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alerting system for abnormality detection via comparison
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procedure for determination of the normalcy bounds. The
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1
DATA-AGNOSTIC ANOMALY DETECTION

TECHNICAL FIELD

The present disclosure is directed to electronic data ana-
lyzing systems and, in particular, to computational methods
and systems for detection of anomalies in data produced by
any complex system.

BACKGROUND

With the advent of increased computing power and data
storage, the development of computational tools to study
ever increasingly complex systems in detail has increased.
Examples of complex systems include weather systems,
ecosystems, biological systems, and information technology
systems. These computational tools enable vast amounts of
information regarding a complex system to be collected,
analyzed and presented for human understanding. Of par-
ticular importance to those who study these complex sys-
tems is the ability to identify variations, such as abnormali-
ties, that occur within the complex system. For instance, in
the case of an information technology infrastructure, varia-
tions from normal or expected operation could lead to
failures, slowdown, threshold violations, and other prob-
lems. These types of problems are often triggered by unob-
served variations or abnormalities in the operation of one or
more nodes that cascade into larger problems.

In recent years, computational techniques have been
developed to detect patterns in data produced by a complex
system that do not conform to an established normal behav-
ior for the complex system. These anomalies may translate
into critical and actionable information in several applica-
tion domains. However, many anomalies in complex sys-
tems do not adhere to common statistical definitions of an
outlier. As a result, many anomaly detection techniques
cannot be applied to a wide variety of different types of data
generated by different complex systems. For instance, typi-
cal techniques for anomalous detection of time-series data
rely heavily on parametric analysis. These techniques
assume a known set of distributions for the metrics and
perform simple calculations to detect percent out of normal.
On the other hand, non-parametric techniques make no
assumption about the data distribution and, as a result, can
be applied to any data set but at the cost of complexity and
more resource intensive algorithms. Those working in the
computing industry continue to seek tools that can be used
to detect anomalies in a given data set regardless of the type
of data.

SUMMARY

This disclosure presents computational systems and meth-
ods for detecting anomalies in data output from any type of
monitoring tool. The data is aggregated and sent to an
alerting system for abnormality detection via comparison
with normalcy bounds. The anomaly detection methods are
performed by construction of normalcy bounds of the data
based on the past behavior of the data output from the
monitoring tool. The methods use data quality assurance and
data categorization processes that allow choosing a correct
procedure for determination of the normalcy bounds. The
methods are completely data agnostic, and as a result, can
also be used to detect abnormalities in time series data
associated with any complex system. The methods described
herein are comprehensive for addressing both accuracy and
scalability and determination of the types of metrics that
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2

should not be analyzed due to a lack of proper information.
In other words, the methods avoid false positive alerts.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flow-control diagram that provides an
overview of data normalcy analysis.

FIG. 2 shows a flow-control diagram of a method for
normalcy analysis.

FIGS. 3A-3D show example plots of data from four
different data categories with corresponding normalcy
bounds.

FIG. 4 shows an example flow-control diagram of the
routine “parametric category detector” called in block 202 of
FIG. 2.

FIG. 5 shows a flow-control diagram of a method for
determining whether or not data is periodic data or non-
periodic data.

FIG. 6 shows an example plot of elimination of outlier
data.

FIGS. 7A-7C shows three example plots of filtering using
a moving average filter and a median filter.

FIG. 8 shows a flow diagram of the routine “data quan-
tization” called in block 502 of FIG. 5.

FIG. 9 shows an example of a frame with grid lines.

FIG. 10 shows calculation of the percentages of data in
the grid cells arranged in a column.

FIGS. 11A-11B show an example of smoothing a grid
cell.

FIG. 12 shows an example of a cumulative summation of
a sequence of values arranged in a column.

FIG. 13 shows an example of a 3x3 grid-cell window of
grid-cell values.

FIG. 14 shows an example of cumulative summation of a
weighted average of grid cells.

FIG. 15 shows a flow diagram of a method for pattern
recognition called in block 503 of FIG. 5.

FIG. 16 shows an example of a T-cycle checking proce-
dure.

FIG. 17 shows periodic columns of a two-dimensional
footprint matrix.

FIG. 18 shows a cyclochart in a tabular format.

FIG. 19 shows an example cyclochart.

FIG. 20 shows an example cyclochart.

FIG. 21 shows a plot of lower and upper normalcy bounds
for periodic data.

FIG. 22 shows normalcy bounds constructed of an
example footprint matrix.

FIG. 23 shows a flow-control diagram of a method for
multinomial data categorization called in block 401 of FIG.
4.

FIG. 24 shows a flow-control diagram of a method for
transient data categorization called in block 402 of FIG. 4.
FIGS. 25A-25C show example plots of bimodal data.

FIG. 26 shows a flow-control diagram of a method for
normalcy analysis.

FIGS. 27A-27V show plots of experimental results for an
example set of bimodal data.

FIG. 28 shows a flow-control diagram of a method for
semi-constant data categorization called in block 403 of
FIG. 4.

FIG. 29A shows an example plot of semi-constant data.

FIG. 29B shows an example plot of piecewise semi-
constant data.

FIG. 30 shows an example plot of a number of data points
between a median line and an upper line.

FIG. 31A shows an example plot of qualified data.
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FIG. 31B shows an example plot of the objective function
calculated for the data shown in FIG. 31A.

FIG. 32 shows a flow-control diagram of a method for
trendy data categorization called in block 404 of FIG. 4.

FIGS. 33A-33C show plots of trendy data and non-trendy
data.

FIG. 34 shows lower and upper lines associated with a
linear trend.

FIGS. 35A-35D show example plots of periodic data with
linear trends.

FIGS. 35E-35G show example plots of data with a
non-periodic base and linear trends.

FIG. 36 shows a flow-control diagram of the data density
detector called in block 203 of FIG. 2.

FIGS. 37A-37D show example plots of non-uniform data
with and without gaps.

FIG. 38 shows a flow-control diagram of a stability
detector method called in block 204 of FIG. 2.

FIGS. 39A-39C shows example stabilocharts of data.

FIG. 40 shows a flow-control diagram of a variability
detector method called in block 205 of FIG. 2.

FIGS. 41A-41B show plots of low- and high-variability
categories of data.

FIGS. 42A-42B show example plots of low-variability
data with upper and lower normalcy bounds.

FIGS. 43A-43B show example plots of high-variability
data with with upper and lower normalcy bounds.

FIG. 44 shows an example of a generalized computer
system that executes efficient methods for anomaly detec-
tion.

DETAILED DESCRIPTION

This disclosure presents computational systems and meth-
ods for fully data-agnostic anomaly detection using time-
series data based on normalcy analysis. FIG. 1 shows a
flow-control diagram that provides an overview of data
normalcy analysis. In block 102, data quality assurance
(“DQA”) receives input data 104 supplied by any one of
various different types of monitoring tools. For example, the
monitoring tools can be sensors, such as biosensors, and
network monitoring tools, such as HTTP, SMTP, or status
requests, network traffic measurements, and network tomog-
raphy. The DQA operation identifies the input data 104 as
qualified data 106 or corrupted data 108 by checking the
input data 104 against different statistical characteristics
defined for data qualification. Corrupted data 108 is useless
for further analysis and may be discarded. In block 110, data
categorization (“DC”) is used to identify and sort the quali-
fied data 106 into categorized data 112. In other words, for
each time series, the DC operation performs category check-
ing and identification with hierarchical/priority ordering on
the qualified data 106. For example, the qualified data 106
can be interpreted as being composed of subsets, where each
subset belongs to a different data category:

Data Set=C,UC,U . . . UC, (1)

where C, stands for the ith statistical data category.
The DC operation performed in block 110 produces statis-
tically categorized data 112. When the categorized data 112
belongs to a statistical category C, determined in block 110,
no further categorization is performed, and in block 114,
category specific normalcy analysis is performed on the
specified data 112 to end the process. It should be noted that
the type of specific normalcy analysis applied to the catego-
rized data 112 depends on the statistical category to which
the categorized data 112 belongs. The categorized data 112
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may be input to an alerting engine for abnormality detection
via comparison with normalcy states for the data.

