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Abstract 
Efficiently storing storms of data to preserve their utility is a challenging data science problem in 
many technology applications such as management of cloud computing infrastructures. The 
problem is information-theoretic in nature. We consider various compression approaches (which 
are based on Machine Learning) to time series (metric) data measured from IT or cloud 
computing resources (virtual machine, host, application server, etc.) while monitoring those 
distributed systems. The main idea is to apply time series quantization and then compress the 
data with elimination of sequential duplications of values. 

 
 

Introduction 
Reliable management of modern cloud infrastructures and applications are increasingly relying on 

monitoring of massive volumes of time series data related to every aspect of the data center and storing 
them in specific data structures. This leads to a quite large storage consumption problem if considering also 
a vast number of self-generated time series needed for achieving the management goals. Commonly, it 
requires terabytes of storage space for archiving months/years of monitored data from IT 
resources/objects, each with hundreds/thousands of parameters (measured as individual time series 
metrics). We need a procedure to optimize data storage and information retrieval processes, especially for 
users/customers who need to store years of data using “realistic” storage space and disk I/O utilization 
requirements. Direct implementation of well-known compression methods will not solve the problem as 
some strict practical limitations exist:  

a) Maintaining the common “time stamp - data value” structure of time series. Hence, we can’t use, 
for example, vocabulary-based techniques for lossless compression or approximations, 
interpolations, and transformations for lossy compression; 

b) Although, the storage space and I/O minimization have the highest priority, in general, a 
compromise between those minimizations and time of compression-decompression, CPU, Memory 
utilizations is a challenge. Hence, archiving approaches and approaches with heavy decompression 
are unacceptable.  

We suggest a generic approach in line with the above-mentioned limitations – quantization of time 
series (lossy operation) and elimination of data value repetitions (lossless operation). This approach would 
be effective if the quantized time series is a low-variability data with big number of sequential data value 
repetitions. Quantization of time series is performed subject to distortion criteria imposed by users and 
preserving the main information content “enough” for effective management of the system. Distorted time 
series data can still be used for performing some analytical tasks such as outlier detection of new 
observations.  

Below we discuss three different Machine Learning approaches (see [1,2]), targeting distinct use cases 
and complexity vs accuracy trade-offs. Algorithm A describes the process of quantization that maximizes 



the compression rate or minimizes the loss function. Algorithm B performs quantization with distortion 
depending on the data point importance – with lower distortion for important patterns and higher for the 
remaining. Algorithm C describes ideas for multi-variate time series with application of clustering methods. 
Related researches (for instance, [3]) in the domain of time series compression propose spline 
approximation-based algorithms. Our prior and related works include papers [4]-[8] linking also to relevant 
information-theoretic concepts.  

 
Algorithm A 

Optimal Quantization subject to Fidelity and Compression Rate 
Under this scenario, the range of time series data is partitioned according to a set of quantiles. The 

quantized time series data is obtained from the original metric by substituting its values with the nearest 
quantiles. The quantized time series data is then compressed by removing sequential duplicate values. 
More specifically, quantization is performed by partitioning the metric range according to a selected 
number 𝑛 of quantiles denoted by 𝑞1, … , 𝑞𝑛. The set of quantiles {𝑞𝑖}𝑖=1

𝑛  divides the data range of time 
series data into 𝑛 + 1 groups of data points based on their values. Each group contains almost the same 
number of data points. 

Let 𝑥𝑘 = 𝑥(𝑡𝑘), 𝑘 = 1, … , 𝑁, be data points of a time series. Denote 𝑋 = {𝑥𝑘}𝑘=1
𝑁 . And let 𝑥𝑘

𝑞
=

𝑥𝑞(𝑡𝑘), 𝑘 = 1, … , 𝑁, be the nearest quantiles of the metric values corresponding to time stamps 𝑡𝑘. The 

sequence of quantized time series is represented by 𝑋𝑞 = {𝑥𝑘
𝑞

}
𝑘=1

𝑁
.     

Accuracy of this quantization can be measured, for instance, by ℓ1-error (loss function) 

 𝑙1 =
1

𝑁
∑ |𝑥𝑘 − 𝑥𝑘

𝑞
|𝑁

𝑘=1 .  

