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A DESCRIPTION OF LINEARLY ADDITIVE METRICS ON R
n

R. H. ARAMYAN

Abstract. There is an integral-geometric approach, proposed by Busemann, for
building linearly additive metrics on Rn (it uses hyperplanes). Hilbert’s Fourth
Problem was solved with the help of this construction. In this article, we present a
new description (using straight lines) of linearly additive metrics on Rn, generated
by a norm. There is a link between this description and the sine transform.

1. Introduction and posing of the questions

Hilbert’s Fourth Problem consists of describing the geometries in Rn for which the
shortest geodesic between any two points is a straight line. G. Hamel (see [12]) proved
that this problem is equivalent to describing the continuous linearly additive metrics on
open convex subsets of Rn.

A metric d on Rn is said to be linearly additive if any three points x, y, z lying on a
straight line in this order, satisfy the equality

d(x, z) = d(x, y) + d(y, z).

We let Rn (n ≥ 2) denote Euclidean n-dimensional space. Let Sn−1 be the unit sphere
of dimension n− 1 in Rn with centre at the origin O ∈ Rn, and let λn−1 be the surface
Lebesgue measure in Sn−1 (σn−1 is its total surface measure). We set Sω ⊂ Sn−1 to be a
large (n− 2)-dimensional sphere with pole at ω ∈ Sn−1, take En (E3 = E) to be a space
of hyperplanes of Rn, and [x] a bundle of hyperplanes passing through a point x ∈ R

n.
H. Busemann (see [8]) suggested the following construction of linearly additive metrics.
Let μ be a bundleless measure in En (μ([x]) = 0 for any point x ∈ Rn) which also

satisfies the condition:

(1.1) 0 < μ({e ∈ E
n : e ∩ [x; y] �= ∅}) < ∞ for x �= y,

where [x; y] is the segment with endpoints x and y.
A metric given by the equality

(1.2) d(x, y) = μ({e ∈ E
n : e ∩ [x; y] �= ∅}),

for x, y ∈ Rn, is a linearly additive metric.
It turns out that in R2 every continuous linearly additive metric can be obtained by

means of (1.2) with measure in the space of lines on the surface (see [14], [1] and [4]).
This solves Hilbert’s Fourth Problem in R

2 (see also [5]).
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It also turns out that for n ≥ 3 not every continuous linearly additive on Rn can be
obtained by means of (1.2) with some measure μ in En (see [15]). The problem is related
to the application of the cosine transform T : C ∞

c → C∞
c which is defined by

(1.3) H(ξ) = Th(ξ) =

∫
Sn−1

|〈ω, ξ〉|h(ω)λn−1(dω), ξ ∈ S
n−1;

here and below, 〈·.·〉 denotes the Euclidean inner product in Rn.
Indeed, suppose that the linearly additive metric d(x, y) = ‖x− y‖, generated by the

norm ‖ · ‖ on R
n, is obtained by (1.2) with translation invariant measure μ on E

n.
It is well known (see [2]) that a translation invariant measure μ can be decomposed:

dμ = m(dω) · dp,

where m is a finite even measure given on Sn−1 (here (p, ω) is the usual parametrisation
of a hyperplane e: p is the distance of e from the origin O; ω ∈ Sn−1 is the direction
normal to e). Now supposing that m(dω) = h(ω)dω, we obtain

(1.4) d(x, 0) =

∫
Sn−1

|(x, ω)|m(dω) =

∫
Sn−1

|(x, ω)|h(ω)λn−1(dω).

W. Blaschke ([9], see also [17]) proved that if the even function d(x, 0) can be dif-
ferentiated enough times, then (1.4) has a unique continuous even solution that is not
necessarily positive. If h is a solution to (1.4), then we can define a translation invariant
measure dμ = h(ω)dω · dp in E

n that satisfies (1.2).
This solves Hilbert’s Fourth Problem in Rn, n ≥ 3, for metrics generated by a norm

(Minkowsky space). Thus: for every metric on Rn generated by a sufficiently smooth
norm there exists a translation invariant measure dμ = m(dω) · dp on En with even
alternating measure m on S

n−1 such that the metric is generated by (1.2) via Busemann’s
construction.

In the case of a general sufficiently smooth linearly additive metric, the situation is as
follows.

A. V. Pogorelov [14] considered the Finsler metrics on R
n, since a sufficiently smooth

linearly additive metric is a Finsler metric (see also [15]).
According to the definition of a Finsler metric on Rn, it is a continuous function

H : Rn × Rn → [0;∞) with the property that H(x, ·) is a norm on Rn for every x ∈ Rn.
Let μ be a locally finite alternating measure on E, which has density with respect to the
standard invariant measure (with respect to Euclidean motion, see [3])

(1.5) μ(de) = h(e)de = h(e) dp λn−1(dω),

where de is an element of the standard invariant measure. We consider the restriction of
h onto [x] as a function on the hemisphere. Then we extend this restriction to Sn−1 by
symmetry, since the direction completely determines the plane from [x]. Thus, on S

2 we
define the following function hx:

hx(ω) = h(ex,ω) for ω ∈ S
n−1,

where ex,ω ∈ [x] is the hyperplane containing x and normal to ω. Below, we call hx the
restriction of h to [x].