It should be noted at the onset that the input data 104,
categorized data 112, any intermediately generated data, and
normalcy bounds are not, in any sense, abstract or intan-
gible. Instead, the input data is necessarily digitally encoded
and stored in a physical data-storage computer-readable
medium, such as an electronic memory, mass-storage
device, or other physical, tangible, data-storage device and
medium. It should also be noted that the currently described
data-processing and data-storage methods cannot be carried
out annually by a human analyst, because of the complexity
and vast numbers of intermediate results generated for
processing and analysis of even quite modest amounts of
data. Instead, the currently described methods are necessar-
ily carried out by electronic computing systems on elec-
tronically stored data, with the results of the data processing
and data analysis digitally encoded and stored in one or more
tangible, physical, data-storage devices and media.

FIG. 2 shows a flow-control diagram of a method for
normalcy analysis that provides an expansion of the pro-
cesses of blocks 102 and 110 introduced in FIG. 1. The
method includes calls to three routines 201, 203, and 204
that comprise the DQA described above with reference to
block 102 of FIG. 1 and calls to two routines 202 and 205
that comprise the DC operation described above with ref-
erence to block 110 of FIG. 1. The method receives the input
data 104 generated by a monitoring tool, and the routines
202-205 indentify the input data 104 as belonging to one of
the data categories: parametric data 207, sparse data 208,
high-variability data 209, and low-variability data 210,
respectively. In block 201, a data quality detector receives
the input data 104 and performs a check of sufficient
statistics. Sufficient statistics can be certain user defined
parameters about the data. For example, sufficient statistics
can be a minimum number of available data points and a
minimum data-time duration. Block 201 identifies the input
data 104 as qualified data 106 when available data points and
length of data are sufficient for further analysis or identifies
the input data 104 as corrupted data 108 that may be
discarded. In block 202, a routine “parametric category
detector” is called to perform data categorization by veri-
fying qualified data 106 against selected statistical paramet-
ric models. When parametric data categorization is possible,
the qualified data 106 is identified as parametric data 207,
otherwise, the qualified data 106 is identified as regular data
216. The parametric category detector 202 further catego-
rizes the parametric data 207 as multinomial data, transient
data, semi-constant data, and trendy data, as described
below with reference to a flow-control diagram in FIG. 4. In
block 203, a routine “data density detector” is called to
assess gaps in the regular data 216. When the regular data
216 has a high percentage of gaps the data is considered
corrupted data 220 that may be discarded; otherwise, the
regular data 216 has a lower percentage of gaps and is
identified as dense data 222. The data density detector 203
also categorizes regular data 216 with a high percentage of
gaps that are uniformly distributed in time as sparse data 208
and regular data 216 with a high percentage of gaps that are
localization in time is further processed in block 203 with a
gap filter that outputs dense data 222 or corrupted data 220.
In block 204, a routine “stability detector” is called to
analyze the dense data 222 in terms of statistical stability.
When the dense data 222 is piecewise stable and the latest
stable region is enough for further processing the block 204
categorizes the data as stable data 224, otherwise, the data
222 is categorized as corrupted data 226 that may be
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discarded. In block 205, a routine “variability detector” is
called to receive the stable data 224 and categorizes the data
as high-variability data 209 or low-variability data 210. For
each of the data categories identified in blocks 202-205,
normalcy analysis is performed in blocks 212-215, which is
different for each data category. The categorized data with
normalcy bounds output from the blocks 212-215 may be
input to an alerting engine for abnormality detection.

FIGS. 3A-3D show example plots of data that belongs to
four different data categories with corresponding normalcy
bounds. In FIGS. 3A-3D, horizontal axes represent time and
vertical axes represent data values. FIG. 3A shows an
example plot of linear periodic data 301 located between an
upper linear-periodic normalcy bound 302 and a lower
linear-periodic normalcy bound 303. FIG. 3B shows an
example plot of normalcy bounds 305 and 306 for high-
variability periodic data 307. FIG. 3C shows normalcy
bounds 309 and 310 for low-variability periodic data 311.
FIG. 3D shows normalcy bounds 313 and 314 for semi-
constant non-periodic data 315.

FIG. 4 shows an example flow-control diagram of the
routine “parametric category detector” called in block 202 of
FIG. 2. In this example, blocks 401-404 represent routines
called in the flow-control diagram of FIG. 2. The routines
401-404 are used to categorize the qualified data 106 as
belonging to the parametric data categories identified as
multinomial data 406, transient data 407, semi-constant data
408, and trendy data 409, respectively. Qualified data 106
that is not categorized as belonging to one of the four
parametric categories is categorized as regular data 216. The
parametric data output from each of the routines 401-404
undergoes normalcy analysis, which is as represented by a
single block 410, is different for each of the parametric
categories. The normalcy analysis applied to each of the
different parametric data categories includes the operation of
determining whether or not the particular category of para-
metric data is periodic or non-periodic data.

FIG. 5 shows a flow-control diagram of a period detector
method for determining whether or not data is periodic data
or non-periodic data. The data can fit any of the data
categories discuss above. In block 501, data preprocessing
performs data smoothing and outlier removal. Examples of
two techniques for data preprocessing are whisker’s method
and moving median filtering or whisker’s method and mov-
ing average filtering. After data smoothing by whisker’s
method, the moving median filter or moving average filter
removes small fluctuations from the data. When the number
of outliers removed by whisker’s method is large (e.g., more
than 5%) one of the moving filters is applied. Whisker’s
method is carried out to remove abnormally high-value data
points. Whisker’s method calculates two different quantiles
of historical data q, and q,, where O=<a<b=<l. Every data
point that lies outside the interval:

@

where c is a positive parameter, is an abnormal outlier to be
removed. For example, letting ¢ equal 1.5, data points
greater than an upper whisker given by:

(9c(@p- 903+ c(95-9.))

qo.75+1.5iqr (3a)
and less than a lower whisker given by:
9.=9025~1.5igr (3b)

are removed, were iqr represents the interquartile range
given by:

(o)

iqr=40.75=90.25
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FIG. 6 shows an example plot of elimination of outliers 601
by whisker’s method. After whisker’s method, the moving
median or average filter smooths the data by replacing each
data point with a median or average of the neighboring data
points. The moving average filter is given by:

(4a)

. 1 &4
¥l = 1k:Z]Ny(z+k)

where

y,(1) is the smoothed value for the ith data point y(i);

N is the number of neighboring data points of y(i); and

2N+1 is the span.
A moving average filter can be implemented by recursion.
Moving average filter are trend following indicators that can
be used to reduce random noise. The moving median filter
also smooths the data by replacing each data point with a
median of the neighboring data points and is given by:

yo(h=median{yG+h) ey

where

y.() is the smoothed value for the ith data point y(i);

N is the number of neighboring data points of y(i); and

2N+1 is the span.

