SINGULAR OPERATORS FOR BEGINNERS

GRIGORI A. KARAGULYAN

Contents

1. Maximal operators 3
1.1. Definition of Hardy-Littlewood maximal operator and simple properties 3
1.2. A covering lemma 3
1.3. Weak- L^{1} and strong- L^{p} properties 4
1.4. Some other maximal operators 5
2. Sequences of general convolution operators 7
2.1. Convolution of two functions 7
2.2. Operators associated with an approximation of identity and initial convergence properties 8
2.3. Lemma-estimation by maximal function 10
2.4. Maximal convolution operators and basic properties 10
3. Almost everywhere convergence of sequences of general operators 12
3.1. A lemma on approximation of kernels 12
3.2. Almost everywhere simple convergence of sequences of general operators 13
3.3. Almost everywhere λ_{n}-convergence of sequences of general operators 14
4. Hilbert transform 15
4.1. Definition of Hilbert transform and Privalov-Zygmund theorem 15
4.2. $\quad L^{2}$-bound of H_{ε} 17
4.3. $f_{\lambda}^{ \pm}$functions 17
4.4. Some estimates of \bar{H}_{ε} operator 19
4.5. Weak- L^{1} and strong- L^{p} estimates of H_{ε} 20
5. Operator H^{*} 22
5.1. Oscillation lemma for H_{ε} 22
5.2. Weak- L^{1} and strong- L^{p} estimate of H^{*} 23

1. Maximal operators

1.1. Definition of Hardy-Littlewood maximal operator and simple properties.

 Denote by $L_{\text {loc }}^{1}(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which$$
\int_{a}^{b}|f|<\infty
$$

for any bounded interval $(a . b) \subset \mathbb{R}$. Given a function $f \in L_{l o c}(\mathbb{R})$ denote

$$
M f(x)=\sup _{I \ni x} \frac{1}{|I|} \int_{I}|f|,
$$

where sup is taken over the intervals $I=(a, b) \ni x$. The function $M f$ is said to be the Hardy-Littlewood maximal function of f (or just maximal operator). The following properties of the maximal operator are easy to check:

1) For any $\lambda>0$ and $f \in L_{\text {loc }}(\mathbb{R})$ the set $\{M f>\lambda\}$ is an open set.
2) $M f(x) \geq 0$ for any $f \in L_{l o c}(\mathbb{R})$ and $x \in \mathbb{R}$,
3) For any $f, g \in L_{l o c}(\mathbb{R})$ we have

$$
M(f+g)(x) \leq M f(x)+M g(x),
$$

4) $M(\lambda f)(x)=|\lambda| M f(x)$ for any $f \in L_{l o c}(\mathbb{R})$ and $\lambda \in \mathbb{R}$.
5) $\|M f\|_{\infty} \leq\|f\|_{\infty}$.

Property 1) follows from the continuity property of Lebesgue integral and it implies that $M f$ is a measurable function. The conditions 3) and 4) say that maximal function M defines a sublinear operator and by 5) it is of strong (∞, ∞) type. We shall see below that the maximal operator satisfies weak- L^{1} and strong- $L^{p}, 1<p \leq \infty$ bounds. We shall need the following
1.2. A covering lemma. For an in interval I and a number $r>0$ we denote by $r I$ the interval, which has the same center as I and $|r I|=r|I|$.
Lemma 1.1. If $E \subset \mathbb{R}$ is bounded and \mathcal{G} is a family of intervals with

$$
E \subset \bigcup_{I \in \mathcal{G}} I,
$$

then there exists a finite or infinite sequence of pairwise disjoint intervals $I_{k} \in \mathcal{G}$ such that

$$
\begin{equation*}
E \subset \bigcup_{k} 5 I_{k} \tag{1.1}
\end{equation*}
$$

Proof. Suppose we have $E \subset \Delta=[a, b]$. If there is an interval $I \in \mathcal{G}$ so that $I \cap[a, b] \neq \varnothing$ and $|I|>b-a$, then we have $E \subset B \subset 3 I$. Thus the desired sequence can be formed by a single element I. Hence we can suppose that any element $I \in \mathcal{G}$ satisfies the conditions $G \cap[a, b] \neq \varnothing$ and $|I| \leq b-a$. Therefore we get

$$
\bigcup_{G \in \mathcal{G}} G \subset 3 \Delta .
$$

Take I_{1} to be a ball from \mathcal{G} satisfying

$$
\left|I_{1}\right|>\frac{1}{2} \sup _{I \in \mathcal{G}}|I| .
$$

Then, suppose by induction we have already chosen elements I_{1}, \ldots, I_{k} from \mathcal{G}. Take $I_{k+1} \in \mathcal{G}$ disjoint with the intervals I_{1}, \ldots, I_{k} and satisfying

$$
\left|I_{k+1}\right|>\frac{1}{2} \sup _{I \in \mathcal{G}: I \cap I_{j}=\varnothing, j=1, \ldots, k}|I|
$$

If for some n we will not be able to determine I_{n+1} the process will stop and we will get a finite sequence $I_{1}, I_{2}, \ldots, I_{n}$. Otherwise our sequence will be infinite. We shall consider the infinite case of the sequence (the finite case can be done similarly). Since the balls I_{n} are pairwise disjoint and $I_{n} \subset 3 \Delta$, we have $\left|I_{n}\right| \rightarrow 0$. Take an arbitrary $I \in \mathcal{G}$ such that $I \neq I_{k}, k=1,2, \ldots$. Let m be the smallest integer such that

$$
|I|>\frac{1}{2}\left|I_{m+1}\right| .
$$

Observe that we have

$$
I \cap I_{j} \neq \varnothing
$$

for some of $1 \leq j \leq m$, since otherwise I had to be chosen instead of I_{m+1}. Besides, we have $|I| \leq 2\left|I_{j}\right|$, which implies $I \subset 5 I_{j}$. Since $I \in \mathcal{G}$ was taken arbitrarily, we get (1.1).

1.3. Weak- L^{1} and strong- L^{p} properties.

Theorem 1.2. The maximal operator (1.4) satisfies weak- L^{1} and strong- $L^{p}, 1<p \leq \infty$, inequalities:

$$
\begin{align*}
& |\{M(f)>\lambda\}| \leq \frac{c \cdot\|f\|_{1}}{\lambda} \tag{1.2}\\
& \|M(f)\|_{p} \leq c_{p}\|f\|_{p} \tag{1.3}
\end{align*}
$$

Proof. Denote

$$
E=\{x \in X: M f(x)>\lambda\}
$$

By the definition of the maximal function for any $x \in E$ there exists an interval $I(x) \ni x$ such that

$$
\frac{1}{|I(x)|} \int_{I(x)}|f|>\lambda
$$

We have $E=\cup_{x \in E} I(x)$. Given interval $\Delta=(-A, A)$ consider the collection of intervals $\mathcal{G}=\{I(x): x \in E \cap \Delta\}$. Applying Lemma 1.1, we find a sequence of pairwise disjoint subcollection $\left\{I_{k}\right\} \subset \mathcal{G}$ such that

$$
E \cap \Delta \subset \bigcup_{k} 5 I_{k}
$$

Thus we get

$$
|E \cap(-A, A)| \leq 5 \sum_{k}\left|I_{k}\right| \leq \frac{5}{\lambda} \sum_{k} \int_{I_{k}}|f(t)| d t \leq \frac{5}{\lambda} \int_{\mathbb{R}}|f(t)| d t .
$$

Since A can be taken arbitrarily big, we get

$$
|E|=|\{x \in X: M f(x)>\lambda\}| \lesssim \frac{1}{\lambda} \int_{\mathbb{R}}|f(t)| d t
$$

and so (1.2). The inequality (1.3) follows from the Marcinkiewicz interpolation theorem, since M satisfies weak- L^{1} and strong- L^{∞} inequalities.

Remark 1.1. The following example shows that the maximal operator does not satisfy strong- L^{1} inequality. For the function $f(x)=\mathbb{I}_{[0,1]}(x)$ we have

$$
M f(x)= \begin{cases}1 \text { if } & x \in[0,1], \\ \frac{1}{1-x} \text { if } & x<0, \\ \frac{1}{x} \text { if } & x>1,\end{cases}
$$

and so $f \in L^{1}$, but $M f \notin L^{1}$. Thus M is not of strong L^{1} type.
1.4. Some other maximal operators. Consider the following extension of the maximal operator. For $L_{l o c}^{r}(\mathbb{R})$ define

$$
\begin{equation*}
M_{r} f(x)=\sup _{I \ni x}\left(\frac{1}{|I|} \int_{I}|f(t)|^{r} d t\right)^{1 / r} \tag{1.4}
\end{equation*}
$$

Note that the case $r=1$ coincides with the Hardy-Littlewood maximal operator M and obviously we have

$$
M(f) \leq M_{r}(f)=\left(M\left(|f|^{r}\right)\right)^{1 / r}
$$

Thus Theorem 1.3 immediately yields the following.
Theorem 1.3. The maximal operator (1.4) satisfies weak- L^{r} and strong $L^{p}, r<p \leq \infty$, inequalities:

$$
\begin{aligned}
& \left|\left\{M_{r}(f)>\lambda\right\}\right| \leq \frac{c \cdot\|f\|_{r}^{r}}{\lambda^{r}} \\
& \left\|M_{r}(f)\right\|_{p} \leq c_{p}\|f\|_{p} .
\end{aligned}
$$

Now consider the operators

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f|, \quad M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f| .
$$

Obviously we have

$$
M^{ \pm} f(x) \leq M f(x)
$$

so they both satisfy the weak- L^{1} and strong- L^{p} inequalities for $1<p<\infty$., but the following assertion is common only for those operators.