Theorem (Pogorelov’s Theorem [14]). Let H be a smooth linearly additive Finsler metric
on Rn (H : Rn × Rn → [0;∞)). Then there exists a unique locally finite alternating
measure μ on En, with continuous density, such that for x ∈ Rn

(1.6) H(x, ξ) =

∫
Sn−1

|(ω, ξ)|hx(ω)λn−1(dω), ξ ∈ S
n−1.
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Here, hx is the restriction of h onto [x], and dω denotes the surface Lebesgue measure
on Sn−1.

2. A description of continuous and linearly additive metrics

by means of straight lines

In this article, we propose a new approach to the description of continuous linearly
additive metrics on Rn. We denote the space of straight lines in Rn by Gn. We use
the usual parametrisation of straight lines γ = (P,Ω), where Ω is the direction of γ and
P is the point of intersection of γ with the hyperplane eO,Ω (passing through the origin
perpendicular to Ω). Let η be a translation invariant (invariant with respect to the group
of Euclidean motions in Rn) measure on Gn (assumed locally finite). It is known that η
can be decomposed up to a constant factor: there exists a finite even measure v on S

n−1

such that

η(dγ) = v(dΩ) · dP,
where dγ is an element of the invariant measure on G

n, and dP is an element of the
Lebesgue measure on eO,Ω (see [2]). Since (P,Ω) = (P,−Ω), we can assume that the
measure v is even (v(A) = v(−A) for the Borel set A ⊂ Sn−1).

Let s = [x; y] be a segment with endpoints x, y ∈ Rn, and ξ ∈ Sn−1 the direction of
s. Let C be a regular circular cylinder with axis s = [x; y] and base C — this is the
(n− 2)-dimensional ball Bn−2(r, ξ) with radius r and normal ξ ∈ Sn−1.

For η([C ]), where [C ] = {γ ∈ Gn : γ ∩ C �= ∅}, we have

(2.1) η([C ]) =

∫
[C ]

v(dΩ) dP = Vn−2(r)|x− y|
∫
Sn−1

sin(ξ̂,Ω)v(dΩ) + o(rn−2).

Here and below we denote the angle between the two directions ξ,Ω ∈ Sn−1 by (ξ̂,Ω),
the Euclidean distance between x, y ∈ R

n by |x− y|, and the (n− 2)-dimensional volume
Bn−2(r, ξ) by Vn−2(r).

We define

(2.2) d(x, y) = lim
r→0

η([C ])

rn−2
=

|x− y|π(n−2)/2

Γ(n2 )

∫
Sn−1

sin(ξ̂,Ω)v(dΩ)

for x, y ∈ Rn. It is known that

Vn−2(r) = Vn−2(Bn−2(r, ξ)) =
(r
√
π)n−2

Γ(n2 )
.

Theorem 1. Let η = v(dΩ) · dP be a translation invariant measure on G
n, and let

s = [x; y] be the segment with endpoints x, y ∈ Rn and direction ξ ∈ Sn−1. If we define d
by (2.2), then d is a continuous and linearly additive metric.

Proof. It follows from the definition of d that it is linearly additive (trivially true). The
triangle inequality follows from the fact that for each Ω ∈ Sn−1 the function

d(x, y) = |x− y| sin(ξ̂,Ω)

(where ξ ∈ S
n−1 is the direction of the segment [x; y]) is the length of the projection

of the segment [x; y] onto the hyperplane with normal Ω. We note also that integration
with respect to v preserves convexity. �

Now we consider the question: does this construct all continuous and linearly additive
metrics on Rn that are generated by a norm? In R2, the answer is yes (see [14], [1] and
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[4]). In Rn for n ≥ 3, our investigations lead us to the sine transform Q : C∞
c → C ∞

c ,
defined by the formula:

(2.3) Qf(ξ) =

∫
Sn−1

sin(ξ̂,Ω) f(Ω)λn−1(dΩ), for ξ ∈ S
n−1.

The sine transform plays an important role later on. Indeed, let ‖ · ‖ be a norm on Rn.
We suppose now that the linearly additive metric d(x, y) = ‖x− y‖ is generated by (2.2)
by means of η on Gn. We show below that η is unique. We also note that η is translation
invariant, since d is translation invariant (η(dγ) = v(dΩ) · dP = f(Ω)λn−1(dΩ) · dP ). We
have

(2.4) d(x, y) = d(x− y, 0) = |x− y| ·H(ξ),

whereH is the support function of the dual unit ball, and ξ is the direction of the segment
[y;x]. Comparing (2.2) and (2.4), we see that for the continuous linearly additive metric
d, generated by (2.2), we have

(2.5) H(ξ) =
π(n−2)/2

Γ(n2 )

∫
Sn−1

sin(ξ̂,Ω)f(Ω)λn−1(dΩ).

3. Inversion of the sine transform

The sine transform is invertible, which is equivalent to the following theorem.