Compression of the quantized metric is then performed by elimination of sequential repetitions, or 

consecutive duplications, of quantized data points 𝑥𝑘
𝑞

 from the quantized data set 𝑋𝑞. Hence, we get a 

loosely compressed metric 𝑥𝑘
𝑐 = 𝑥𝑐(𝑡𝑘), 𝑘 = 1, … , 𝑀, where 𝑀 ≤ 𝑁. Denote 𝑋𝑐 = {𝑥𝑘

𝑐}𝑘=1
𝑀 .  

The compression rate is given by  

𝐶𝑅 = 100
𝑁−𝑀

𝑁
. 

The number of quantiles, 𝑛, is ideally selected to minimize the loss function and to maximize the 
compression rate. 

However, simultaneous minimization of the loss function and maximization of the compression rate are 
contradicting operations.  

Therefore, we consider two optimization set-ups. In the first set-up, the user requirement on the quality 
of compressed data is controlled by an upper bound (∆) on the loss function (LF), while the objective is to 
maximize the compression rate: 

 
𝐶𝑅 → 𝑚𝑎𝑥  

𝐿𝐹 ≤ ∆. 
(1) 

According to the second optimization setting, the user is interested in at least 𝑟% of storage reduction 
subject to minimum loss: 

 
𝐶𝑅 ≥ 𝑟 
𝐿𝐹 → 𝑚𝑖𝑛. 

(2) 

Optimization problems in (1) and (2) may result in different optimal number of quantiles n to work with.   
Figures 1 and 2 consider a specific infrastructure health metric and its quantization with four quantiles. 

Here, 𝑛 = 4, 𝑞1 = 25 (0.06-th quantile), 𝑞2 = 33 (0.2-th quantile), 𝑞3 = 73 (0.38-th quantile),  𝑞4 = 78 
(0.66-th quantile), ℓ1/𝑚𝑒𝑎𝑛(𝑑𝑎𝑡𝑎) = 0.026 and 𝐶𝑅 = 98.6%. 

 



 
Fig. 1. Red solid lines show the quantiles which minimize the ℓ1 error. 

 

 
Fig. 2. Original (black solid) and quantized (red dashed) time series for n = 4, where the corresponding 

quantiles minimize the ℓ1 error. 

 
Algorithm B 

Compression based on Data Importance Patterns 
Algorithm A quantizes the time series subject to a distortion measure. Assume that the data values in 

the metric are associated with different degrees of “importance” (can be treated based on a cost function). 
For example, data points from cluster “A” have “high importance”, values from cluster “B” have “moderate 
importance”, and values from cluster “C” have “low importance”. Then, the compression is performed 
linked to the importance cost of the cluster. For example, we can apply lossless compression for the most 
important cluster “A” and lossy compression or lower accuracy compression for “B” and “C”.  

In general, importance of data points relates to behavioral patterns of time series data and can be 
different while working with performance, capacity, or configuration metrics. For example, in case of 
performance metrics, the importance of a data point relates to its “participation” in an anomaly process. 
For identifying a performance anomaly, dynamic or hard thresholding (see [9]-[11]) techniques can be 
applied. Data points that violate thresholds should be more important than data points within thresholds. 
Hence, while compressing historical data with known anomaly patterns, it is natural to preserve those 
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anomalies (outliers) and largely compress/reduce within-thresholds data points by acceptable low 
accuracy. 

Now, assume that 𝐻 and 𝐿 are upper and lower thresholds, respectively. Our compression approach is 
summarized in the following 5 steps: 

Step 1. Determine the points satisfying the condition 𝑥𝑘 > 𝐻 and store them without distortion with 
their corresponding time stamps. 

Step 2.  Determine the points satisfying the condition 𝑥𝑘 < 𝐿 and store them without distortion with 
their corresponding time stamps; 

Step 3. According to the required accuracy (say, user defined), determine the value of parameter 𝑛 
indicating the number of slices the interval [𝐿, 𝐻] should be divided into by the following straight lines: 

𝑐𝑘 = 𝐿 +
𝐻−𝐿

𝑛
𝑘, 𝑘 = 0, … , 𝑛. 

