{q+1}q!} \sum_{k=0}^p \frac{(q+p-k)!(-1)^k \gamma_k(p)}{N^k (n-k)^{q+1} |n-k|^{p-k}} + o(n^{-q-p-1})$$
(11)

holds as $N \to \infty$, $|n| \ge N + 1$.

If in (3) $\theta_k \equiv 1$, $|k| \leq p$, we put $\Delta_n^k := \Delta_n^k(\theta)$. Notice that Δ_n^k are well-known classic finite differences. From Lemma 1 we derive.

Lemma 2 Suppose $f \in C^{q+p}[-1,1]$, $q \ge 0$, $p \ge 1$, $f^{(q+p+1)} \in L_1[-1,1]$ and $A_j(f) = 0$ for $j = 0, \dots, q-1$; then the following asymptotic expansion holds $(m \to \infty)$

$$\Delta_m^s = A_q(f) \frac{(-1)^{m+s+1}(q+s)!}{2(i\pi m)^{q+1}q! |m|^s} + o(m^{-s-q-1}), \quad s = 0, \cdots, p.$$
(12)

Now we investigate pointwise and L_2 convergence of approximations $S_{p,N}(\theta, f)$ inside of (-1, 1).

Theorem 1 Let $f \in C^{q+p+2}[-1,1]$, $q \ge 0$, $p \ge 1$, $f^{(q+p+3)} \in L_1[-1,1]$ and $A_j(f) = 0$ for $j = 0, \dots, q-1$. If

$$\theta_k = \theta_{-k} = 1 - \frac{\tau_k}{N}, \ k = 1, \cdots, p,$$
(13)

then for |x| < 1 the following asymptotic estimate holds $(N \to \infty)$

$$(-1)^{N+p} N^{q+p+1} R_{p,N}(\theta, f) =$$

$$= Re\left(\frac{e^{i\pi(N+1)x}}{i^{q+1}(1+e^{i\pi x})^{p+1}}\right) \frac{A_q(f)}{q! \pi^{q+1}} \sum_{k=0}^p (-1)^k \gamma_k(p)(q+p-k)! + o(1). \quad (14)$$

Proof. It is not hard to prove by induction that

$$\Delta_n^p(\theta) = \sum_{k=0}^p \frac{(-1)^k \gamma_k(p)}{N^k} \Delta_{n-k}^{p-k}$$

Substituting this in (6), we obtain

$$R_{p,N}^{+}(\theta,f) = \frac{1}{\prod_{k=1}^{p} (1+\theta_{k}e^{i\pi x})} \sum_{k=0}^{p} \frac{(-1)^{k}\gamma_{k}(p)}{N^{k}} \sum_{n=N+1}^{\infty} \Delta_{n-k}^{p-k} e^{i\pi nx}.$$
 (15)

Applying twice Abel transformation to the last sum, we derive

$$\sum_{n=N+1}^{\infty} \Delta_{n-k}^{p-k} e^{i\pi nx} = -\frac{\Delta_{N-k}^{p-k} e^{i\pi(N+1)x}}{1+e^{i\pi x}} - \frac{\Delta_{N-k}^{p-k+1} e^{i\pi(N+1)x}}{(1+e^{i\pi x})^2} + \frac{1}{(1+e^{i\pi x})^2} \sum_{n=N+1}^{\infty} \Delta_{n-k}^{p-k+2} e^{i\pi nx}.$$
(16)

Using Lemma 2, it is easy to show that the last two terms in (16) are of the order $O(N^{-q-p-2+k})$, $N \to \infty$, $k = 0, \dots, p$. Substituting the first term in (16) in (15) and tending N to infinity, we obtain

$$N^{q+p+1}R^{+}_{p,N}(\theta,f) = \frac{A_q(f)(-1)^{N+p}e^{i\pi(N+1)x}}{2(i\pi)^{q+1}q!(1+e^{i\pi x})^{p+1}} \sum_{k=0}^p (-1)^k \gamma_k(p)(q+p-k)! + o(1).$$

This concludes the proof as the same arguments are valid for $R_{p,N}^-(\theta, f)$. •

Let $f \in L_2(-1, 1)$. By $|| \cdot ||_{\varepsilon}$, $0 < \varepsilon \leq 1$ denote the L_2 -norm

$$||f||_{\varepsilon} = \left(\int_{-\varepsilon}^{\varepsilon} |f(x)|^2 dx\right)^{1/2}.$$

From Theorem 1 we immediately derive the following.