Theorem 1.4. Let $f \in L^{1}(\mathbb{R})$ and $\lambda>0$. Then the set $G_{\lambda}=\left\{M^{+} f(x)>\lambda\right\}$ is either empty or

$$
\begin{equation*}
G_{\lambda}=\cup_{k}\left(a_{k}, b_{k}\right), \tag{1.5}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are pairwise disjoint intervals and

$$
\begin{equation*}
\int_{a_{k}}^{b_{k}}|f|=\lambda\left(b_{k}-a_{k}\right) \tag{1.6}
\end{equation*}
$$

The same statement is valid also for the operator M^{-}.
Proof. We will consider only the operator M^{+}, since for M^{-}it can be proved analogously. First of all observe that the continuity property of integral implies that the set $G_{\lambda}=$ $\left\{M^{+} f(x)>\lambda\right\}$ is open and has unique representation (1.5). The inequality

$$
\int_{a_{k}}^{b_{k}}|f|>\lambda\left(b_{k}-a_{k}\right)
$$

is not possible, since it implies

$$
M^{+}\left(a_{k}\right) \geq \frac{1}{b_{k}-a_{k}} \int_{a_{k}}^{b_{k}}|f|>\lambda
$$

and so $a_{k} \in G_{\lambda}$, which is not true. Now suppose to the contrary we have

$$
\int_{a_{k}}^{b_{k}}|f|<\lambda\left(b_{k}-a_{k}\right)
$$

for some I_{k}. Thus by continuity for some $a_{k}<a<b_{k}$ (close to a_{k}) we will have

$$
\begin{equation*}
\int_{a}^{b_{k}}|f|<\lambda\left(b_{k}-a\right) \tag{1.7}
\end{equation*}
$$

Since

$$
0 \leq \frac{1}{u-a} \int_{a}^{u}|f| \leq \frac{\|f\|_{1}}{u-a} \rightarrow 0 \text { as } u \rightarrow+\infty
$$

and $a \in G_{\lambda}$, the value of

$$
b=\sup \left\{u>a: \int_{a}^{u}|f|>\lambda(u-a)\right\}
$$

is finite and

$$
\begin{equation*}
\int_{a}^{b}|f|=\lambda(b-a) \tag{1.8}
\end{equation*}
$$

Inequality $b>b_{k}$ is not possible, since in that case from (1.7) and (1.8) one can get

$$
\begin{equation*}
\int_{b_{k}}^{b}|f|=\int_{a}^{b}|f|-\int_{a}^{b_{k}}|f|>\lambda(b-a)-\lambda\left(b_{k}-a\right)=\lambda\left(b-b_{k}\right), \tag{1.9}
\end{equation*}
$$

which means $b_{k} \in G_{\lambda}$ that is not true. If $b<b_{k}$, then we will have $b \in\left(a_{k}, b_{k}\right) \in G_{\lambda}$. So there is $b^{\prime}>b$ such that

$$
\begin{equation*}
\int_{b}^{b^{\prime}}|f|>\lambda\left(b^{\prime}-b\right) \tag{1.10}
\end{equation*}
$$

Likewise (1.9) from (1.8) and (1.10) we get

$$
\int_{a}^{b^{\prime}}|f|>\lambda\left(b^{\prime}-a\right)
$$

that is a contradiction by the definition of number b. Thus we conclude $b=b_{k}$, which is also not possible by (1.7) and (1.8).

2. Sequences of general convolution operators

2.1. Convolution of two functions.

Definition 2.1. The convolution of given functions $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$ is defined by

$$
(f * g)(x)=\int_{\mathbb{R}} f(x-t) g(t) d t=\int_{\mathbb{R}} f(t) g(x-t) d t
$$

Theorem 2.2. If $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R}), 1 \leq p<\infty$, then $(f * g)(x)$ exists almost everywhere and

$$
\begin{equation*}
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p} \tag{2.1}
\end{equation*}
$$

Proof. Without loss oof generality we can suppose that $f, g \geq 0$. Using the Fubini's theorem for positive functions (Tornelli theorem) for a given positive function $h \in L^{q}$ of norm one we obtain

$$
\begin{aligned}
\int_{\mathbb{R}}(f * g)(x) h(x) d x & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(t) g(x-t) d t \cdot h(x) d x \\
& =\int_{\mathbb{R}} f(t) \int_{\mathbb{R}} g(x-t) h(x) d x d t \\
& \leq \int_{\mathbb{R}} f(t)\|g\|_{p}\|h\|_{q} d t \\
& \leq\|f\|_{1}\|g\|_{p} .
\end{aligned}
$$

Theorem 2.3. For any functions $f, g \in L^{2}(\mathbb{R})$ we have

$$
\widehat{f \star g}=\hat{f} \cdot \hat{g}
$$

Proof. Given $a>0$ consider the functions $f_{a}=f \cdot \mathbb{I}_{(-a, a)}$ and $g_{a}=g \cdot \mathbb{I}_{(-a, a)}$. Clearly, $f_{a}, g_{a} \in$ $L^{1}(\mathbb{R})$. Then applying Fubini's theorem, it follows that

$$
\begin{aligned}
\left(\widehat{f_{a} \star g_{a}}\right)(x) & =\int_{\mathbb{R}} \int_{\mathbb{R}} f_{a}(u-t) g_{a}(t) d t \cdot e^{-i x u} d u \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f_{a}(u-t) g_{a}(t) \cdot e^{-i x u} d t d u \\
& =\int_{\mathbb{R}} g_{a}(t) e^{-i x t} \int_{\mathbb{R}} f_{a}(u-t) e^{-i x(u-t)} d u d t \\
& =\hat{f}_{a}(x) \cdot \hat{g}_{a}(x) .
\end{aligned}
$$

Letting $a \rightarrow \infty$ and applying the Plancherel theorem we complete the proof.
2.2. Operators associated with an approximation of identity and initial convergence properties. Given function $\phi \in L^{\infty}(\mathbb{R})$ we denote

$$
\phi^{*}(x)=\left\|\phi \cdot \mathbb{I}_{\{t:|t|>|x|\}}\right\|_{\infty} .
$$

One can easily to check that

- $\phi^{*}(x)$ is even function,
- $\phi^{*}(x)$ is increasing on $(-\infty, 0]$ (and decreasing on $[0, \infty)$),
- $|\phi(x)| \leq \phi^{*}(x)$.

Definition 2.4. A sequence of functions $\phi_{n} \in L_{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R}), n=1,2, \ldots$, is said to be approximation of identity if it satisfies the relations

1) $\int_{\mathbb{R}} \phi_{n} \rightarrow 1$ as $n \rightarrow \infty$,
2) $\sup _{n}\left\|\phi_{n}^{*}\right\|_{1}<\infty$,
3) $\int_{\delta}^{\infty} \phi_{n}^{*} \rightarrow 0$, as $n \rightarrow \infty$, for any $\delta>0$.

For any $f \in L^{p}(\mathbb{R}), 1 \leq p<\infty$ we denote

$$
\begin{equation*}
\Phi_{n} f(x)=\int_{\mathbb{R}} f(x-t) \phi_{n}(t) d t \tag{2.2}
\end{equation*}
$$

By Theorem 2.2 Φ_{n} defines a bounded linear operator on $L^{p}(\mathbb{R})$. Moreover,

$$
\left\|\Phi_{n}\right\|_{L^{p} \rightarrow L^{p}} \leq\left\|\phi_{n}\right\|_{1}<\infty .
$$

Theorem 2.5. Let ϕ_{n} be an approximation of identity, then the operators (2.2) satisfy the properties
(i) If $f \in C_{K}(\mathbb{R})$, then $\Phi_{n} f$ uniformly converges to f,
(ii) If $f \in L^{p}(\mathbb{R}), 1 \leq p<\infty$, then $\left\|\Phi_{n} f-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $\delta>0$. Using properties of approximation of identity, we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\int_{-\delta}^{\delta} \phi_{n}(t) d t-1\right| & =\limsup _{n \rightarrow \infty}\left|\int_{-\delta}^{\delta} \phi_{n}(t) d t-\int_{\mathbb{R}} \phi_{n}(t) d t\right| \\
& =\limsup _{n \rightarrow \infty}\left|\int_{|t|>\delta} \phi_{n}(t) d t\right| \\
& \leq \lim _{n \rightarrow \infty} \int_{|t|>\delta} \phi_{n}^{*}(t) d t=0
\end{aligned}
$$

Thus $\gamma_{n}=\int_{-\delta}^{\delta} \phi_{n}(t) d t-1 \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\begin{aligned}
(2 . \Phi)_{n} f(x)-f(x) & =\int_{\mathbb{R}} f(x-t) \phi_{n}(t) d t-f(x) \int_{-\delta}^{\delta} \phi_{n}(t) d t+f(x)\left(\int_{-\delta}^{\delta} \phi_{n}(t) d t-1\right) \\
& =\int_{-\delta}^{\delta}(f(x-t)-f(x)) \phi_{n}(t) d t+\int_{|t|>\delta} f(x-t) \phi_{n}(t) d t+\gamma_{n} f(x) \\
& =I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