FIGS. 7A-7C shows three example plots of filtering using a
moving average filter and a median filter. In FIG. 7A, a
moving average is applied to the highly oscillatory data
represented by light curve 701 to obtain smoothed data
represented by heavy curve 702. In FIG. 7B, a moving
median is applied to data represented by light curve 703 to
obtain smoothed data represented by heavy curve 704. In
FIG. 7C, a moving average filter is applied to data repre-
sented by an oscillatory curve 705 of small fluctuations and
a spike 706 to obtain smoothed data represented by curve
707.

Returning to FIG. 5, in block 502 a routine “data quan-
tization™ is called to construct a footprint of historical data.
FIG. 8 shows a flow diagram of the routine “data quantiza-
tion” called in block 502 of FIG. 5. In block 802, the range
of the data is divided into intervals by the q, quantiles with
k=k,, ..., k, and 0=k, <. .. <k, =100, where the parameter
m and the values for k; are user-defined. The data may be
divided into non-uniform intervals identified by grid lines.
The grid lines are close where the data is dense and the grid
lines are spread out where the data is sparse. For division of
data into parts by time, two user defined parameters “time_
unit” and “time_unit_parts” are used. “Time_unit” is a
parameter that defines a minimal length of possible cycles
that can be found and any cycle can be a factor only of the
length of the “time_unit”. The parameter “time_unit_parts”
represents the number of subintervals the “time_unit” is
divided by and is the measure of resolution. The larger the
value of “time_unit_parts”, the more sensitive or higher
resolution of the footprint of historical data.

FIG. 9 shows an example of a frame with grid lines.
Vertical grid lines, such as grid line 901, are regularly spaced
along the horizontal or time axis and vertical grid lines, such
as grid line 903, are non-uniformly spaced along the range
axis. The region between any two neighboring horizontal
grid lines that intersect any two neighboring vertical grid
lines is called a grid cell. For example, a grid cell 905 is the
region between vertical grid lines 901 and 902 and horizon-
tal grid lines 903 and 904. One possibility is parameters qy,
“time_unit” and “time_unit_parts” with an estimated moni-

(4b)
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toring time At that allows sufficient statistics for normal
statistical analysis. For example, the monitoring time At can
be given by:

Ar=median(At;)

®

where A=t 1~

Examples of possible settings for “time_unit” are

{At >1 day "time_unit'= 1 week

Ar=1 day ‘'time_unit'=1 day

and an example of the following settings for q, and “time_
unit_parts” are:

Ar < 20 minutes "time_unit parts" =12 ¢, = 5%

20 minutes< Ar < 1 hour "time_unit parts"=6 g =5%
1 hour < Ar < 2 hours "time_unit parts”" =4 g, = 10%
2 hour < Ar <4 hours "time_unit parts”" =3 ¢, = 10%
4 hour < Ar < 12 hours "time_unit parts”" =1 ¢, =20%
12 hour < Az < 24 hours  "ime_unit parts" =1 g, =25%
Ar>1 day "time_unit parts”" =7 g, =25%

Returning to FIG. 8, in block 802, percentages are cal-
culated for each column of grid cells. Each column corre-
sponds to a time interval. For a given framework the
percentage of the data in each grid-cell of a column of grid
cells associated with a given time interval are calculated.
FIG. 10 shows calculation of the percentages of data in the
grid cells comprising the column of grid cells 1001-1009
arranged in a column of percentages 1010. For example, grid
cells 1001, 1002, and 1009 are empty, which correspond to
0% elements in the column 1010. Grid cells 1003-1008 have
data which corresponds to the percentages in the column
1010. The percentages in the column 1010 correspond to the
data in the column of grid cells 906 in FIG. 9. Collecting all
columns percentages produces a matrix of percentages for
that particular framework. The final matrix is a two-dimen-
sional (“2D”) histogram of historical data.

Returning to FIG. 8, in block 803, the 2D histogram of
historical data is smoothed. Smoothing can be a weighted
averaging based of the percentages associated with the
neighbors. For example, FIGS. 11A-11B show an example
of smoothing a grid cell 1101 based on a weighted average
of the percentage of the grid cell 1101 and the percentages
of eight surrounding grid cells. Suppose that grid cell 1101
has P % of data and the eight neighboring grid cells have the
percentages A %, B %, C %, D %, E %, F %, G %, H % as
represented by the nine grid cells shown in FIG. 11A. FIG.
11B shows an example of a 3x3 grid-cell window of weights
assigned to each of the corresponding grid cells shown in
FIG. 11A. The resulting smoothed percentage or weighted
average of the grid cell 1101 can be calculated as follows:

_A4P+A+2B+C+2D+F+2E+H+2G
new = T+1+1+1+2+2+2+2+4

©

Applying Equation (6) to all of the grid cell percentages
comprising a 2D matrix gives a smoothed matrix that is less
sensitive to time and value shifts. For grid cells located in
end columns of the matrix, virtual columns of neighboring
cells with zeros may be added to the matrix in order to apply
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Equation (6) to grid cells located in the end columns.
Embodiments are not limited to 3x3 grid-cell windows and
the weights presented in Equation (6) and FIG. 11B. In other
embodiments, 4x4 and 5x5, or even larger, grid-cell win-
dows can be used with any desired weights. After the
weighted averages have been obtained, cumulative sums are
calculated for each column of the 2D matrix. A cumulative
sum is a sequence of partial sums applied to a column of
smoothed grid cell values. FIG. 12 shows an example of a
cumulative summation of a sequence of values arranged in
a column 1202. Column 1204 represents the resulting cumu-
lative sum of the values in the column 1202.

FIGS. 13 and 14 show the procedure of weighted aver-
aging and cumulative summing, respectively, applied to an
example 2D matrix of grid-cell percentage values acquired
as described above with reference to FIGS. 9 and 10. FIG.
13 shows an example of a 3x3 grid-cell window 1304 of
grid-cell values surrounding the grid cell 1300. Matrix 1306
represents the grid-cell values in the window 1304 and
matrix 1308 represents the weights shown in FIG. 11B.
Matrix 1310 is a product matrix produced by element-wise
multiplication 1312 of the matrix 1306 by the weights in the
matrix 1308. Equation 1314 represents the mathematical
operation of Equation (6), which gives a weighted average
percentage 1316 for the grid cell 1300. Applying the
weighted average to each of the grid-cell values in the matrix
1302 in the same manner gives a 2D weighted-average
grid-cell matrix 1318.

FIG. 14 shows an example of cumulative summation of
the weighted average grid cells 1306 in the matrix 1318. 2D
matrix 1402 represents grid-cell values generated by a
cumulative summation of the grid-cell values in each col-
umn of the matrix 1318. For example, the grid cell 1404 has
the value “11” which is a cumulative sum of the grid-cell
values 1405-1410 in the matrix 1318. Each element in the
matrix 1402 is an approximate cumulative distribution func-
tion of the data in that column. The resulting 2D matrix 1402
is an example of a “footprint” matrix of historical data.