Theorem 2. Suppose that an alternating measure v on Sn−1 satisfies the condition

(3.1)

∫
Sn−1

sin(ξ̂,Ω) v(dΩ) = 0

for any ξ ∈ Sn−1. Then v ≡ 0.

Proof. Let Yd(ξ) be a spherical function of order d. We multiply both sides of (3.1) by
Yd(ξ) and integrate. We have

(3.2)

∫
Sn−1

(∫
Sn−1

sin(ξ̂,Ω)Yd(ξ)λn−1(dξ)

)
v(dΩ) = 0.

It follows from the Funk–Hecke formula (see [11]) that

(3.3)

∫
Sn−1

sin(ξ̂,Ω)Yd(ξ)λn−1(dξ) = cdYd(Ω),

where cd depends only on d and cd �= 0 if d is even. Consequently, for all spherical
functions of order d we have

(3.4)

∫
Sn−1

Yd(Ω) v(dΩ) = 0.

This also holds if d is odd. Using the uniform approximation of a continuous function
by linear combinations of spherical functions on S

n−1, we obtain

(3.5)

∫
Sn−1

g(Ω) v(dΩ) = 0,

for any continuous g. Hence it follows that v ≡ 0. �

In [6], we found an inversion formula for the sine transform. In this article, we find
an inversion formula using the relation between the sine and cosine transforms.

We denote the spherical Radon transform (Funk transform) by R. It is defined by

(3.6) (RH)(ξ) =
1

σn−2

∫
Sξ

H(Ω)λn−2(dΩ), ξ ∈ S
n−1,
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where H is a function given on Sn−1. For n ≥ 3 the inversion formula for R was found by
Helgason in [13] (for n = 3, the inversion formula was given by Minkowsky and Blaschke
[9]; see also [10]). In [7], the generalised spherical Radon transform was considered and
an inversion formula found.

There exists the following connection between the sine and cosine transforms.

Theorem 3. Let Q : C∞
c → C∞

c be a sine transform and T : C∞
c → C∞

c be a cosine
transform. We have

(3.7) Q =
(n− 2)σn−2

2σn−3
RT.

Proof. For f ∈ C∞
c we have

(3.8) (RTf)(ξ) =
1

σn−2

∫
Sξ

( ∫
Sn−1

|〈ω,Ω〉|f(ω)λn−1(dω)

)
λn−2(dΩ).

Changing the order of integration in (3.8) (Fubini’s Theorem), we obtain

(3.9) (RTf)(ξ) =
1

σn−2

∫
Sn−1

( ∫
Sξ

|〈ω,Ω〉|λn−2(dΩ)

)
f(ω)λn−1(dω).

We use the spherical coordinates ω = (ν, φ), where ν = (ξ̂, ω) is the polar angle
measured from ξ (zenith direction), and φ ∈ Sξ. Applying the spherical cosine rule, we
find

(3.10) |〈ω,Ω〉| = |〈φ̂, ω〉|·|〈φ̂,Ω〉| = sin(ξ̂, ω) |〈φ̂,Ω〉|.
Substituting (3.10) into (3.9) and considering that for any φ ∈ S

n−2, as can easily be
calculated, ∫

Sn−2

| cos(φ̂,Ω)|λn−2(dΩ) =
2σn−3

n− 2
,

we obtain

(RTf)(ξ) =
1

σn−2

∫
Sn−1

sin(ξ̂, ω)

( ∫
Sξ

|〈φ̂,Ω〉|λn−2(dΩ)

)
f(ω)λn−1(dω)

=
2σn−3

σn−2(n− 2)

∫
Sn−1

sin(ξ̂, ω)f(ω)λn−1(dω) =
2σn−3

σn−2(n− 2)
(Qf)(ξ).(3.11)

�
We also use W to denote the transformation W : C ∞

c → C ∞
c , defined by

(3.12) W =
((n− 1) + Δ)

2σn−2
,

where Δ is the Laplace–Beltrami operator on S
n−1.

There exists a formula (linking the theory of Radon transforms and integral geometry),
connecting T and R [10]:

(3.13) WT = R.

It is known that R is invertible, therefore

(3.14) T−1 = WR−1.
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The following theorem gives an inversion formula for the sine transform.

Theorem 4. Let Q : C ∞
c → C ∞

c be the sine transform

(3.15) Qh(ξ) =

∫
Sn−1

sin(ξ̂,Ω)h(Ω)λn−1(dΩ), ξ ∈ S
n−1.

Then

(3.16) Q−1 =
2σn−3

(n− 2)σn−2
W R−2.

The proof of Theorem 4 follows directly from (3.7) and (3.16).
We note that there exists a sufficiently smooth even function H, defined on Sn−1 (such

that |x|H(ξ) is a norm, where ξ is the direction
−→
Ox), for which the solution (2.5) also

takes negative values (see [6]).
Thus, the following theorem is true.

Theorem 5. For each metric d (generated by a sufficiently smooth norm) on Rn, there
exists a translation invariant measure η = υ(dΩ)·dP on Gn with even alternating measure
υ on S

n−1 such that d is generated by means of (2.2).

Work on the case of general sufficiently smooth linearly additive metrics is underway.
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