Step 4. Determine the points in the intervals 𝐼𝑘 = [𝑐𝑘 , 𝑐𝑘+1), 𝑘 = 0, … , 𝑛 − 2, 𝐼𝑛−1 = [𝑐𝑛−1, 𝑐𝑛], and 
calculate the median, the average or any other reasonable statistical measure for each group of data points 
within 𝐼𝑘. Denote those measures by 𝑚0, … , 𝑚𝑛−1. If a data point belongs to the 𝐼𝑗 interval, then change 

its value to 𝑚𝑗. This results in a quantized time series with distorted in-bound and exact out-bound data 

points;  
Step 5. Eliminate data value duplications with the corresponding time stamps. This results in a 

compressed time series. More duplications imply higher compression rates. 
Let 𝑣𝑘 = 𝑥𝑘+1 − 𝑥𝑘 , 𝑘 = 1, … , 𝑁 − 1, be the corresponding variability metric and V= {𝑣𝑘}. We define 

variability measure (VarM) of a time series as a percentage of jumps in 𝑋  

 𝑉𝑎𝑟𝑀 = 100
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑛 − 𝑍𝑒𝑟𝑜 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑉 + 1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑋
  

𝑉𝑎𝑟𝑀 = 0% characterizes constant time series 𝑋 with 𝑥𝑘 ≡ 𝑐. Conventionally, if 𝑉𝑎𝑟𝑀 ≤ 50%, we deal 
with a low-variability metric, otherwise it is a high-variability metric. 

𝑉𝑎𝑟𝑀 can be determined both for original and compressed time series, 𝑉𝑎𝑟𝑀(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙) and 
𝑉𝑎𝑟𝑀(𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑), respectively. 𝑉𝑎𝑟𝑀(𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑) characterizes the compression rate (CR) of the 
above described algorithm defined as 𝐶𝑅 = 100 − 𝑉𝑎𝑟𝑀(𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑). 

We see that the efficiency of our approach is strictly relates to the variability of the quantized time 
series. Of course, this approach can be applied immediately to a time series without quantization, but it 
will lead to poor results for high-variability metrics.  

Figures 3 and 4 show the compression process of a high-variability time series (𝑉𝑎𝑟𝑀 = 99.4% ) while 
dividing within Dynamic Thresholds (DT – the typical time-varying ranges of time series, see [10]) area into 
𝑛 = 2 equal parts. In this case, the quantized time series is a low-variability data with 𝑉𝑎𝑟𝑀 = 33.2%. 
After elimination of duplications we get compression rate  𝐶𝑅 = 66.8% and  ℓ1 = 0.08.  

Now we describe the compression process for an entire database containing 86725 time series (metrics) 
from 309 different objects (VMs). Each of those time series have 1000-9300 data points. We found that 
63.3% of those metrics are low-variability and 36.6% are high-variability (see Fig. 5). 

Fig. 6 shows compression rates of high-variability data when 𝑛 = 10. Compression rates  of low-
variability metrics range from 50% to 100%  and are mostly concentarted around 100%. Fig. 7 demonstrates 
relative (divided over the averages) ℓ1-errors of quantization of high-variability time series. They are 
concentrated around 0.02. Similar errors of low-variability metrics are ranging from 0 to 0.04 but mostly 
are concentrated around 0.  

Fig. 8 indicates average compression rates of different metric categories vs different number of within-
DT segments. We see that compression rates of high-variability metrics are very sensitive to parameter 𝑛 
and relatively acceptable values of 𝑛 are 𝑛 = 1,2,3.  



Fig. 9 graphs the average errors for different metric categories vs different number of within-DT 
segments. Overall, the trade-off between compression rate and error of quantization is achieved when 𝑛 =
1,2,3. 

 

 
Fig. 3. Original high-variability time series with upper and lower dynamic thresholds (green solid lines). 

Red points show the values of the quantized time series. 

 
 

 
Fig. 4. Original high-variability time series (black solid) and quantized low-variability time series (red 

dashed). 

 

M
et

ri
c 

V
al

u
e 

Time 

M
et

ri
c 

V
al

u
e 

Time 

Original 

Compressed with n=2 



 
Fig. 5. Variability measures for different time series. 

 

 
Fig. 6. Compression rates for high-variability metrics when 𝑛 = 10. 

 

 
Fig. 7. Relative ℓ1-errors after quantization for high-variability metrics when 𝑛 = 10. 

 

Metric Index 

V
ar

M
 

Metric Index 

C
o

m
p

re
ss

io
n

 R
at

e 

Metric Index 

Er
ro

r 



 
Fig. 8. Average compression rates for different metrics categories vs different number of within-DT 

segments. 

 

 
Fig. 9. Average errors for different metric categories vs different number of within DT segments. 