Returning to FIG. 5, in block 503, a routine “pattern
recognition” is is called. FIG. 15 shows a flow diagram of a
method for pattern recognition called in block 503 of FIG.
5. In block 1501, a cyclochart of the 2D footprint matrix
output from data quantization 502 in FIG. 5 is constructed.
Suppose T=Nxtime_unit cycle checking procedure, where N
is a positive integer. The columns of the footprint matrix are
collected into subgroups where L=Nxtime_unitxtime_unit_
parts is the number of columns in every subgroup. The total
number of subgroups is M=length(footprint)/L.. The foot-
print matrix can be extended by adding columns of zeros.
The distance between any two columns is checked using a
relative L,-norm given by:

. 12 @
[Z (a _bk)z]
k=1
da B =1
A B) = = alall, Tol)
where
ay b
ay by
a=|" | B=|".

an an

are any two columns in the footprint matrix. When
d(4,B)=closeness (8)

for some user-defined parameter called “closeness,” it is
assumed that the two columns A and B are similar. For
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example, suppose a user defines a closeness parameter equal
to 0.2 and a similarity parameter called “similarity” equal to
75%. FIG. 16 shows an example of a T-cycle checking
procedure where columns of a footprint matrix are labeled A
through P and are divided into T-cycles composed of four
columns. Note that a number of the columns are identified
as zero-data columns with the number “0” and columns with
data are identified with the number “1.” For this particular
example, suppose

d(4,E)>closeness,d(4,])>closeness,d(4,M)>closeness

In other words, column A is not similar to columns E, I, and
M. Now suppose that for column E

d(E,D=closeness,d(E,M)=closeness

In other words, column E is similar to columns I and M.
Because 3 out of 4 possible columns compose 75% or
greater similarity, the first column of the T-cycle is assumed
to be periodic. If during comparison only p % of the columns
are similar where p %<similarity then the associated column
is considered non-periodic. For example, FIG. 17 shows the
periodic columns are marked by “1” and the non-periodic
columns are marked by “0.” Repeating this procedure for all
possible T-cycles produces a Cyclochart of the footprint
data. FIG. 18 shows a cyclochart in tabular format, and FIG.
19 shows a corresponding plot of the same cyclochart data.
Next, the method of pattern recognition includes a period
determination procedure of the cyclochart data, composed of
the four operations represented by blocks 1502-1505. The
operations of blocks 1502-1505 are now described with
reference to the data presented in an example cyclochart
shown in FIG. 20. In block 1502, local maximums in the
cyclochart are identified according to their corresponding
similarities. For example, peaks 2001-2010 are local maxi-
mum similarities. Table 1 displays the local maximum time
units and the corresponding local maximum similarities
represented by the peaks 2001-2010 in the cyclochart of
FIG. 20.

TABLE 1

Local maximum time Local maximum

units (days) Similarities

2 34.7%

4 31.3%

7 82.5%
11 44.9%
14 73.28%
19 60.5%
21 90.3%
23 68.1%
28 78%
31 37%

Returning to FIG. 15, in block 1503, periods for each of the
local maxima are constructed. For example, the data asso-
ciated with each T-cycle has a kT cycle for every natural
number k. So the local maximum with a 2-day period creates
the following periodic series

2—2,4,6,8,10,12,14,16,18,20,22,24,26,28,30.
The local maximum with a 4-day period creates another
periodic series

4—4,8,12,16,20,24,28.

Similarly, local maximums 7, 11, 14, 19, 21, 23, 28, and 31
day periods create periodic series given by:
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7—7,14,21,28,
11-11,22,
141428,
19-19,
2121,
2323,
2828,

31—=31.

In block 1504, the series characteristics are calculated for
each of the period series. The following series characteristics
can be:

Positive factor of a period series is the number of peaks
in the period series; and

Negative factor of a period series is the number of
members in the period series that are not peaks; and

the strength of the time unit can be calculated using:

Strength=Positive factor-Negative factor

Table 2 shows positive factors, negative factors, and
strengths for the data represented in Table 1.

TABLE 2
Local Positive Negative
maximum factor factor Strength Similarity

2 4 11 -7 34.7%
4 2 5 -3 31.3%
7 4 0 4 82.5%
11 1 1 0 44.9%
14 2 0 2 73.28%
19 1 0 1 60.5%
21 1 0 1 90.3%
23 1 0 1 68.1%
28 1 0 1 78%
31 1 0 1 37%

In bock 1505, a period is determined by selecting the periods
with maximum strength. From that list the periods with
minimum negative factor are selected. From that list, periods
with maximum similarity are selected. Finally, the period
with minimum length is selected. A user can define different
limitations on the calculated period. For example, when the
similarity of the determined period is small (e.g., less than
20%), the data may be considered non-periodic. This pro-
cedure applied to the cyclochart data shown in FIG. 20 leads
to the 7-day period having the maximum Strength=4.
Returning to FIG. 5, in general, the period detector
classifies data as periodic data 504 and non-periodic data
505. The general procedure of normalcy bounds determina-
tion is described below for each of the different data cat-
egories. Determination of normalcy bounds for both types of
data takes into account the specific data categories. For
non-periodic data 505, one approach to determining nor-
malcy bounds may be to apply whisker’s method, and
another approach may be to utilize an objective function
based on data range or variability calculation. On the other
hand, for periodic data 504, normalcy bounds may be
calculated column-wise for every “time_unit_parts” by the
same procedure and then normalcy is extended into the
future based on the cycle information. FIG. 21 shows a plot
of lower and upper normalcy bounds 2102 and 2104 for
periodic data 2106. More specifically, consider the case of
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cyclical data and the following four columns of data from a
footprint matrix, which are shifted one from another by the
period of data

ay by cy dy
As az’B: bz’C: Cz’D: &
as bs 3 ds
ay by c4 dy

If d(A,B)=closeness, d(A,C)=closeness, and d(A,D)—close-
ness, then the columns form a cyclical subgroup and the
normalcy bounds, also called dynamic thresholds (“DTs”),
are calculated based on the four data columns. On the other
hand, if d(A,B)=closeness, d(A,C)=closeness but d(A,D)>
closeness, then only the columns A, B, and C form a cyclical
subgroup. If d(A,D)=closeness and d(A,B)>closeness then
column A is discarded. If less than 75% of the four columns
A, B, C, and D are similar, then the columns A, B, C, and
D for a non-cyclical subgroup. From each group of columns,
DTs are calculated using whisker’s method, or by taking min
or max values of the data, or by maximization of the
objective function described below with reference to Equa-
tion (34). FIG. 22 shows an example of upper and lower
normalcy bounds constructed from an example footprint
matrix 2202 by taking into account the information on
cycles.

Returning to FIG. 4, in block 401, the routine “multino-
mial data categorization” is called. FIG. 23 shows a flow-
control diagram of a method for multinomial data (“MD”)
categorization. In block 2302, the routine receives the quali-
fied data 106 and calculates statistical parameters that are
compared with predefined statistical parameters that may be
calculated as follows. The qualified data can take different
values, such as a,, a,, a;, etc. The number of times each data
value occurs is given by n,. For example, n, is the number
times a, occurs and n, is the number of times a, occurs. Let
p, be the frequency of occurrences of the integer n;:

pi= 100 ©

where

i R 1

N is the total number of integer values; and

m is the number of different integer values.

In block 2302, the qualified data 106 is multinomial data
2304 when it takes less than m different integer values and
at least s of the integer values have frequencies greater than
a user defined parameter H,. Otherwise, in block 2306,
de-noising is performed on the qualified data 106 with
sequential checking of predefined parameters. Block 2306
may be implemented using one or two different de-noising
procedures:

1) The de-noising procedure is filtering against non-
integer values that are smaller than an H, percentage
(H,<H,), where H, is a user defined parameter. When the
condition H,<H, is satisfied, the non-integer numbers are
discarded.

2) The de-noising procedure is filtering against integer
values with a small cumulative percentage. Sorting the
percentages p; in descending order, the cumulative sum of
percentages c; is given by:
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¢,=100,

Cn P ©
When ¢, <H;, C,_,=zHj;, the integer values n,, n,,,,...n, can
be discarded from further analysis, where H; is a user
defined parameter. The user defined parameters, H,, H,, and
H; can be assigned the values 2.5%, 0.5%, and 0.5%,
respectively.