From this we conclude

$$
\left|\Phi_{n} f(x)-f(x)\right| \leq \omega(\delta, f)\left\|\phi_{n}\right\|_{1}+\|f\|_{C} \int_{|t|>\delta}\left|\phi_{n}(t)\right| d t+\left|\gamma_{n}\right|\|f\|_{C}
$$

that immediately implies (i). To proof the second part of theorem we use again (2.3). Applying Hölder's inequality, we get

$$
\begin{aligned}
\left\|I_{1}\right\|_{p}^{p} & =\int_{\mathbb{R}}\left|\int_{-\delta}^{\delta}(f(x-t)-f(x)) \phi_{n}(t) d t\right|^{p} d x \\
& \leq \int_{\mathbb{R}}\left|\int_{-\delta}^{\delta}\right| f(x-t)-f(x) \|\left.\left.\phi_{n}(t)\right|^{1 / p}\left|\phi_{n}(t)\right|^{1 / q} d t\right|^{p} d x \\
& \leq\left(\int_{-\delta}^{\delta}\left|\phi_{n}(t)\right| d t\right)^{p-1} \int_{\mathbb{R}} \int_{-\delta}^{\delta}|f(x-t)-f(x)|^{p}\left|\phi_{n}(t)\right| d t d x \\
& =\left(\int_{-\delta}^{\delta}\left|\phi_{n}(t)\right| d t\right)^{p-1} \int_{-\delta}^{\delta}\left|\phi_{n}(t)\right| \int_{\mathbb{R}}|f(x-t)-f(x)|^{p} d x d t \\
& \leq\left(\omega_{p}(\delta, f)\right)^{p}\left(\int_{-\delta}^{\delta}\left|\phi_{n}\right|\right)^{p} \\
& \leq\left(\omega_{p}(\delta, f)\right)^{p} .
\end{aligned}
$$

Therefore we have $\left\|I_{1}\right\|_{p} \rightarrow 0$ as $\delta \rightarrow 0$. The integral I_{2} is the convolution of f and the function $\phi_{n} \cdot \mathbb{I}_{\{|t|>\delta\}}$. So applying convolution norm inequality (2.1) we obtain

$$
\left\|I_{2}\right\|_{p} \leq\|f\|_{p} \int_{|t|>\delta}\left|\phi_{n}\right| \leq\|f\|_{p} \int_{|t|>\delta} \phi_{n}^{*} \rightarrow 0 \text { as } n \rightarrow \infty
$$

The relation $\left\|I_{3}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$ is trivial. Thus we get

$$
\left\|\Phi_{n} f-f\right\|_{p} \rightarrow 0 \text { as } n \rightarrow \infty
$$

2.3. Lemma-estimation by maximal function.

Lemma 2.6. Let the positive function $\phi \in L_{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be increasing on $(-\infty, 0]$ and decreasing on $[0, \infty)$. Then for any $f \in L^{1}(\mathbb{R})$ it holds the inequality

$$
\begin{equation*}
\left|\int_{\mathbb{R}} f(t) \phi(t) d t\right| \leq\|\phi\|_{1} M f(0) \tag{2.4}
\end{equation*}
$$

where $M f(0)$ is the value of maximal function of f at 0 .
Proof. Given positive integer n consider the intervals $I_{k}=\left[a_{k}, b_{k}\right], k=1,2, \ldots, n-1$ where

$$
a_{k}=\inf \left\{x \leq 0: \phi(x) \geq \frac{k\|\phi\|_{\infty}}{n}\right\}, \quad b_{k}=\sup \left\{x \geq 0: \phi(x) \geq \frac{k\|\phi\|_{\infty}}{n}\right\}
$$

It is easy to see that $I_{1} \supset I_{2} \supset \ldots \supset I_{n-1} \ni 0$ and

$$
\phi_{n}(x)=\frac{1}{n} \sum_{k=1}^{n-1} \mathbb{I}_{I_{n}}(x) \leq \phi(x) \leq \phi_{n}(x)+\frac{1}{n}
$$

Thus we obtain

$$
\begin{aligned}
\left|\int_{\mathbb{R}} f(t) \phi(t) d t\right| & \leq \int_{\mathbb{R}}|f(t)| \phi(t) d t \leq \frac{1}{n} \sum_{k=1}^{n-1} \int_{I_{n}}|f(t)| d t+\frac{\|f\|_{1}}{n} \\
& =\frac{1}{n} \sum_{k=1}^{n-1}\left|I_{n}\right| \cdot \frac{1}{\left|I_{n}\right|} \int_{I_{n}}|f(t)| d t+\frac{\|f\|_{1}}{n} \\
& \leq M f(0) \cdot \frac{1}{n} \sum_{k=1}^{n-1}\left|I_{n}\right|+\frac{\|f\|_{1}}{n} \\
& =M f(0) \cdot \int_{\mathbb{R}} \phi_{n}(t) d t+\frac{\|f\|_{1}}{n} \\
& \leq M f(0)\|\phi\|_{1}+\frac{\|f\|_{1}}{n}
\end{aligned}
$$

Since n can be arbitrary large we get (2.4).
2.4. Maximal convolution operators and basic properties. Let ϕ_{n} be an Al sequence. Consider the operator

$$
\Phi f(x)=\sup _{n}\left|\Phi_{n} f(x)\right|
$$

where Φ_{n} are the operators in (2.2). One can easily see that Φ is a sublinear operator.

Theorem 2.7. The operator Φ is of weak- L^{1} and strong- L^{p} type for $1<p \leq \infty$. That is

$$
\begin{align*}
& |\{x \in \mathbb{R}: \Phi f(x)>\lambda\}| \leq \frac{c}{\lambda}\|f\|_{1} \\
& \|\Phi f\|_{p} \leq c_{p}\|f\|_{p} \tag{2.5}
\end{align*}
$$

Proof. From Lemma 2.6 and properties of approximation of identity it follows that

$$
\left|\Phi_{n} f(x)\right| \leq \int_{\mathbb{R}}\left|f(x-t)\left\|\phi_{n}(t)\left|d t \leq \int_{\mathbb{R}}\right| f(x-t) \mid \phi_{n}^{*}(t) d t \leq\right\| \phi_{n}^{*} \|_{1} M f(x)\right.
$$

and so we get

$$
\Phi f(x) \leq C \cdot M f(x)
$$

Since the maximal function M satisfies the weak L^{1}, so we have for Φ. On he other hand Φ satisfies also (∞, ∞) inequality, since for $f \in L^{\infty}$ we have

$$
\left|\Phi_{n} f(x)\right| \leq \int_{\mathbb{R}}\left|\Phi_{n}(t)\right||f(x-t)| d t \leq\|f\|_{\infty} \int_{\mathbb{R}}\left|\phi_{n}(t)\right| d t \leq C\|f\|_{\infty} .
$$

Applying Marcinkiewicz interpolation theorem we obtain also (2.5).
Corollary 2.8. If $f \in L^{p}(\mathbb{R}), 1 \leq p \leq \infty$, then $\Phi_{n} f(x) \rightarrow f(x)$ almost everywhere.
Proof. Approximating $f \in L^{p}(\mathbb{R})$ by a function $g \in C_{K}(\mathbb{R})$, for a given $\varepsilon>0$ we may have decomposition $f=g+h$ such that $\|h\|_{p}<\varepsilon$. Chose a number $\lambda>0$. Applying the first part of Theorem 2.5, we get $\Phi_{n} g(x) \rightarrow g(x)$ at any point x and so

$$
\begin{aligned}
E_{\lambda} & =\left\{x \in \mathbb{R}: \limsup _{n \rightarrow \infty}\left|\Phi_{n} f(x)-f(x)\right|>\lambda\right\} \\
& =\left\{x \in \mathbb{R}: \limsup _{n \rightarrow \infty}\left|\Phi_{n} h(x)-h(x)\right|>\lambda\right\} .
\end{aligned}
$$

According to Theorem 2.7 the operator Φ satisfies weak L^{p} inequality. Thus, applying also Chebyshev's inequality, in the case $1 \leq p<\infty$ we get

$$
\begin{aligned}
\left|E_{\lambda}\right| & \leq\left|\left\{x \in \mathbb{R}: \sup _{n}\left|\Phi_{n} h(x)\right|+|h(x)|>\lambda\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{R}: \sup _{n}\left|\Phi_{n} h(x)\right|>\lambda / 2\right\}\right|+|\{x \in \mathbb{R}:|h(x)|>\lambda / 2\}| \\
& \leq|\{x \in \mathbb{R}: \Phi h(x)>\lambda / 2\}|+\left(\frac{2}{\lambda}\right)^{p}\|h\|_{p}^{p} \\
& \leq c\left(\frac{2}{\lambda}\right)^{p}\|h\|_{p}^{p}+\left(\frac{2}{\lambda}\right)^{p}\|h\|_{p}^{p} \\
& \leq(c+1)\left(\frac{2}{\lambda}\right)^{p} \varepsilon^{p},
\end{aligned}
$$

that means $\left|E_{\lambda}\right|=0$ for any $\lambda>0$, since ε can be arbitrarily small. Thus we get $\Phi_{n} f(x) \rightarrow f(x)$ a.e.. Now suppose $p=\infty$. Take $f \in L^{\infty}(\mathbb{R})$ and denote $f_{a}=f \cdot \mathbb{I}_{(-a, a)}$, where $a>0$. Obviously, $f \in L^{1}(\mathbb{R})$ and so by the first part of the theorem we have
$\Phi_{n} f_{a}(x) \rightarrow f_{a}(x)$ a.e.. On the other hand if $x \in(-a, a)$, then $\delta=\min \{a-x, x+a\}>0$, $f(x)=f_{a}(x)$ and

$$
\begin{aligned}
\left|\Phi_{n} f(x)-\Phi_{n} f_{a}(x)\right| & =\left|\int_{|t| \geq a} \phi_{n}(x-t) f(t) d t\right| \\
& \leq\|f\|_{\infty} \int_{|t| \geq a}\left|\phi_{n}(x-t)\right| d t \\
& \leq\|f\|_{\infty} \int_{|t| \geq \delta}\left|\phi_{n}^{*}(t)\right| d t \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Hence for almost all $x \in(-a, a)$ we get

$$
\lim _{n \rightarrow \infty} \Phi_{n} f(x)=\lim _{n \rightarrow \infty} \Phi_{n} f_{a}(x)=f_{a}(x)=f(x)
$$

Since a is arbitrary, we conclude $\Phi_{n} f(x) \rightarrow f(x)$ a.e. on \mathbb{R}.