Theorem 2 Under the conditions of Theorem 1 the following asymptotic estimate holds for any $0 < \varepsilon < 1$

$$\lim_{N \to \infty} N^{q+p+1} ||R_{p,N}(\theta, f)||_{\varepsilon} =$$

$$= \frac{|A_q(f)|_{k=0}}{2^{p+1}\pi^{q+1}q!} \left| \sum_{k=0}^p (-1)^k \gamma_k(p)(q+p-k)! \right| \left(\int_{-\varepsilon}^{\varepsilon} \frac{dx}{\cos^{2p+2}\frac{\pi x}{2}} \right)^{1/2}.$$
(17)

For comparison notice that in [1],[2] we show that under the conditions of Theorem 1 (with additional condition $\tau_k > 0$ and $\tau_i \neq \tau_j$, $i \neq j$) the following holds

$$||R_{p,N}(\theta, f)||_1 = \frac{const}{N^{q+1/2}}$$

Hence approximation $S_{p,N}(\theta, f)$ with $\{\theta_k\}$ as in (13) is $N^{p+1/2}$ times (N >> 1) more precise inside of (-1, 1) than in the whole interval (see introduction).

From Theorems 1,2 we see that it is natural to take parameters τ_k , $|k| \leq p$ such that

$$\sum_{k=0}^{p} (-1)^{k} \gamma_{k}(p)(q+p-k)! = 0.$$

For example, in the case p = 1, we get $\tau_1 = q + 1$ and

$$R_{1,N}(\theta, f) = o(N^{-q-3}), \ N \to \infty$$

inside of (-1, 1).

Now consider the case p = 1 in more details.

4 The Case p = 1.

Theorem 3 Let $f \in C^{q+4}[-1,1]$, $q \ge 0$, $f^{(q+5)} \in L_1[-1,1]$ and $A_j(f) = 0$ for $j = 0, \dots, q-1$. If

$$\theta_{\pm 1} = 1 - \frac{q+1}{N} + \frac{a_{\pm 1}}{N^2},\tag{18}$$

then for |x| < 1 the following holds

$$N^{q+3}R^{\pm}_{1,N}(\theta, f) =$$

$$= A_q(f) \frac{(-1)^{N+1} \left(a_{\pm 1} - \frac{q(q+1)}{2}\right)}{2(\pm i\pi)^{q+1}} \frac{e^{\pm i\pi(N+1)x}}{(1+e^{\pm i\pi x})^2} +$$

$$+ A_q(f) \frac{(-1)^N(q+1)}{2(\pm i\pi)^{q+1}} \frac{e^{\pm i\pi(N+1)x}}{(1+e^{\pm i\pi x})^3} +$$

$$+ A_{q+1}(f) \frac{(-1)^{N+1}}{2(\pm i\pi)^{q+2}} \frac{e^{\pm i\pi(N+1)x}}{(1+e^{\pm i\pi x})^2} + o(1), \ N \to \infty.$$
(19)

Proof. We apply twice Abel transformation to $R^+_{1,N}(\theta,f)$ and obtain

$$R_{1,N}^{+}(\theta, f) = -\frac{\Delta_{N}(\theta)}{(1+\theta_{1}e^{i\pi x})(1+e^{i\pi x})}e^{i\pi(N+1)x} - \frac{\Delta_{N}(\theta) + \Delta_{N-1}(\theta)}{(1+\theta_{1}e^{i\pi x})(1+e^{i\pi x})^{2}}e^{i\pi(N+1)x} + \frac{1}{(1+\theta_{1}e^{i\pi x})(1+e^{i\pi x})^{2}}\sum_{n=N+1}^{\infty}(\Delta_{n}(\theta) + 2\Delta_{n-1}(\theta) + \Delta_{n-2}(\theta))e^{i\pi nx}.$$
 (20)

By Lemma 1, the last term in (20) is of order $O(N^{-q-4})$, $N \to \infty$. Now we need more precise asymptotic estimates for $\Delta_N(\theta) + \Delta_{N-1}(\theta)$ and $\Delta_N(\theta)$ rather than in Lemma 1. Taking into account the well-known asymptotic expansion of Fourier coefficients $(n \neq 0)$

$$f_n = \frac{(-1)^{n+1}}{2} \sum_{k=0}^m \frac{A_k(f)}{(i\pi n)^{k+1}} + \frac{1}{2(i\pi n)^{m+1}} \int_{-1}^1 f^{(m+1)}(x) e^{-i\pi nx} dx$$
(21)

by direct calculations we get

$$\Delta_N(\theta) = A_q(f) \frac{(-1)^N \left(a_1 - \frac{q(q+1)}{2}\right)}{2(i\pi)^{q+1} N^{q+3}} +$$

$$+A_{q+1}(f)\frac{(-1)^N}{2(i\pi)^{q+2}N^{q+3}} + O(N^{-q-4}), \ N \to \infty,$$
(22)

$$\Delta_N(\theta) + \Delta_{N-1}(\theta) = \Delta_N^2 - \frac{a_1}{N} \Delta_{N-1} + \frac{a_1}{N^2} \Delta_{N-1} = A_q(f) \frac{(-1)^{N+1}(q+1)}{2(i\pi)^{q+1}N^{q+3}} + O(N^{-q-4}), \ N \to \infty.$$
(23)

Substituting these formulae in (20) and tending N to infinity we obtain the required result as the same arguments are valid for $R_{1,N}^-(\theta, f)$.