Blocks 2308, 2314 and 2316 comprise normalcy analysis
for the multinomial data 2304 represented by block 410 in
FIG. 4. In block 2308, the routine “period detector”
described above with reference to FIG. 5 is called to identify
periodic multinomial data 2310 and non-periodic multino-
mial data 2312, which are then subject to determination of
normalcy bounds for the periodic multinomial data 2314 and
determination of normalcy bounds for the non-periodic
multinomial data 2316, respectively. Note that while con-
structing the footprint matrix in block 2308, instead of using
the percentages of data in every grid cell as described above
with reference to FIG. 5, the cumulative sum of percentage
values ¢, described in Equation (9), are used to construct the
footprint matrix. In block 2314 and 2316, when multinomial
data is periodic, the normalcy set for similar columns are
calculated as follows. Data points in similar columns are
collected and new values for the numbers ¢, are calculated.
When c,, <H, c,=zH, the values n,, n,, . . ., n, are the most
probable set (i.e., normalcy set) of similar columns, where H
is a user defined parameter, typically equal to about 20%.
When data is determined to be non-periodic, the numbers c,
are calculated for all data points and the normalcy set is
determined similarly.

Returning to FIG. 4, in block 402, the routine “transient
data categorization” is called. FIG. 24 shows a flow-control
diagram of a method for transient data categorization called
in block 402 of FIG. 4. Transient data can be described in
terms of a transformation operator that converts the original
qualified time series data into a different type of time series
data for which the final categorization can be performed.
Normalcy bounds of the transient data are determined for
different data characteristics, such as range, variability, and
distribution/structure. The concept of transiency is that a
transformation operator, denoted by T, transforms original
qualified time series data, denoted by Y(t), into different
time series data, denoted by X(t), as follows:

T ¥()—=X() (10)

The operator T can be the identity operator E (i.e., T=E):
E:Y@)—Y() (11

which represents the case where no transformation is per-
formed. Two different types of operators T can be used. The
operator T can be a point-wise operator or a time-window
operator. The identity operator actually is an example of a
point-wise operator. The differentiation operator (or its dis-
crete analogue which reveals the variability of data) is also
an example of point-wise operator. Smoothing operators are
examples of time-window operators. The time series data
Y(t) is called transient in terms of operator T when the
transformed data X(t) is transient. Transiency of X(t) can be
confirmed by checking multimodality of the data, inertia of
each mode of the data, and randomness of modes appearing
along the time axis. Normalcy bounds for the transient data
are determined separately for each mode as described in the
flow-control diagram shown in FIG. 26. In block 2402, a
mode detector checks the multimodality of the qualified data
106 and separates the qualified data 106 into multimode data
2406 and no mode data 2408 that may be discarded. Tran-
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sient data has at least two modes. A mode that corresponds
to lower data values is called low mode (“LLM”) data, and a
mode that correspond to higher data values is called high
mode (“HM”) data. When the data is multimodal, the lowest
of the data values is the LM data and the other modes
correspond to HM data. In block 2410, the multimode data
is separated in multi-mode data with inertia 2412 and
multi-mode data with no inertia 2414. Inertia refers to data
that maintains are range of values for a period of time before
switching to a different range of values. In other words,
inertia can be associated with the time duration that data
points remain in the selected mode. For example, the data
cannot oscillate from one mode to the other too quickly.

FIGS. 25A-25C show example plots of three types of
bimodal data. FIG. 25A shows an example plot of bimodal
data without a random distribution of modes along the time
axis. FIG. 25B shows an example plot of bimodal data
without inertia of data points. FIG. 25C shows an example
plot of transient data. The data plotted in FIG. 25B is an
example of multimode data (i.e., modes 1 and 5) without
mode inertia. Because the LM data and HM data oscillate
between 1 and 5, neither the LM data nor the HM data
exhibit inertia with respect to either of the modes. By
contrast, FIGS. 25A and 25 show examples of data with
inertial modes. For example, in FIG. 25A, the LM data are
between 1 and 2 for a period of time ranging from 0 to about
38 and HM data is between 9 and 12 for time greater than
about 38. FIGS. 25B and 25C show examples of data with
modes that randomly interchange over time. On the other
hand, the data in FIG. 25A is piecewise-stable data with
discoverable change points.

Returning to FIG. 24, in block 2410, the multi-mode data
is searched for intervals of sparse data values and for data
with some inertia concentrated in upper and lower regions of
the intervals. Let numbers a, b satisfy the condition:

XppinSA<b=x,,

12

where X,,;.., X, are minimum and maximum data values,
respectively, in an interval of sparse data. The numbers a and
b divide the interval [X,,,,X,..] into three regions
AZx . a], B¥{a,b), and C¥[b,x,,, ]. Transition probabili-

ties are given by:

Tax.

_ Naoa (13a)
Pasa = Na
B Naog (13b)
PB-B = N—B
_ Nese (13c)
pcsc = Ne
where

N, is the number of data points in [X,,;,,, a);
Nj is the number of data points in [a,b];
N is the number of data points in (b.X,,,,.];
N,_., is the number of points with the property x(t,)eA
and x(t,,;)eA;
Nj_.5 is the number of points with the property x(t,)eB
and x(t,,,)eB;
and
Nc_.c 1s the number of points with the property x(t,)eC
and x(t,,,)eC.
Starting from the highest possible position and shifting the
region B to the lowest possible position, the three transition
probabilities are calculated and the procedure is stopped
when the following conditions are satisfied:

Pasa>H pe.c>H, Pp .p<h, and N Nc>>1 (14)
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where the numbers H and h are user, predefined parameters.
For example, H=0.75 and h=0.25. If this process ends
without finding the time interval, the region B is narrowed
and the procedure is repeated. Alternatively, the interval
[X,10:% mae] canl be divided into N+1 equally spaced subin-
tervals given by:

Ko <K X< L L <A, (15)

and check sequentially each of the following subintervals
according to Equations (13a)-(13b) with the conditions
given in Equation (14):

Frrir ¥ O LX) B - 1) (¥ 1,305 (2,
X, FoieX 151 X2), - SN

(16)

When an interval that satisfied the conditions in Equation
(14) is found the procedure stops. The procedure may also
be repeated for the lowest (A) region and the highest (C)
region for finding new inertial modes if data is supposed to
be multi-modal. If the interval is not found then the data is
without inertial modes in terms of the given resolution. Now
suppose that M inertial modes are found for the regions
given by:

-

A=lanbyl, - o AaFlansbal

In block 2416, for each inertial mode, the transiency is
determined in order to separate the multi-mode data with
inertia into transient data 2418 and non-transient data 2420.
Transient data have periods where the LM data and the HM
data randomly interchange over time. One of the found
inertial modes is selected, and other data points outside of
this region are deleted. Data points in the mode are denoted
by x(t,). Suppose that time intervals with At,=cAt are normal
data intervals and time interval with At,>cAt are gaps in the
time interval, where At is the monitoring time described
above in Equation (5) and the constant ¢ is a predefined
parameter for gap determination. It is assumed that for
transient data the gaps are substantially uniformly distrib-
uted along the time axis, which can be checked by applying
the transition probabilities given in Equations (13a)-(13c¢).
Let T, be the duration (in milliseconds, seconds, minutes,
etc., but in the same measures as the monitoring time) of the
kth gapless data portion. For data without gaps only one
portion exists and T,~t,~t,. The sum T=%, 7T, is the
duration of the gapless data, where N is the number of
gapless data portions. Let G, be the duration (in the same
measures as T,) of the kth gap. The sum G=2,_,°G, is the
duration of gaps in the data, where N is the number of gap
portions. As a result, G+T=t,~t,. The percentage of gaps in
the data is given by:

a7

G 1
100% 19
G+T

where p,;, Pio> Poos Po; are the probabilities of data-to-data,
data-to-gap, gap-to-gap and gap-to-data transitions, respec-
tively, and are given by

-1 Nr -1 -1 Ng d (20)
piL = _Taplo— — P11, Poo = —m,an
AT
po1 =1~ poo



US 10,241,887 B2

15

When at least two inertial modes satisfy the following
conditions:

p>F p10>¢, Por 21

where P and & are user defined parameters, the multi-mode
inertial data 2412 is transitory data 2418, otherwise, the
multi-mode inertial data is non-transient data 2420.