3. Almost everywhere convergence of sequences of general OPERATORS

3.1. A lemma on approximation of kernels. We denote by $B V(\mathbb{R})$ the right continuous functions of bounded variation on \mathbb{R}. We say that the given approximation of identity $\left\{\varphi_{n}(x)\right\}$ is regular if each $\varphi_{n}(x)$ is positive, decreasing on $[0, \infty]$ and increasing on $[-\infty, 0]$. In the regular case ϕ_{n} coincides with ϕ_{n}^{*} and for any $\delta>0$ we have

$$
\delta \cdot \phi_{n}(2 \delta) \leq \int_{\delta}^{2 \delta} \phi_{n} \rightarrow 0
$$

Thus we can conclude

$$
\begin{equation*}
\phi_{n}(x) \rightarrow 0 \text { whenever }|x| \neq 0 . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $\left\{\phi_{n}(x)\right\}$ be a regular Al. Then there exists a another AI of the form

$$
\psi_{n}(x)=c_{n} \sum_{k=1}^{m_{n}} \mathbb{I}_{\Delta_{k}^{(n)}}(x), \quad \Delta_{i}^{(n)}=\left[a_{i}^{(n)}, b_{i}^{(n)}\right)
$$

such that

1) $0 \in \bar{\Delta}_{m_{n}}^{(n)}, \Delta_{1}^{(n)} \supset \Delta_{2}^{(n)} \supset \ldots \Delta_{m_{n}}^{(n)},\left|\Delta_{1}^{(n)}\right| \rightarrow 0$ as $n \rightarrow \infty$,
2) $\gamma_{n}=\sup _{x \in \mathbb{R}}\left|\phi_{n}(x)-\psi_{n}(x)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. We claim there exists a sequence $\alpha_{n} \searrow 0$ such that

$$
\begin{aligned}
& \int_{|t|>\alpha_{n}} \phi_{n}(t) d t \rightarrow 0 \text { as } n \rightarrow \infty, \\
& \phi_{n}\left(\alpha_{n}\right)+\phi_{n}\left(-\alpha_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Using (3.1) and the property 3) of ϕ_{n}, we may fix a sequence of integers $1=N_{1}<N_{2}<$... such that

$$
\begin{gathered}
\int_{|t|>1 / k} \phi_{n}(t) d t<\frac{1}{k}, \quad n \geq N_{k} \\
\phi_{n}(1 / k)+\phi_{n}(-1 / k)<\frac{1}{k} .
\end{gathered}
$$

Then we define

$$
\alpha_{n}=\frac{1}{k} \text { if } N_{k} \leq n<N_{k+1} .
$$

Now take m_{n} arbitrarily satisfying $m_{n} \geq n \phi_{n}(0)$, and define $c_{n}=\phi_{n}(0) / m_{n}$. Set

$$
\begin{array}{r}
a_{k}^{(n)}=\inf \left\{-\alpha_{n} \leq x<0: \phi_{n}(x) \geq k c_{n}\right\} \\
b_{k}^{(n)}=\sup \left\{0<x \leq \alpha_{n}: \phi_{n}(x) \geq k c_{n}\right\}
\end{array}
$$

If $|x|>\alpha_{n}$, then we have $\psi_{n}(x)=0, \phi_{n}(x) \leq \max \left\{\phi_{n}\left(\alpha_{n}\right), \phi\left(-\alpha_{n}\right)\right\}$ and therefore we get

$$
\begin{equation*}
\left|\phi_{n}(x)-\psi_{n}(x)\right| \leq \max \left\{\phi_{n}\left(\alpha_{n}\right), \phi\left(-\alpha_{n}\right)\right\}, \quad|x|>\alpha_{n} . \tag{3.2}
\end{equation*}
$$

If $|x| \leq \alpha_{n}$, then we have $x \in \Delta_{k}^{(n)} \backslash \Delta_{k+1}^{(n)}$ for some $k=0,1, \ldots$ where $\Delta_{0}^{(n)}=\left[-\alpha_{n}, \alpha_{n}\right]$. This implies

$$
\psi_{n}(x)=k c_{n}, \quad k c_{n} \leq \phi_{n}(x)<(k+1) c_{n}
$$

and therefore $\left|\phi_{n}(x)-\psi_{n}(x)\right| \leq c_{n}$. This together with (3.2) gives us the condition 2) of lemma.

3.2. Almost everywhere simple convergence of sequences of general operators.

Theorem 3.2. If μ is a bounded generalized measure on \mathbb{R} (a function of bounded variation) and $\mu^{\prime}\left(x_{0}\right)$ exists, then $\Phi_{n}(x, d \mu) \rightarrow \mu^{\prime}\left(x_{0}\right)$ as $n \rightarrow \infty$.

Proof. We may suppose $x_{0}=0$. Let $\psi_{n}(x)$ be the sequence obtained from lemma. We have

$$
\int_{\mathbb{R}} \psi_{n}(t) d t=c_{n} \sum_{k=1}^{m_{n}}\left(b_{k}^{(n)}-a_{k}^{(n)}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Then we have

$$
\left|\Phi_{n}(0, d \mu)-\Psi_{n}(0, d \mu)\right| \leq \int_{\mathbb{R}}\left|\phi_{n}(t)-\psi_{n}(t)\right| d|\mu|(t) \leq \gamma_{n} \cdot\|\mu\| \rightarrow 0
$$

On the other hand

$$
\Psi_{n}(0, d \mu)=c_{n} \sum_{k=1}^{m_{n}}\left(\mu\left(b_{k}^{(n)}\right)-\mu\left(a_{k}^{(n)}\right)\right)=c_{n} \sum_{k=1}^{m_{n}}\left(b_{k}^{(n)}-a_{k}^{(n)}\right) \frac{\mu\left(b_{k}^{(n)}\right)-\mu\left(a_{k}^{(n)}\right)}{b_{k}^{(n)}-a_{k}^{(n)}}
$$

Since $\left|\Delta_{1}^{(n)}\right| \rightarrow 0$ we get

$$
\delta_{n}=\sup _{1 \leq k \leq m_{n}}\left|\frac{\mu\left(b_{k}^{(n)}\right)-\mu\left(a_{k}^{(n)}\right)}{b_{k}^{(n)}-a_{k}^{(n)}}-\mu^{\prime}(0)\right| \rightarrow 0 .
$$

Thus we get

$$
\Psi_{n}(0, d \mu)=c_{n} \mu^{\prime}(0) \sum_{k=1}^{m_{n}}\left(b_{k}^{(n)}-a_{k}^{(n)}\right)+o(1) \rightarrow \mu^{\prime}(0) .
$$

3.3. Almost everywhere λ_{n}-convergence of sequences of general operators.

Theorem 3.3. If μ is a bounded generalized measure on \mathbb{R} (a function of bounded variation) and $\mu^{\prime}\left(x_{0}\right)$ exists, then

$$
\sup _{|\theta| \leq \lambda_{n}}\left|\Phi_{n}(x+\theta, d \mu) \rightarrow \mu^{\prime}\left(x_{0}\right)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

where $\lambda_{n}=c / \phi_{n}(0)$.
Proof. It is enough to proof that for any sequence θ_{n} with $\left|\theta_{n}\right| \leq \lambda_{n}$ we have

$$
\lim _{n \rightarrow \infty} \Phi_{n}\left(x_{0}+\theta_{n}, d \mu\right)=\mu^{\prime}\left(x_{0}\right) .
$$

We may suppose $x_{0}=0$ and $\theta_{n} \geq 0$. So our claim is

$$
\int_{\mathbb{R}} \phi_{n}\left(\theta_{n}+t\right) d \mu(t) \rightarrow \mu^{\prime}(0)
$$

Introduce the kernels

$$
\begin{aligned}
& u_{n}(x)=\left\{\begin{array}{lll}
\phi_{n}(x), & \text { if } & x \notin\left[-\theta_{n}, 0\right], \\
\phi_{n}(0), & \text { if } & x \in\left[-\theta_{n}, 0\right],
\end{array}\right. \\
& v_{n}(x)=\left\{\begin{array}{rll}
0, & \text { if } & x \notin\left[-\theta_{n}, 0\right], \\
\phi_{n}(0)-\phi_{n}(x), & \text { if } & x \in\left[-\theta_{n}, 0\right],
\end{array}\right.
\end{aligned}
$$

It is clear $\phi_{n}\left(\theta_{n}+x\right)=u_{n}(x)-v_{n}(x)$. Observe that

$$
\left\|v_{n}\right\|_{1} \leq M, \quad\left\|\phi_{n}\right\|_{1} \leq\left\|u_{n}\right\|_{1} \leq M, \quad\left\|u_{n}\right\|_{1}-\left\|v_{n}\right\|_{1} \rightarrow 1 .
$$