 

Algorithm C  
Multidimensional Data 

Time series metrics can be aggregated into a multi-dimensional representation to analyze their trade-
off behavior using machine learning/clustering. In other words, the values of 𝑛 different metrics at time 
stamp  𝑡: 𝑚(𝑡) ≡ (𝑚1(𝑡), 𝑚2(𝑡), … , 𝑚𝑛(𝑡)) ∈ 𝑅𝑛+1, make a point 𝑚(𝑡) in (𝑛 + 1)-dimensional space, 
where one of the axes is the time.  

In many cases, the time can be excluded from the multi-dimensional representation making a point 𝑚𝑘 

in 𝑛-dimensional space 𝑚 = {𝑚𝑘}𝑘=1
𝑁 , 𝑚𝑘 = (𝑚1,𝑘 , 𝑚2,𝑘, … , 𝑚𝑛,𝑘) ∈ 𝑅𝑛. We want to evaluate the 

historically typical trade-off between those metrics by analyzing the above-mentioned vectors. This leads 
to application of machine learning techniques of clustering ([12,13]) to identify typical spaces 𝑚(𝑡) or 𝑚 
stays within.  

How to store the high volumes of historical multidimensional data in a reduced way that it still contains 
underlying utility or “important patterns”? In particular, how to optimally compress the above-mentioned 
multi-variate time series data subject to a required fidelity measure 𝑑?  
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Such a goal statement implies an optimization problem of finding the best "∆-coverage” of the data set 
according to the fidelity or distortion measure 𝑑. This coverage is defined by a subset of vectors  

 𝑚𝑘 = {𝑚1,𝑘, 𝑚2,𝑘, … , 𝑚𝑛,𝑘}, 𝑘 = 1, … , 𝐾  

such that for every other 𝑚𝑘 from the data set there is a point  𝑚𝑖0
, 1 ≤ 𝑖0 ≤ 𝐾 satisfying the condition 

𝑑(𝑚𝑘 , 𝑚𝑖0
) ≤ ∆. 

The ∆-coverage with size 𝐾 is called optimal if there is no other coverage of lesser size. In an 
implementation, 𝑑 can be the Euclidean distance together with the 𝐾-means clustering approach: 

1) to find the 𝐾 centroids of the data set; 
2) verify if the distortion requirement ∆ is met for all clustered points; 
3) if it is not met, increase 𝐾 by 1 and repeat the procedure until it is satisfied. 

As soon as the final centroids are found and the optimal coverage is achieved, our data reduction coding 
procedure collapses all within-cluster data points into corresponding centroids, so we store only those 
centroids and thus preserve the required fidelity in the data representation.  

This reduced data set can be still used to perform streaming compression of newly arrived observations 
into one of the closest centroids (𝑘-nearest neighbor logic) subject to distortion level. If that is not possible, 
then compose a new centroid and proceed further.    

Above described procedure might lead to an unacceptable big value for 𝐾 in case of some outliers in 
multi-dimensional data. We consider an outlier-Δ-coverage assuming to preserve outliers exactly and apply 
optimal  Δ-coverage for the remaining data points. This will help to achieve the same distortion with lesser 
number of clusters or better accuracy with the same coverage. 

We selected two metrics from our private environment. One is “Badge-Health-Classic” taken as the first 
component of 𝑚𝑘 and the other is “CPU-0-Ready-Summation” taken as the second component (see Fig. 
10). Then we performed 𝐾-means clustering with different 𝐾 ≥ 1 number of clusters. Assume that 𝑐𝑗 =

(𝑐𝑗
1, 𝑐𝑗

2) is the 𝑗-th cluster centroid. If a point (𝑥𝑘 , 𝑦𝑘) belongs to the 𝑗-th cluster, we encode its value as  

(𝑐𝑗
1, 𝑐𝑗

2). Later, for each 𝐾, we calculate ℓ𝑚𝑎𝑥 -error (see Fig. 11). Formal definitions are as follows. Let 

𝑚𝑘 = (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, … , 𝑁, and distances are measured as follows: 

𝑑1(𝑚(1), 𝑚(2)) = max
𝑘

((𝑥𝑘
(1)

− 𝑥𝑘
(2)

)
2

+ (𝑦𝑘
(1)

− 𝑦𝑘
(2)