FIG. 26 shows a flow-control diagram of a method for
normalcy analysis of multi-mode inertial data represented by
block 410 in FIG. 4. In block 2602, for each inertial mode
in the multi-mode inertial data 2412, the operations associ-
ated with blocks 2604, 2610, and 2610 are repeated. Dif-
ferent inertial modes can have different normalcy bounds. In
block 2604, period detector described above with reference
to FIG. 5 is used to check the existence of periodicity in a
given mode. When the mode is periodic 2606, normalcy
analysis 2610 is used to determine normalcy bounds along
the found cycles, as described above with reference to FIG.
5. On the other hand, when the inertial mode is non-periodic
different statistical measures are applied for normalcy analy-
sis 2612. The following description is directed to normalcy
analysis of non-periodic, multi-mode inertial data 2608.
Normalcy bounds can be set in terms of different statistical
measures, including data range, distribution, and duration.
The statistical measures can be calculated and used simul-
taneously for abnormality detection and the information can
be stored in a binary vector:

a=(ay, . . . ,0) (22)

where o, is either 0 or 1. When =0 the jth statistical
measure for abnormality detection is not calculated. When
o,=1 appropriate normalcy bounds for the jth statistical
measure are calculated. Different modes may require differ-
ent settings for the vector a. When no normalcy determi-
nation is wanted for a certain modes, all of the c.’s may be
set to 0. The methods for process calculating normalcy
bounds for statistical measures data range, distribution, and
duration are now described. Normalcy bounds for the sta-
tistical measure data range are calculated as follows.
Because each detected mode A, can be characterized by the
interval [a;,b ], the interval can be interpreted as a normalcy
region for the jth mode. The interval [a,b;] can be divided
into N+1 equally spaced intervals represented by:

a<x <X, <L <xy<b; 23)
and check sequentially the subintervals
[n b3 v 1, 0 X2 Byl - - - X0 55] (24)

by calculating transition probabilities p,_, ,, where A is the
region corresponding to the given interval. Subintervals for
which p,_, ,<0.1 are discarded. Performing similar calcula-
tions and eliminations for intervals

[a,x1][ap%a],[a5%3], - - - [0%] @5
1 1 A 1
gives strict normalcy bounds [a',b'], where
az<a’<b'zh, 26

Normalcy bounds for the duration statistical measure are
calculated as follows. Let T, be duration of the kth gapless
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data portion of the jth mode, then from whisker’s method,
the normalcy bounds for durations of the jth mode is given
by:

[g0.25(T3)-1.51qr(T3).q0.75(T)+1.5igr(T3)]

Normalcy bounds for the distribution statistical measure are
calculated as follows. Let C;/ be a distribution of a kth
gapless data portion (provided this portion has enough
statistics for distribution calculation) of the jth mode. Dis-
tances Ek:d(Cklj ,Ckzj) are calculated according to Equation
(7) between all distributions by some measure (e.g. by mean
square distance). As a result, the normalcy bounds for the
interval E, can be calculated from whisker’s method as
follows:

@7

[g0.25(Ex)—1.51q7(Er),q0 75(Ex)+1.51qr(Ey)]

In on-line mode, when enough statistics are available for
distribution calculation, the corresponding distances g,
between historical distributions and current distribution can
be calculated. On-line or run-time mode refers to anomaly
detection when the decision on the system abnormality state
is made for real-time data monitoring. The median of g,
compared with normalcy bounds demonstrates the abnor-
mality of the current process. Normalcy bounds for the
variability statistical measure are calculated as follows. Let
X, be data points of the sth gapless portion of the jth mode.
The variability of the sth portion is given by:

28)

. 7 IN-1 29
PR A ) }kﬁ ) 002 @
igri{xdiey)

where

iq’({Xk}lFlN)"o;

x, are the absolute jumps of data points; and
X' =X =% ).

The normalcy bounds for the interval R, can be calculated
from whisker’s method to give:

[g0.25R)-1.5iq7(R,).q0.75R)+1.51gr(R,)]

for the jth mode. In block 2614, when another inertial mode
is available, the operations associated with blocks 2604,
2610, and 2612 are repeated.

FIGS. 27A-27V show plots of experimental results for an
example set of bimodal data displayed in FIG. 27A. FIGS.
27B-27E show different [a,b] data value intervals repre-
sented by shaded rectangles with tables of corresponding
transition probabilities calculated according to Equations
(13a)-(13c¢). No inertial modes are present with this resolu-
tion for the [a,b] intervals selected in FIGS. 27B-27E. FIGS.
27F-27K show different [a,b] intervals with tables of corre-
sponding transition probabilities calculated according to
Equations (13a)-(13c). The transition probabilities for the
[a,b] intervals in FIGS. 27F-27K are collected and displayed
in Table 3.

(30)

TABLE 3
P_CC 0 0 0.21429 0.1875  0.58108 0.7913  x X
P_BB 0.15385 0.59091 0.85149 0.89524 0.54902 0.125 X X
P_AA 0.95963 0.91638 0.89238 0.90783 0.88732 0.90338 x X
b 15 13.5 12 10.5 9 7.5 6 4.5
a 10.5 9 7.5 6 4.5 3 1.5 0
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The seventh column of the data displayed in Table 3 reveals
an interval[3,7.5] (see FIG. 27K) with a small transition
probability P;_,z=0.125 while transition probabilities for
upper and lower regions are P._,-~0.7913 and
P,_.,=0.90338, respectively, which are indicators of inertial
modes.

For transiency checking according to block 2416
described above, calculations were performed for an esti-
mated monitoring time of At=1 minute. As a result, every
duration time of 5 minutes or more in an interval without
data points is considered a gap. The percentage of gaps
calculated according to Equation (19) is p=62.3% and the
probabilities given by Equations (20) are

211=0.93, p14=0.067, pye=0.965, pg,=0.035

Therefore, the data is bimodal transient according to the
given resolution.

FIGS. 27M-27Q show plots of data used in the determi-
nation of normalcy bounds for upper and lower inertial
modes. In FIG. 271, the upper region is the interval [7.5,15]
identified by a line 2702 that corresponds to the value 7.5.
In FIGS. 27M-27P, lines 2704-2707 represent values for the
constant ¢ described above with reference to Equation (18).
For data values greater than corresponding lines 2704-2707,
transition probabilities p,_,, are displayed for the intervals
[c,15], 7.5=c<15 in Table 4.