Thus we get that the sequences

$$
U_{n}(x)=\frac{u_{n}(x)}{\left\|u_{n}\right\|}, \quad V_{n}(x)=\frac{v_{n}(x)}{\left\|v_{n}\right\|}
$$

form regular $A I$. Indeed take an arbitrary $\delta>0$. We will have $\theta_{n} \leq \delta$ for $n \geq N$. Hence for such n we obtain

$$
\int_{|t|>\delta} U_{n}(t) d t=\frac{1}{\left\|u_{n}\right\|_{1}} \int_{|t|>\delta} \phi_{n}(t) d t \leq \frac{1}{\left\|\phi_{n}\right\|_{1}} \int_{|t|>\delta} \phi_{n}(t) d t \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus, according to the previous theorem, we get

$$
\begin{aligned}
\int_{\mathbb{R}} \phi_{n}\left(\theta_{n}+t\right) d \mu(t) & =\left\|u_{n}\right\|_{1} \int_{\mathbb{R}} U_{n}(t) d \mu(t)-\left\|v_{n}\right\|_{1} \int_{\mathbb{R}} V_{n}(t) d \mu(t) \\
& =\left\|u_{n}\right\|_{1}\left(\mu^{\prime}(0)+o(1)\right)-\left\|v_{n}\right\|_{1}\left(\mu^{\prime}(0)+o(1)\right) \\
& =\left(\left\|u_{n}\right\|_{1}-\left\|v_{n}\right\|_{1}\right) \mu^{\prime}(0)+o(1) \rightarrow \mu^{\prime}(0) .
\end{aligned}
$$

4. Hilbert transform

4.1. Definition of Hilbert transform and Privalov-Zygmund theorem. Given $f \in$ $L^{p}(\mathbb{R}), 1 \leq p<\infty$, we denote

$$
\begin{equation*}
H_{\varepsilon} f(x)=\int_{|t|>\varepsilon} \frac{f(x-t)}{t} d t=\int_{\varepsilon}^{\infty} \frac{f(x-t)-f(x+t)}{t} d t . \tag{4.1}
\end{equation*}
$$

This integral can be considered as a convolution of f with the kernel function

$$
h_{\varepsilon}(x)=\frac{\mathbb{I}_{\{|t|>\varepsilon\}}(x)}{x} .
$$

Observe that $h_{\varepsilon} \in L^{q}(\mathbb{R})$ for any $1<q \leq \infty$. Indeed, $\left\|h_{\varepsilon}\right\|_{\infty}=\varepsilon^{-1}<\infty$, and if $1<q<\infty$, then

$$
\left\|h_{\varepsilon}\right\|_{q}^{q}=2 \int_{\varepsilon}^{\infty} \frac{d t}{t^{q}}=2 \varepsilon^{-q+1}<\infty
$$

Thus, by Hölder's inequality the integral (4.1) is well defined at any point $x \in \mathbb{R}$. We will study different convergence properties of $H_{\varepsilon} f(x)$ as $\varepsilon \rightarrow 0$. The limit function $H_{\varepsilon} f(x)$ will be denoted by $H f(x)$, which is said to be the Hilbert transform of f. Denote by $\Lambda_{\alpha}(\mathbb{R})$ the Lipschitz class of function, that are the functions satisfying $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ with constant $C>0$.

Theorem 4.1. If $f \in \Lambda_{\alpha}(\mathbb{R}) \cap C_{K}(\mathbb{R}), 0<\alpha<1$, then

1) $H_{\varepsilon} f(x)$ uniformly converges as $\varepsilon \rightarrow 0$,
2) $\left\|H_{\varepsilon}(f)-H(f)\right\|_{p} \rightarrow 0$ as $\varepsilon \rightarrow 0,1<p<\infty$,
3) $H(f) \in \Lambda_{\alpha}(\mathbb{R})$.

Proof. 1) For $0<\varepsilon_{1}<\varepsilon_{2}$ we have

$$
\begin{align*}
\left|H_{\varepsilon_{2}} f(x)-H_{\varepsilon_{1}} f(x)\right| & \leq \int_{\varepsilon_{2}>|t|>\varepsilon_{1}} \frac{|f(x-t)-f(x)|}{|t|} d t \tag{4.2}\\
& \leq 2 \int_{\varepsilon_{1}}^{\varepsilon_{2}} \frac{t^{\alpha}}{t} d t=\frac{2}{\alpha}\left(\left(\varepsilon_{2}\right)^{\alpha}-\left(\varepsilon_{1}\right)^{\alpha}\right) \rightarrow 0 .
\end{align*}
$$

as $\varepsilon_{2} \rightarrow 0$. Thus $H_{\varepsilon} f(x)$ uniformly converges and so $H f(x)$ is defined at any point $x \in \mathbb{R}$..
2) It is enough to show that $H_{\varepsilon} f \in L^{p}$ and the satisfactory of Cauchy principle. We can suppose,

$$
\begin{equation*}
\operatorname{supp} f \subset(-A, A) \tag{4.3}
\end{equation*}
$$

For $0<\varepsilon<1$ we have

$$
H_{\varepsilon} f(x)=\int_{|t|>\varepsilon} \frac{f(x-t)}{t} d t=\int_{|t| \geq 1} \frac{f(x-t)}{t} d t+\int_{1>|t|>\varepsilon} \frac{f(x-t)-f(x)}{t} d t .
$$

The first integral is the convolution of functions $f \in C_{K}(\mathbb{R}) \subset L^{1}$ and $h_{1}(x) \in L^{p}$. So by Theorem 2.2 it belongs to $L^{p}(\mathbb{R})$. Observe that the second integral as a function on x is supported in the interval $(-(A+1), A+1)$, since for $|t|<1$ and $|x| \geq A+1$ according to (4.3) we have $f(x-t)=f(x)=0$. Clearly, it is also a continuous function. Thus the second integral is from $L^{p}(\mathbb{R})$ too. Hence we get $H_{\varepsilon} f \in L^{p}(\mathbb{R})$. On the other hand for $0<\varepsilon_{1}<\varepsilon_{2}<1$ the integral

$$
H_{\varepsilon_{2}} f(x)-H_{\varepsilon_{1}} f(x)=\int_{\varepsilon_{2}>|t|>\varepsilon_{1}} \frac{f(x-t)-f(x)}{t} d t
$$

is a function supported in $(-(A+1), A+1)$, so by (4.2) we get

$$
\left\|H_{\varepsilon_{2}} f(x)-H_{\varepsilon_{1}} f\right\|_{p} \leq(2 A+2) \cdot \frac{2}{\alpha}\left(\left(\varepsilon_{2}\right)^{\alpha}-\left(\varepsilon_{1}\right)^{\alpha}\right) \rightarrow 0
$$

3) Given $h>0$, using oddness of the kernels K_{ε}, observe that

$$
\begin{aligned}
& H f(x)=\text { p.v. } \int_{\mathbb{R}} \frac{f(x-t)}{t} d t=\text { p.v. } \int_{\mathbb{R}} \frac{f(x-t)-f(x)}{t} d t \\
& \quad=\int_{|t|>2 h} \frac{f(x-t)-f(x)}{t} d t+\text { p.v. } \int_{|t| \leq 2 h} \frac{f(x-t)-f(x)}{t} d t \\
& H f(x+h)=\int_{|t|>2 h} \frac{f(x+h-t)-f(x)}{t} d t+\text { p.v. } \int_{|t| \leq 2 h} \frac{f(x+h-t)-f(x+h)}{t} d t
\end{aligned}
$$

For the second integrals in the representations of $H f(x)$ and $H f(x+h)$ we have

$$
\begin{aligned}
& \mid \text { p.v. } \int_{|t| \leq 2 h} \frac{f(x-t)-f(x)}{t} d t \left\lvert\, \leq 2 \int_{0}^{2 h} \frac{t^{\alpha}}{t} d t \leq C \cdot h^{\alpha}\right., \\
& \mid \text { p.v. } \int_{|t| \leq 2 h} \frac{f(x+h-t)-f(x+h)}{t} d t \left\lvert\, \leq 2 \int_{0}^{2 h} \frac{t^{\alpha}}{t} d t \leq C \cdot h^{\alpha} .\right.
\end{aligned}
$$

Thus we conclude

$$
|H f(x+h)-H f(x)| \leq\left|\int_{|t|>2 h} \frac{f(x+h-t)}{t} d t-\int_{|t|>2 h} \frac{f(x-t)}{t} d t\right|+O\left(h^{\alpha}\right)
$$

On the other hand we have

$$
\begin{aligned}
\mid \int_{|t|>2 h} & \left.\frac{f(x+h-t)}{t} d t-\int_{|t|>2 h} \frac{f(x-t)}{t} d t \right\rvert\, \\
& =\left|\int_{|t|>2 h} \frac{f(x+h-t)-f(x)}{t} d t-\int_{|t|>2 h} \frac{f(x-t)-f(x)}{t} d t\right| \\
& =\left|\int_{|t|>2 h} \frac{f(x-t)-f(x)}{t+h} d t-\int_{|t|>2 h} \frac{f(x-t)-f(x)}{t} d t\right|+O\left(h^{\alpha}\right) \\
& \leq\left|\int_{|t|>2 h} \frac{h|f(x-t)-f(x)|}{|t(t+h)|} d t\right|+O\left(h^{\alpha}\right) \\
& \leq C \cdot h \int_{2 h<|t|<\infty} \frac{t^{\alpha}}{t^{2}} d t \\
& \leq C \cdot h \cdot h^{\alpha-1}=C h^{\alpha} .
\end{aligned}
$$

Thus we get $|H f(x+h)-H f(x)| \leq C \cdot h^{\alpha}$, that means $H f(x) \in \Lambda_{\alpha}(\mathbb{R})$.