From Theorem 3 it follows that if $A_q(f) \neq 0$ then by the choice

$$a_{\pm 1} = \frac{q(q+1)}{2} \pm \frac{1}{i\pi} \frac{A_{q+1}(f)}{A_q(f)} + \frac{q+1}{1+e^{\pm i\pi x}}.$$
(24)

and otherwise $(A_q(f) = 0)$ by the choice

$$a_{\pm 1} = \frac{q(q+1)}{2} + \frac{q+1}{1+e^{\pm i\pi x}}$$
(25)

we derive approximation of the order

$$R_{1,N}(\theta, f) = o(N^{-q-3}), \ N \to \infty$$

inside of (-1, 1).

Note that in the first case $S_{1,N}(\theta, f)$ is nonlinear as Fourier-Pade approximation and in the second case it is linear approximation.

Now we represent a typical numerical example. Consider the following simple function

$$f(x) = (1 - x^2)\sin(x - 1).$$
 (26)

It is trivial to check that $A_0(f) = 0$, $A_1(f) \neq 0$. In Fig. 1 graphics of the errors are represented while approximating (26) by Fourier-Pade approximation (a) and by $S_{1,N}(\theta, f)$ with $\theta_{\pm 1}$ as in Theorem 3 with $a_{\pm 1}$ from (24). Here N = 32and $|x| \leq 0.2$. As we see approximation $S_{1,N}(\theta, f)$ is 10 times more precise than Fourier-Pade approximation.

Fig.1. Graphics of the errors while approximating (26) by Fourier-Pade approximation (a) and $S_{1,N}(\theta, f)$ (b) for N = 32.

It is interesting to compare these approximations near the points of singularities $x = \pm 1$. In Fig. 2 we compare these approximations at the point x = 1 for N = 32. Note that approximation $S_{1,N}(\theta, f)$ is undefined at the points $x = \pm 1$. Hence by increasing the precision of approximation $S_{1,N}(\theta, f)$ inside of (-1, 1) we simultaneously decrease the precision at the end points.

Fig.2. Graphics of the errors while approximating (26) by Fourier-Pade (a) and by $S_{1,N}(\theta, f)$ (b) for N = 32.

In [2] we show that

$$\theta_{\pm 1} = 1 - \frac{\tau}{N} \tag{27}$$

minimizes uniform or L_2 errors of $S_{1,N}(\theta, f)$ in the whole interval by appropriate choice of parameter τ . In Tables 1,2 we represent the corresponding optimal values of τ . Note that τ depends on the smoothness of f.

q	1	2	3	4	5
au	1.17728	2.23568	3.24768	4.26805	5.27982

Table 1. Optimal values of τ that minimize L_2 -error in the whole interval.

q	1	2	3	4	5	6
τ	1.3533	2.3199	3.3020	4.2915	5.2845	6.2795

Table 2. Optimal values of τ that minimize uniform error in the whole interval.

Hence, we have two different choice for parameters $\theta_{\pm 1}$. The first for approximation inside of (-1,1) and the second for approximation at the end points of the interval. Now we combine these two approaches and suggest, for example, the following

$$\theta_{\pm 1} = \sigma(x) \left(1 - \frac{q+1}{N} + \frac{a_{\pm 1}}{N^2} \right) + (1 - \sigma(x)) \left(1 - \frac{\tau}{N} \right)$$
(28)

where

$$\sigma(x) = \frac{\cos^6 \frac{\pi}{2}x}{\cos^6 \frac{\pi}{2}x + \sin^6 \frac{\pi}{2}x}$$

and parameter τ can be taken from Tables 1,2 depending on the smoothness of f.

In Fig. 3 we represent graphics of the errors while approximating (26) by $S_{1,N}(\theta, f)$ with (28) and $\tau = 1.3533$ (a), $\tau = 1.17728$ (b) for N = 32. For such choice of parameter $\theta_{\pm 1}$ convergence of $S_{1,N}(\theta, f)$ inside of (-1, 1) preserves (see Fig.1 b)) and meanwhile the uniform error in the whole interval becomes 3 times and L_2 -error 1.7 times less compared with Fourier-Pade approximation for N = 32.

Fig.3. Graphics of the errors while approximating (26) by $S_{1,N}(\theta, f)$ with (28) and $\tau = 1.3533$ (a), $\tau = 1.17728$ (b) for N = 32.

References

[1] A. Nersessian, A.Poghosyan, On a Rational Linear Approximation On a Finite Interval [in Russian]. To be published in DNAN Armenii.

- [2] A. Nersessian, A.Poghosyan, On a Rational Linear Approximation of Fourier Series for Smooth Functions. Submitted to Journal of Scientific Computing.
- [3] G.A.Baker and P. Graves-Morris, Padė Approximants, Encyclopedia of mathematics and its applications. Vol. 59, 2nd ed., Cambridge Univ. Press, Cambridge,1996.