TABLE 4
Py O 0 0 0 0 0 0
c 15 14625 1425 13875 135 13125 1275
Pi.g 021 021 021 019 019 019 063
c 12375 12 11.625 1125 10875 105 10125
Pi.s 063 058 074 073 079 079 079
c 975 9375 9 8.625 825 7875 15

Eliminating all regions with probabilities p,_, ,<0.25 gives
the normalcy region [7.5,10.125] also identified in FIG. 27Q
by lines 2708 and 2709. Similar calculations for the lower
region lead to FIG. 27R where lines 2710 and 2711 represent
the normalcy bounds and shaded interval 2712 represents an
intermediate region within the inertial modes. FIG. 27S
shows the normalcy regions 2713 and 2714 for the lowest
and highest inertial modes. FIG. 27T shows another example
of bimodal data. Computational experiments show that the
data represented in FIG. 27T is not transient, because the
upper mode is not inertial in terms of the identity operator,
but it is transient in terms of the differentiator operator. FIG.
27U shows a plot of X(t) after differentiation of the data
represented in FIG. 27T, which gives bimodal data. FIG.
27V shows associated normalcy bounds represented by lines
2716 and 2717 and inertial modes with normalcy regions
2718 and 2719 for the data displayed in FIG. 27U.

Returning to FIG. 4, in block 403, a routine “semi-
constant categorization” is called. FIG. 28 shows a flow-
control diagram of a method for semi-constant data catego-
rization called in block 403 of FIG. 4. In block 2802, the
qualified data 106 is considered semi-constant data 2804
when

igr({xdm™)=0
where
N corresponds to data length; and
igr stands for interquartile range of the qualified data
X =X(t,).
Otherwise, control flows to block 2806 in which data
selection is performed to search the qualified data 106 for the
longest data portion of the data that is semi-constant. In
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particular, block 2806 performs an iterative data selection
process by cutting off the last portion of data and returning
the data back to block 2802. When this iterative process
between blocks 2802 and 2806 fails to reveal semi-constant
data, the qualified data 106 is considered non-semi-constant
data. In other words, when after cutting the next portion of
the remaining data has insufficient statistics or when the
remaining data is shorter than some user defined smallest
portion, control flows to block 2808. Formally, in block
2802, when

iq’({xk}lFlN)"o

control flows to block 2806 where cut data {x},_,, " is
determined for 1<m=N_<N. In block 2802, the interquartile
range is calculated for

(32)

Sm:iqr({xk}IFmNo) (33)

When s,=0 for m=m, the cut data {x;},_,, " is semi-
constant data and this portion of the qualified data 106 flows
to the process in block 2808.

FIG. 29A shows an example plot of semi-constant data.
The operations associated with blocks 2802 and 2806 can
also identify piecewise semi-constant data. FIG. 29B shows
an example plot of piecewise semi-constant data.

Returning to FIG. 28, blocks 2808, 2814, 2820, and 2822
are used to carry out normalcy analysis on the semi-constant
data as described in block 410 of FIG. 4. In block 2808,
outlier detection is used to check the percentage of outliers
in the semi-constant data 2804. For semi-constant data every
data point greater than q -5 or less than q ,5 is identified as
an outlier. When the percentage of outliers is greater than a
user defined percentage p % (e.g., p=15%), the semi-
constant data is identified as semi-constant data with a large
number of outliers 2810; otherwise, the semi-constant data
is identified as semi-constant data with a small number of
outliers 2812. The outlier data 2810 or 2812 is passed to
block 2814 to identify periodic semi-constant data 2816.
When no periods are detected, the semi-constant data is
declared non-periodic data 2818. Periodicity analysis of
outlier data 2810 in block 2814 is performed using the
period detector described above with reference to FIG. 5,
excluding the data points equal to the median of the original
qualified data 106. In block 2820, normalcy bounds are
determined for periodic semi-constant data 2816, and in
block 2822, normalcy bounds are determined for non-
periodic semi-constant data 2818. Normalcy bounds deter-
mination is performed separately for upper (for data points
that are greater or equal to the median) and lower (for data
points that are less than or equal to the median) parts of data.
Because the computational operation for determining both
upper and lower bounds are similar, for the sake of brevity,
determination of the upper bound is now described. The
process includes maximization of an objective function
given by:

FP,S) =eap% (34)

where
a>0 is a sensitivity parameter; and
P is the percentage of data points between the median of
data and an upper line higher than the median.
The sensitivity parameter may be user selected. For
example, the sensitivity parameter can be a=0.9. FIG. 30
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shows an example plot of a number of data points between
a median line 3002 and an upper line 3004. The denominator
of equation (34) is given by:

Smx=bme—Emin)(Upper Line-Data Median) (35)

and the numerator S of Equation (34) is the square of the
area within data points, such as data points 3006, and the
data median 3002. In the data-range-based analysis, the
range within the median line and maximum of the data is
divided into m parts and for each level values g, for k=1,
2, ... m of the objective function are calculated. The level
that corresponds to a maximum of g, is the upper bound. The
same procedure is valid for determination of the lower
bound with the minimum of g, corresponding to the lower
bound. Instead of dividing the range into equal parts, the
range can also be divided by corresponding quantiles that
give unequal division according to the density of data points
along the range. In the data-range-based approach, prelimi-
nary abnormality cleaning of data can also be performed.
Data points with abnormal concentrations are removed in a
given time window. Abnormal concentrations can be
detected as follows. For a given time window (e.g., 10% of
data length) the percentage of data points with values greater
than the 0.75 quantile are calculated. As the window is
moved along the data, corresponding percentages are cal-
culated. Any percentage greater than the upper whisker
indicates an abnormal concentration of data, which is dis-
carded. The same abnormality cleaning procedure is
repeated for data points lower than the 0.25 quantile.

FIG. 31A shows an example plot of qualified data with
iqr=0 and with an upper bound 3102. FIG. 31B shows an
example plot of the objective function calculated for the data
in FIG. 31A using Equation (34). Abnormality cleaning was
also performed for the data represented in FIG. 31B.

In the data-variability-based approach for determining
normalcy bounds, the variability of data points x, against
median of data p is calculated according to

X 12 (36)
V= [mz 674 —ﬂ)z]
k=1
Consider the following set of upper lines

[p+z]

where j is a positive integer. For each interval j, the corre-
sponding values g; of the objective function are calculated
and the max(g,) is taken as the appropriate normalcy upper
bound. For example, experimental values for z, were

z,=1, z,=1.5, z;=2, 2,73, z5=4

Normalcy bounds are determined for semi-constant periodic
data 2816 as follows. Period detection as described above
with reference to FIG. 5 is a way to get the period of the data
and similar columns. For normalcy bounds (i.e., dynamic
thresholds) determination of similar columns, the discarded
data points (recall that the periodicity procedure was per-
formed only for outliers in block 2808) are returned, the
variability v, is calculated for each column against the global
data median p and the normalcy bounds are determined for
each column, as described above for the non-periodic case.

Returning to FIG. 4, in block 404, a routine “trendy data
categorization” is called. FIG. 32 shows a flow-control
diagram of a method for trendy data categorization called in
block 404 of FI1G. 4. In block 3202, a trend detector is used
to separate the qualified data 106 into trendy data 3204 and
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non-trendy data 3206. In block 3208, trend recognition
identifies the trendy data 3204 as linear data 3210, log-linear
data 3212, or non-linear data 3214. The operation in block
3208 is to decompose the original time series f,(t) of N data
points into a sum of non-trendy time series, f(t), and trend
component trend(t) as follows:

Jo®)=At)+trend(z)
Equation (37) provides normalcy analysis based on f(t). In
block 3216, specific normalcy bounds are calculated for
each of the categories 3210, 3212, and 3214.