4.2. L^{2}-bound of H_{ε}.

Theorem 4.2. For any $f \in L^{2}(\mathbb{R})$ we have

$$
\begin{equation*}
\left\|H_{\varepsilon} f\right\| \leq c\|f\|_{2} \tag{4.4}
\end{equation*}
$$

where c is an absolute constant.
Proof. Since $C_{K}(\mathbb{R})$ is a dense subset of $L^{1}(\mathbb{R})$, without loss of generality we can suppose that $f \in C_{K}(\mathbb{R})$ and so the integral $H_{\varepsilon} f(x)$ is defined for all $x \in \mathbb{R}$. Also we have

$$
\begin{aligned}
\hat{h}_{\varepsilon}(x) & =\int_{\mathbb{R}} h_{\varepsilon}(t) e^{-i x t} d t=\int_{|t|>\varepsilon} \frac{e^{-i x t}}{t} d t \\
& =2 \int_{\varepsilon}^{\infty} \frac{\sin x t}{t} d t \\
& =2 \operatorname{sign} x \int_{\varepsilon|x|}^{\infty} \frac{\sin t}{t} d t
\end{aligned}
$$

that implies $\left\|\hat{h}_{\varepsilon}\right\|_{\infty}<\infty$. On the other hand applying Theorem 2.3, we have

$$
\left\|H_{\varepsilon} f\right\|_{2}=\left\|\widehat{H_{\varepsilon}} f\right\|_{2}=\left\|\hat{f} \hat{f}_{\varepsilon}\right\|_{2} \leq\left\|h_{\varepsilon}\right\|_{\infty}\|f\|_{2} .
$$

Thus (4.4) is proved.
4.3. $f_{\lambda}^{ \pm}$functions.

Lemma 4.3. Let functions $f, g \in L^{\infty}[a, b]$ satisfy the relation

$$
\int_{a}^{x} f(t) d t \geq \int_{a}^{x} g(t) d t, \quad a<x \leq b
$$

and it holds equality if $x=b$. Then for any increasing function $h(t)$ on $[a, b]$ we have the inequality

$$
\begin{equation*}
\int_{a}^{b} f(t) h(t) d t \leq \int_{a}^{b} g(t) h(t) d t \tag{4.5}
\end{equation*}
$$

Proof. Denote

$$
R(x)=\int_{a}^{x} r(t) d t, \text { where } r(t)=f(t)-g(t)
$$

By the conditions of lemma it follows that $R(x) \geq 0$ and $R(b)=R(a)=0$. Besides we have $R^{\prime}(x)=r(x)$ a.e.. Thus the integration by part implies

$$
\begin{align*}
\int_{a}^{b} f(t) h(t) d t-\int_{a}^{b} g(t) h(t) d t & =\int_{a}^{x} r(t) h(t) d t \tag{4.6}\\
& =R(b) h(b)-R(a) h(a)-\int_{a}^{b} R(t) d h(t) \\
& =-\int_{a}^{b} R(t) d h(t)
\end{align*}
$$

Since $R(t) \geq 0$ and $h(t)$ is increasing, the right hand side of (4.6) is non-negative and we get (4.5).

Let $f \in L^{1}(\mathbb{R})$ be a positive. Applying Theorem 1.4, we have

$$
\begin{aligned}
& G_{\lambda}^{+}=\left\{M^{+} f(x)>\lambda\right\}=\cup_{k}\left(a_{k}^{+}, b_{k}^{+}\right) \\
& G_{\lambda}^{-}=\left\{M^{-} f(x)>\lambda\right\}=\cup_{k}\left(a_{k}^{-}, b_{k}^{-}\right)
\end{aligned}
$$

where the intervals $\left(a_{k}^{ \pm}, b_{k}^{ \pm}\right)$satisfy (1.6). Define two functions

$$
f_{\lambda}^{ \pm}(x)=\left\{\begin{array}{lll}
\lambda & \text { if } & x \in G_{\lambda}^{ \pm} \\
f(x) & \text { if } & x \in \mathbb{R} \backslash G_{\lambda}^{ \pm}
\end{array}\right.
$$

Lemma 4.4. There hold the relations

$$
\begin{align*}
& \int_{\mathbb{R}} f_{\lambda}^{ \pm}(x) d x=\int_{\mathbb{R}} f(x) d x \tag{4.7}\\
& 0 \leq f_{\lambda}^{ \pm}(x) \leq \lambda \text { a.e. } \tag{4.8}
\end{align*}
$$

Proof. Indeed, applying (1.6), we obtain

$$
\begin{aligned}
R \int_{\mathbb{R}} f & =\int_{\mathbb{R} \backslash G^{ \pm}} f+\int_{G^{ \pm}} f=\int_{\mathbb{R} \backslash G^{ \pm}} f+\sum_{k} \int_{a_{k}^{ \pm}}^{b_{k}^{ \pm}} f \\
& =\int_{\mathbb{R} \backslash G^{ \pm}} f+\sum_{k} \lambda\left(b_{k}^{ \pm}-a_{k}^{ \pm}\right) \\
& =\int_{\mathbb{R} \backslash G^{ \pm}} f_{\lambda}^{ \pm}+\sum_{k} \int_{a_{k}^{ \pm}}^{b_{k}^{ \pm}} f_{\lambda}^{ \pm} \\
& =\int_{\mathbb{R}} f_{\lambda}^{ \pm}(x) d x
\end{aligned}
$$

and (4.7) follows. To show (4.8) take $x \in \mathbb{R}$. If $x \in G_{\lambda}^{ \pm}$, then $f_{\lambda}^{ \pm}(x)=\lambda$ and (4.8) is immediate. Take a point $x \in \mathbb{R} \backslash G_{\lambda}^{ \pm}$and suppose that x is Lebesgue point for f. According to the definition of the set $G^{ \pm}$we have

$$
f(x)=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f \leq \lambda .
$$

Since a.e. point satisfies Lebesgue property we get (4.8).
4.4. Some estimates of \bar{H}_{ε} operator. Define the modification of kernel h_{ε} by

$$
\begin{aligned}
\bar{h}_{\varepsilon}(t) & =\frac{\mathbb{I}_{\{|t|>\varepsilon\}}(t)}{x}+\operatorname{sign} x \cdot \frac{\mathbb{I}_{\{|t| \leq \varepsilon\}}(t)}{\varepsilon} \\
& =h_{\varepsilon}(t)+\frac{\mathbb{I}_{\{0 \leq t \leq \varepsilon\}}(t)}{\varepsilon}-\frac{\mathbb{I}_{\{-\varepsilon \leq t<0\}}(t)}{\varepsilon}
\end{aligned}
$$

and corresponding convolution operator

$$
\bar{H}_{\varepsilon} f(x)=H_{\varepsilon} f(x)+\frac{1}{\varepsilon} \int_{x}^{x+\varepsilon} f-\frac{1}{\varepsilon} \int_{x-\varepsilon}^{x} f .
$$

This relation obviously implies

$$
\begin{align*}
& \left|\bar{H}_{\varepsilon} f(x)-H_{\varepsilon} f(x)\right| \leq M f(x), \tag{4.9}\\
& \lim _{h \rightarrow 0} \bar{H}_{\varepsilon} f(x)=\lim _{h \rightarrow 0} H_{\varepsilon} f(x) \text { a.e. } \tag{4.10}
\end{align*}
$$

where $M f(x)$ is the maximal function of f and (4.10) holds at any Lebesgue point. Relations (4.9) and (4.10) show that the operators H_{ε} and \bar{H}_{ε} have common boundedness and convergence properties and it follows from estimates of maximal operator (see Theorem 1.2).

Lemma 4.5. For any function $f \in L^{1}, f \geq 0$, we have

$$
\begin{array}{ll}
\bar{H}_{\varepsilon} f(x) \geq \bar{H}_{\varepsilon} f_{\lambda}^{+}(x), & x \in \mathbb{R} \backslash G_{\lambda}^{+}, \\
\bar{H}_{\varepsilon} f(x) \leq \bar{H}_{\varepsilon} f_{\lambda}^{-}(x), & x \in \mathbb{R} \backslash G_{\lambda}^{-} . \tag{4.11}
\end{array}
$$

Proof. We shall prove the first inequality. Since f and f_{λ}^{+}coincide on $\mathbb{R} \backslash G_{\lambda}^{+}$, it is enough to prove

$$
D=\int_{a}^{b} h_{\varepsilon}(x-t) f(t) d t-\int_{a}^{b} h_{\varepsilon}(x-t) f_{\lambda}^{+}(t) d t \geq 0
$$

where (a, b) is one of the intervals $\left(a_{k}^{+}, b_{k}^{+}\right)$. Since $a \notin G_{\lambda}^{+}$, we have

$$
\int_{a}^{x} f \leq \lambda(x-a)=\int_{a}^{x} f^{+} \text {for any } x>a
$$

This together with (1.6), implies that the functions f and f^{+}satisfy the condition of Lemma 4.3. On the other hand the function $h(t)=h_{\varepsilon}(x-t)$ is increasing on (a, b) as a function on t for a fixed $x \in \mathbb{R} \backslash G_{\lambda}^{+}$. Thus, from Lemma 4.3 we conclude

$$
\bar{H}_{\varepsilon} f(x)=\int_{a}^{b} f(t) h(t) d t \geq \int_{a}^{b} f^{+}(t) h(t) d t=\bar{H}_{\varepsilon} f_{\lambda}^{+}(x)
$$

To prove (4.11) we suppose now (a, b) is one of the intervals $\left(a_{k}^{-}, b_{k}^{-}\right)$. Using the relation $b \notin G_{\lambda}^{-}$, get the reverse inequality

$$
\begin{aligned}
\int_{a}^{x} f=\int_{a}^{b} f-\int_{x}^{b} f & \geq \int_{a}^{b} f-\lambda(b-x) \\
& =\lambda(b-a)-\lambda(b-x)=\lambda(x-a)=\int_{a}^{x} f^{-}
\end{aligned}
$$

Likewise, applying Lemma 4.3, we will get (4.11).