)
2

)
1/2

   

or 𝑑2(𝑚(1), 𝑚(2)) = mean
𝑘

((𝑥𝑘
(1)

− 𝑥𝑘
(2)

)
2

+ (𝑦𝑘
(1)

− 𝑦𝑘
(2)

)
2

)
1/2

, where 𝑚𝑘
(𝑠)

= (𝑥𝑘
(𝑠)

, 𝑦𝑘
(𝑠)

) , 𝑠 = 1,2. It is 

natural to use relative measures, the results for different metrics can be compared easily. If 𝑚𝑘
(1)

 is the 

original data and 𝑚𝑘
(2)

 is its quantized version, then  

ℓ𝑚𝑎𝑥 =
𝑑1(𝑚(1), 𝑚(2))

‖𝑚𝑘
(1)

‖
𝑚𝑎𝑥

= 𝑑1(𝑚(1), 𝑚(2))/ max
𝑘

((𝑥𝑘
(1)

)
2

+ (𝑦𝑘
(1)

))

1/2

 

or 

ℓ2 =
𝑑1(𝑚(1), 𝑚(2))

‖𝑚𝑘
(1)

‖
ℓ2

= 𝑑1(𝑚(1), 𝑚(2))/ mean
𝑘

((𝑥𝑘
(1)

)
2

+ (𝑦𝑘
(1)

))

1/2

. 

It is interesting that in case of ℓ𝑚𝑎𝑥-error, the impact of number of clusters is significant only for 𝐾 = 6. 
This is due to some outliers that we see in the data which are far from 2 dominating dense regions. Figures 
12 and 13 show the results of K-means clustering when 𝐾 = 2 and 𝐾 = 6. Comparison of those figures 
explains the jump in ℓ𝑚𝑎𝑥 for 𝐾 = 6 where one of the clusters contains only 4 points (visually perceived as 
outliers). This can be a useful procedure for outlier detection – determine the clusters with small 
percentage of points and define those points as outliers. If the outliers are known, then we can preserve 



them exactly and encode the remaining normal points by the given Δ-accuracy thus concluding the idea of 
outlier-Δ-coverage. 

 
Fig. 10. Original 2D-data that we use for experiments. 

 

 
Fig. 11.  ℓmax error for different number of clusters while applying K-means clustering for optimal 

coverage. 

 

 
Fig. 12. Clustering of data in Fig. 10 by means of K-means when K = 2. 
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Fig. 13. Clustering of data in Fig. 10 by means of K-means when K = 6. 

 
In Figures 14 and 15, we consider another approach for outlier detection by exploring a within-cluster 

variability and by defining a normal shift from the cluster centroids. For each 𝑗-th cluster we define a radius 

𝑅𝑗 of normality from the centroid 𝑐𝑗 = (𝑐𝑗
1, 𝑐𝑗

2)  as follows:  

 𝑅𝑗 = 3 ∗ max
𝑘

((𝑥𝑘 − 𝑐𝑗
1)

2
+ (𝑦𝑘 − 𝑐𝑗

2)
2

)
1/2

  

where the number 3 is a parameter value and the point (𝑥𝑘 , 𝑦𝑘) belongs to the 𝑗-th cluster. If a point 𝑚𝑘 
belongs to the 𝑗-th cluster and its distance from the cluster centroid 𝑐𝑗 is less than or equal to 𝑅𝑗 then we 

encode it as 𝑐𝑗. If a point lays outside of all normalcy circles, we preserve its exact value without encoding.  

By changing the number of clusters, we can try to find a minimal (optimal) coverage satisfying the required 
accuracy.  

Fig. 16 shows the values of ℓ𝑚𝑎𝑥 for different values of 𝐾 while constructing the outlier-optimal 
coverages by the described procedure. Although for small values of 𝐾 we managed to decrease the errors, 
for larger values the impact of outliers is still present. Our final recommendation will be combination of 
both approaches – first, elimination of clusters with small number of points as outliers, and second, 
calculation of within-cluster variability only for the big ones. 

 

 
Fig. 14. Result of the 𝐾-means clustering with 𝐾 = 2 with the corresponding normalcy circles. 
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Fig. 15. Result of the 𝐾-means clustering with 𝐾 = 4 with the corresponding normalcy circles. 

 

 
Fig. 16. ℓmax -errors for different values of 𝐾 while constructing the outlier-optimal-coverage by 

means of 𝐾-means clustering. 
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