4.5. Weak- L^{1} and strong- L^{p} estimates of H_{ε}.

Theorem 4.6. For any $\varepsilon>0$ the operator H_{ε} satisfies weak- L^{1} bound. Namely,

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}:\left|H_{\varepsilon} f(x)\right|>\lambda\right\}\right| \leq c \cdot \frac{\|f\|_{1}}{\lambda}, \quad \lambda>0 \tag{4.12}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Proof. According to (4.9), we can consider \bar{H}_{ε} instead of operator H_{ε}. From Lemma 4.3 it follows that

$$
\bar{H}_{\varepsilon} f(x) \leq \bar{H}_{\varepsilon} f_{\lambda}^{+}(x) \text { whenever } x \in \mathbb{R} \backslash G_{\lambda}^{+}
$$

this implies

$$
\left|\left\{x \in \mathbb{R}: \bar{H}_{\varepsilon} f(x)>\lambda\right\}\right| \leq\left|G_{\lambda}^{+}\right|+\left|\left\{x \in \mathbb{R} \backslash G_{\lambda}^{+}: \bar{H}_{\varepsilon} f_{\lambda}^{+}(x)>\lambda\right\}\right|
$$

On the other hand using L^{2} boundedness of H_{ε} (see (4.4)) and so \bar{H}_{ε} along with (4.7) and (4.8), we get

$$
\begin{aligned}
\left|\left\{x \in \mathbb{R} \backslash G_{\lambda}^{+}: \bar{H}_{\varepsilon} f_{\lambda}^{+}(x)>\lambda\right\}\right| & \leq\left|\left\{x \in \mathbb{R}:\left|\bar{H}_{\varepsilon} f_{\lambda}^{+}(x)\right|>\lambda\right\}\right| \\
& \leq \frac{\left\|\bar{H}_{\varepsilon}\left(f_{\lambda}^{+}\right)\right\|_{2}^{2}}{\lambda^{2}} \lesssim \frac{\left\|f_{\lambda}^{+}\right\|_{2}^{2}}{\lambda^{2}} \\
& =\frac{1}{\lambda^{2}} \int_{\mathbb{R}}\left|f_{\lambda}^{+}\right|^{2} \leq \frac{1}{\lambda} \int_{\mathbb{R}}\left|f_{\lambda}^{+}\right|=\frac{\|f\|_{1}}{\lambda} .
\end{aligned}
$$

Thus we get

$$
\left|\left\{x \in \mathbb{R}: \bar{H}_{\varepsilon} f(x)>\lambda\right\}\right| \lesssim \frac{\|f\|_{1}}{\lambda} .
$$

Similarly we can estimate $\left|\left\{x \in \mathbb{R}: \bar{H}_{\varepsilon} f(x)<-\lambda\right\}\right|$ that completes the proof of theorems.

Theorem 4.7. For any $1<p<\infty$ and $f \in L^{p}(\mathbb{R})$ we have

$$
\begin{equation*}
\left\|H_{\varepsilon}(f)\right\|_{p} \leq c_{p}\|f\|_{p} \tag{4.13}
\end{equation*}
$$

Proof. Since we already know that H_{ε} satisfies weak- L^{1} and strong L^{2}-inequalities with constants independent of ε, from Marzinkiewicz interpolation theorem it follows (4.13) in the case $1<p \leq 2$. Now suppose $p>2$. Chose functions $f, g \in C_{K}(\mathbb{R})$. Observe that the function $h_{\varepsilon}(x-t) g(x) f(t)$ of two variables is integrable on \mathbb{R} and so we can write

$$
\begin{aligned}
\left|\int_{\mathbb{R}} H_{\varepsilon} f(x) \cdot g(x) d x\right| & =\left|\int_{\mathbb{R}}\left(\int_{\mathbb{R}} h_{\varepsilon}(x-t) f(t) d t\right) g(x) d x\right| \\
& =\left|\int_{\mathbb{R}}\left(\int_{\mathbb{R}} h_{\varepsilon}(x-t) g(x) d x\right) f(t) d t\right| \\
& \leq\left\|H_{\varepsilon} g\right\|_{q} \cdot\|f\|_{p} \\
& \leq\|g\|_{q} \cdot\|f\|_{p} .
\end{aligned}
$$

This implies (4.13) for the functions from $C_{K}(\mathbb{R})$. Since $C_{K}(\mathbb{R})$ is dense in $L^{p}(\mathbb{R})$, we obtain (4.13) for arbitrary $f \in L^{p}(\mathbb{R})$,

Corollary 4.8. 1) If $f \in L^{1}$, then $H_{\varepsilon} f$ converges to $H f$ in measure,
2) If $f \in L^{p}, 1<p<\infty$, then $\left\|H_{\varepsilon} f-H f\right\|_{p} \rightarrow 0$.

Proof. 1) Any $f \in L^{1}$ can be written in the form $f \in g+r$, where $g \in \Lambda_{1 / 2}(\mathbb{R}) \cap C_{K}(\mathbb{R})$ and $\|r\|_{1}<\delta$. The applying (4.12), for $\lambda>0$ we obtain

$$
\begin{align*}
& \lim _{\varepsilon, \varepsilon^{\prime} \rightarrow 0}\left|\left\{\left|H_{\varepsilon} f(x)-H_{\varepsilon^{\prime}} f(x)\right|>\lambda\right\}\right| \tag{4.14}\\
& \quad=\lim _{\varepsilon \rightarrow 0}\left|\left\{\left|H_{\varepsilon} r(x)-H_{\varepsilon^{\prime}} r(x)\right|>\lambda\right\}\right| \lesssim \frac{\|r\|_{1}}{\lambda}<\frac{\delta}{\lambda} .
\end{align*}
$$

Since δ can be arbitrary the left side of (4.14) is zero. This implies the convergence in measure of $H_{\varepsilon} f(x)$ and the limit as we know must be denoted by $H f(x)$.
2) This part of the theorem can be proved by the same approximation argument.

Taking limit in (4.12) and (4.13) as $\varepsilon \rightarrow 0$, one can deduce the following
Corollary 4.9. The operator H satisfies weak- L^{1} and strong- L^{p} inequalities if $1<p<\infty$.

5. Operator H^{*}

5.1. Oscillation lemma for H_{ε}. Consider the operator

$$
H^{*} f(x)=\sup _{\varepsilon>0}\left|H_{\varepsilon} f(x)\right|
$$

Lemma 5.1. If $x \cdot x^{\prime}>0$, then

$$
\begin{equation*}
\left|\bar{h}_{\varepsilon}(x)-\bar{h}_{\varepsilon}\left(x^{\prime}\right)\right| \leq \frac{\left|x-x^{\prime}\right|}{|x| \cdot\left|x^{\prime}\right|} \tag{5.1}
\end{equation*}
$$

Proof. We can consider only the case $x, x^{\prime}>0$. If $x, x^{\prime}>\varepsilon$, then $\bar{h}_{\varepsilon}(x)=1 / x$ and $\bar{h}_{\varepsilon}\left(x^{\prime}\right)=1 / x^{\prime}$ and we will obviously have equality in (5.1). If $0<x, x^{\prime} \leq \varepsilon$, then $\bar{h}_{\varepsilon}(x)=$ $\bar{h}_{\varepsilon}\left(x^{\prime}\right)=1 / \varepsilon$ and (5.1) trivially follows. Now consider the last case $0<x \leq \varepsilon<x^{\prime}$. So we have

$$
\left|\bar{h}_{\varepsilon}(x)-\bar{h}_{\varepsilon}\left(x^{\prime}\right)\right|=\left|\frac{1}{\varepsilon}-\frac{1}{x^{\prime}}\right|=\frac{x^{\prime}-\varepsilon}{\varepsilon \cdot x^{\prime}} \leq \frac{x^{\prime}-x}{x \cdot x^{\prime}}
$$

and (5.1) follows.
Lemma 5.2. Let $I \subset \mathbb{R}$ be an interval. Then for any function $f \in L^{p}(\mathbb{R})$, satisfying $\operatorname{supp} f \subset \mathbb{R} \backslash 3 I$, it holds the inequality

$$
\begin{equation*}
\left|H_{\varepsilon} f(x)-H_{\varepsilon} f\left(x^{\prime}\right)\right| \lesssim M_{I, p}(f), \quad x, x^{\prime} \in I \tag{5.2}
\end{equation*}
$$

where

$$
M_{I, p}(f)=\sup _{J \supset I}\left(\frac{1}{|J|} \int_{J}|f|^{p}\right)^{1 / p}
$$

Proof. From (4.9) it follows that

$$
\begin{aligned}
\left|H_{\varepsilon} f(x)-H_{\varepsilon} f\left(x^{\prime}\right)\right| & \leq\left|\bar{H}_{\varepsilon} f(x)-\bar{H}_{\varepsilon} f\left(x^{\prime}\right)\right|+M f(x)+M f\left(x^{\prime}\right) \\
& \leq\left|\bar{H}_{\varepsilon} f(x)-\bar{H}_{\varepsilon} f\left(x^{\prime}\right)\right|+M f(x)+M f\left(x^{\prime}\right) \\
& \leq\left|\bar{H}_{\varepsilon} f(x)-\bar{H}_{\varepsilon} f\left(x^{\prime}\right)\right|+M_{p} f(x)+M_{p} f\left(x^{\prime}\right) \\
& \leq\left|\bar{H}_{\varepsilon} f(x)-\bar{H}_{\varepsilon} f\left(x^{\prime}\right)\right|+2 M_{I, p} f(x)
\end{aligned}
$$

so it is enough to prove (5.2) for the operator \bar{H}_{ε}. If $I=(c-\delta, c+\delta), x, x^{\prime} \in I$ and $t \in \mathbb{R} \backslash(3 I)$, then on can check

$$
|t-x| \geq|t-c| / 2, \quad\left|t-x^{\prime}\right| \geq|t-c| / 2
$$

Then, applying Lemma 5.1, we obtain

$$
\left|h_{\varepsilon}(x-t)-h_{\varepsilon}\left(x^{\prime}-t\right)\right|=\frac{\left|x-x^{\prime}\right|}{|t-x| \cdot\left|t-x^{\prime}\right|} \leq \frac{4|I|}{|t-c|^{2}}
$$

Thus we conclude

$$
\begin{align*}
\left|H_{\varepsilon} f(x)-H_{\varepsilon} f\left(x^{\prime}\right)\right| & \leq \int_{\mathbb{R} \backslash(3 I)}|f(t)|\left|h_{\varepsilon}(x-t)-h_{\varepsilon}\left(x^{\prime}-t\right)\right| d t \tag{5.3}\\
& \leq|I| \int_{\mathbb{R} \backslash(3 I)} \frac{|f(t)|}{|t-c|^{2}} d t \\
& \leq 3 \delta \int_{|t|>3 \delta} \frac{|f(c-t)|}{|t|^{2}} d t \\
& \leq \int_{\mathbb{R}}|f(c-t)| \phi(t) d t,
\end{align*}
$$

where

$$
\phi(t)=3 \delta \min \left\{\delta^{-2}, t^{-2}\right\} .
$$

Notice that

$$
\|\phi\|_{1}=18 \delta^{2} \cdot \delta^{-2}+6 \delta \int_{t>3 \delta} \frac{d t}{t^{2}}=20
$$

Thus, applying Lemma 2.6, from (5.3) we obtain

$$
\left|H_{\varepsilon} f(x)-H_{\varepsilon} f\left(x^{\prime}\right)\right| \leq 20 M f(c) \leq 20 M_{p} f(c) \leq 20 M_{I, p}(f)
$$

completing the proof of lemma.
5.2. Weak- L^{1} and strong- L^{p} estimate of H^{*}.

Theorem 5.3. The operator H^{*} satisfies weak- L^{1} and strong L^{p} inequalities for $1<p<$ ∞.

Proof. First we shall prove that H^{*} satisfies weak- L^{p} inequality for any $1 \leq p<\infty$. Suppose $f \in L^{p}(\mathbb{R})$. Given $\lambda>0$ and $A>0$ consider the set

$$
E=E_{\lambda, A}=\left\{x \in(-A, A): H^{*} f(x)>\lambda\right\}
$$

For any $x \in E$ there is $\varepsilon(x)>0$ such that

$$
\begin{equation*}
\left|H_{\varepsilon(x)}(f)(x)\right|>\lambda . \tag{5.4}
\end{equation*}
$$

Denote $I(x)=(x-\varepsilon(x), x+\varepsilon(x))$ and $J(x)=\frac{1}{5} I(x)$. We have $E \subset \cup_{x \in E} J(x)$. Applying covering Lemma 1.1, we find a sequence $x_{k} \in E$ such that the balls $\left\{J_{k}=J\left(x_{k}\right)\right\}$ are pairwise disjoint and

$$
E \subset \bigcup_{k} I_{k}, \text { where } I_{k}=I\left(x_{k}\right)=5 J_{k}
$$

According to Lemma 5.2, we have

$$
\left|H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)\left(x_{k}\right)-H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)(x)\right| \leq C \cdot M_{J_{k}, p}(f), \quad x \in J_{k}
$$

Thus, one can easily conclude from (5.4) that

$$
\begin{align*}
\left|H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)(x)\right| \geq \mid & H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)\left(x_{k}\right) \mid \tag{5.5}\\
& \quad-\left|H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)\left(x_{k}\right)-H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)(x)\right| \\
\geq \lambda & -C \cdot M_{J_{k}, p}(f), \quad x \in J_{k} .
\end{align*}
$$

For the constant

$$
\beta=10^{1 / p}\|H\|_{L^{p} \rightarrow L^{p, \infty}}
$$

we define

$$
\begin{equation*}
\tilde{J}_{k}=\left\{x \in J_{k}:\left|H\left(f \cdot \mathbb{I}_{I_{k}}\right)(x)\right| \leq \beta \cdot M_{J_{k}, p}(f)\right\} . \tag{5.6}
\end{equation*}
$$

Using the weak- L^{p} inequality for the operator H, we can write

$$
\begin{aligned}
\left|J_{k} \backslash \tilde{J}_{k}\right| & =\left|\left\{x \in J_{k}:\left|H\left(f \cdot \mathbb{I}_{I_{k}}\right)(x)\right|>\beta \cdot M_{J_{k}, p}(f)\right\}\right| \\
& \leq \frac{\|H\|_{L^{r} \rightarrow L^{p, \infty}}^{p}}{\left.\beta^{p} \cdot\left(M_{J_{k}, p}(f)\right)^{p}\right\}}\left\|f \cdot \mathbb{I}_{I_{k}}\right\|_{p}^{p} \\
& \leq \frac{\|H\|_{L^{r} \rightarrow L^{p, \infty}}^{p}}{\beta^{p} \cdot \frac{1}{\left|I_{k}\right|} \int_{I_{k}}|f|^{p}} \int_{I_{k}}|f|^{p} \\
& =\frac{\left|I_{k}\right|}{10}=\frac{\left|J_{k}\right|}{2}
\end{aligned}
$$

and so we have

$$
\begin{equation*}
\left|\tilde{J}_{k}\right| \geq\left|J_{k}\right|-\left|J_{k} \backslash \tilde{J}_{k}\right| \geq \frac{1}{2}\left|J_{k}\right|=\frac{1}{10}\left|I_{k}\right| . \tag{5.7}
\end{equation*}
$$

Consider the constant

$$
\delta=\frac{1}{2(C+\beta)}
$$

If

$$
x \in \tilde{J}_{k} \backslash\left\{M_{p} f(x)>\delta \lambda\right\}
$$

then, using subadditivity of H together with relations (5.6), (5.5), we obtain

$$
\begin{aligned}
|H f(x)| & \geq\left|H\left(f \cdot \mathbb{I}_{\mathbb{R} \backslash I_{k}}\right)(x)\right|-\left|H\left(f \cdot \mathbb{I}_{I_{k}}\right)(x)\right| \\
& \geq \lambda-C \cdot M_{J_{k}, p}(f)-\beta \cdot M_{J_{k}, p}(f) \\
& \geq \lambda-(C+\beta) \cdot M_{p} f(x) \\
& \geq \lambda-(C+\beta) \delta \lambda \\
& =\lambda / 2 .
\end{aligned}
$$

Hence we conclude

$$
\bigcup_{k} \tilde{J}_{k} \subset\left\{M_{p} f(x)>\delta \lambda\right\} \bigcup\{|H f(x)|>\lambda / 2\} .
$$

Combining this with (5.7) and the weak- L^{p} boundedness of operators M_{p} and H, we obtain

$$
\begin{aligned}
\left|E_{\lambda, A}\right| & \leq \sum_{k}\left|I_{k}\right| \leq 10 \sum_{k}\left|\tilde{J}_{k}\right| \\
& \leq 10(|\{M f(x)>\delta \lambda\}|+|\{|H f(x)|>\lambda / 2\}|) \\
& \leq \frac{\|f\|_{p}^{p}}{\lambda^{p}} .
\end{aligned}
$$

Since the estimate does not depend on A, we obtain

$$
\left\{x \in \mathbb{R}: H^{*} f(x)>\lambda\right\} \lesssim \frac{\|f\|_{p}^{p}}{\lambda^{p}}
$$

that is the weak- L^{p} inequality of H^{*}. To show the strong- L^{p} estimate for $1<p<\infty$ set $p_{1}=(p+1) /<p<p_{2}=p+1$. We have already proved that H^{*} satisfies weak $L^{p_{1}}$ and weak- $L^{p_{2}}$ inequalities. By Marcinkiewicz interpolation theorem so we obtain strong- L^{p} inequality H^{*}. Theorem is proved.

Corollary 5.4. If $f \in L^{p}(\mathbb{R})$, then $H_{\varepsilon} f(x)$ converges to $H f(x)$ almost everywhere.
Proof. Fix a $\lambda>0$. For any $\delta>0$ we can find a function $g \in \Lambda_{1 / 2}(\mathbb{R}) \cap C_{K}(\mathbb{R})$ such that $\|r\|_{1}<\delta$, where $r=f-g$. According to Theorem $4.1 H_{\varepsilon} g(x) \rightarrow H g(x)$ a.e.. Denote

$$
E_{\lambda}=\left\{x \in \mathbb{R}: \limsup _{\varepsilon \rightarrow 0}\left|H_{\varepsilon} f(x)-H f(x)\right|>\lambda\right\} .
$$

Thus, applying weak $-L^{p}$ bound of operator H^{*}, we obtain

$$
\begin{aligned}
\left|E_{\lambda}\right| & =\left|\left\{x \in \mathbb{R}: \limsup _{\varepsilon \rightarrow 0}\left|H_{\varepsilon} r(x)-H r(x)\right|>\lambda\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{R}: 2 H^{*} r(x)>\lambda\right\}\right| \\
& \lesssim \frac{\|r\|_{1}}{\lambda} \leq \frac{\delta}{\lambda} .
\end{aligned}
$$

Since $\delta>0$ can be arbitrary small we obtain $\left|E_{\lambda}\right|=0$ for any $\lambda>0$ that means

$$
\lim _{\varepsilon \rightarrow 0}\left|H_{\varepsilon} f(x)-H f(x)\right|=0 \text { a.e. . }
$$

This completes the proof.