The trend detector in block 3202 performs a number of
different trend detection tests. For example, the Mann-
Kendall (“MK”) test can be used to calculate an MK statistic
given by:

(37

I N (38)

N—
So :Z Z sign(x; — x;)

k=1 j=k+1

The trend detector 3202 performs the following three opera-
tions:

1. Data smoothing as described above with reference to
block 501 in FIG. 5.

2. Calculation of the MK statistic S, for the smoothed
data. When S,>0 a trend is identified as increasing, and
when S, <0 the trend is identified as decreasing.

3. A trend measure is calculated according to

So 39

100%

p=

Spax
where

N-1

Smax = ) ZN: 1

k=1 j=k+1

When the trend measure p is greater than a user defined
threshold, for example p>40%, the data is trendy data 3204.

Trend recognition in block 3208 reveals the nature (i.e.,
linear, log-linear or non-linear) of the trendy data 3204.
Linear and log-linear trends can be checked using linear
regression analysis. Trend recognition includes determining
a goodness of fit given by:

(40)

Rel- Riegression
Ro

where
R, ¢ ession 18 the sum of squares of the vertical distances of
the points from the regression line; and
R, is the sum of squares of the vertical distances of the
points from the line with zero slop and passing through
the mean of data (i.e., the null hypothesis).
When R is, for example, greater than a user defined param-
eter 0.6 it is assumed that the trend is linear, otherwise the
log-linearity is checked by the same procedure for f(e™),
where ¢ is a constant. When the goodness of fit given by
Equation (40) is greater than 0.6 the data is assumed to be
log-linear. If the data is not linear or not log-linear, the data
is assumed to be non-linear trendy data.
FIG. 33A shows a plot of increasing trendy data with
S,=48464, S, ,.=77421, p=62.6%>40%. In this example,
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R=0.44<0.6. F1G. 33B also shows a plot of increasing trendy
data with S,=77421, S, ,.=77421, p=100%>40%. The trend
is linear because R=0.999>0.6. FIG. 33C shows a plot of
non-trendy data with S,=-3504, S, ,.=77421, and
p=4.5%<40%.

Block 3216 is the normalcy analysis represented by block
410 in FIG. 4 performed on the different categories of trendy
data 3210, 3212, and 3214 to calculate the normalcy bounds
for each category. When the data has a linear trend, the data
fo(t) is decomposed into

Jo(O=At)+trend(z)
where trend(t)=kt+b is a linear function with coefficients k
and b determined by linear regression analysis. When f(t) is
non-periodic, normalcy bounds of f (t) are straight lines

with upper and lower dynamic thresholds that are deter-
mined by maximizing the objective function given by:

@D

-1 § 42

e —1 Spax

&P, ) =

where

S is the square of the area limited by t,,, and t,,,, and
lower and upper lines as shown in the example of plot
of FIG. 34,

S =h(t, o1,

max max” ‘min

); and

P is the fraction of data within the upper and lower lines
and a is a user defined parameter.
Variability (i.e., standard deviation) of {{(t) is calculated by:

o=std(/17) 43)
The upper and lower lines are given by:
[kt+b-z,0,ki+b+z,0] “44

where j is a positive integer. The corresponding value g, of
the objective function is calculated for each time. Lines that
correspond to max(g,) are appropriate normalcy bounds.
Experimentally determined values for z, are given by:

z,=1, 25,=1.5, 73=2, z,=3, zs=4

When {{t) is periodic, the variability o,, of the mth is
calculated for each set of similar columns and the normalcy
bounds are given by

[kt+b-z2,0,,, ki+b+2,0,,] 45)

The maximum of the objective function gives the normalcy
bounds of the mth set. When the data has a log-linear trend,
the time series f(e™) is data with a linear trend using the same
procedure in Equations (41)-(45). For data with a non-Linear
trend, the last portion of data is selected and normalcy
bounds are calculated according to the above described
procedure for non-periodic case.

FIGS. 35A-35D show example plots of periodic with
linear trends. FIG. 35A shows periodic data 3502 that
follows and a linear regression line 3504. For this example,
the goodness of fit is R=0.7, which indicates a linear trend
as shown. FIG. 35B shows the periodic data 3506 after
subtraction of the linear trend shown in FIG. 35A. FIG. 35C
shows an example of dynamic thresholds 3508 and 3510 for
periodic data 3506 shown in FIG. 35B. FIG. 35D shows
normalcy bounds 3512 and 3514 for the original periodic
data 3503 after reconstruction of the linear trend.

FIGS. 35E-35G show example plots of data with a
non-periodic base but also have linear trends. FIG. 35E
shows data 3516 with a linear trend represented by linear
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regression line 3518. In this example, the goodness of fit is
R=0.99, which indicates a linear trend. FIG. 35F shows the
data 3516 with final DTs represented by lines 3520 and
3522. In this example, no periods were found and the DTs
are straight lines. The lines 3520 and 3522 can be con-
structed by maximization of objective function. FIG. 35G
shows an example plots of data with a non-linear trend base.
Line 3524 is a regression line for the last portion of the data
3526 and boundary lines 3528 and 3530 are upper and lower
thresholds for the same portion.

Returning to FIG. 2, in block 203, a routine “data density
detector” is called. FIG. 36 shows a flow-control diagram of
the data density detector called in block 203 of FIG. 2. The
data density detector performs data density recognition
based on probability calculations that reveal the distribution
of gaps in the data. Gaps in the regular data 216 are
determined relative to data monitoring time At, which is
estimated statistically from data time stamps. For categori-
zation purposes, the following measures characterize the
nature of the gaps present in the data 216: 1) percentage of
gaps, 2) probabilities of gap-to-gap, data-to-data, gap-to-
data and data-to-gap transitions. When the total percentage
of gaps is acceptable, the data is categorized as dense data.
When the total percentage of gaps is greater than a user
defined limit and the percentage of gags have a non-uniform
distribution in time then a gap clean-up procedure gives
dense data. When gaps in data have a uniform distribution in
time, the data belongs to a sparse data cluster. When gaps in
the data occur with an extremely high percentage, further
analysis is not typically possible, and the data is identified as
corrupted data. In block 3601, as described above, an
estimate of the monitoring time At is calculated according
Equation (18) as the median of At,=t,,,—t,. In block 3602,
time intervals with At,<cAt are normal data intervals while
At,>cAt are gaps are calculated, where ¢ is user predefined
gap parameter. As also described above with reference to
Equation (19), the percentage of gaps are represented by p.
In block 3603, the probabilities p,;, Pios Poos and pg; in
Equations (20) are calculated for data-to-data, data-to-gap,
gap-to-gap and gap-to-data transitions. In block 3604, the
percentage of gaps p, and the probabilities p,;, P1gs Poos and
Po; are used to classify the data. For example, dense data 222
with gaps non-uniformly distributed in time can be specified
by the condition:

p>H
Pro<e

por <&

(46)

where H, and & are user defined parameters, and E is a small
parameter. For example, H,=25% and £=0.0005. The main
reason for smallness of p,, and p,, is the smallness of the
numbers N, and N, while G and T are as large as p. The
data of this category can be further processed via data
selection procedure to eliminate concentration of gaps,
which can be done as follows. The total percentage of gaps
in the series of data {X;},—7, i=j1s Jas « - « 5 Jos =15 1y -« «
i, is calculated and the portion for which p=<H, is selected.
Sparse data 3606 has gaps that are uniformly distributed in
time and are specified by the condition

p>H2 = H, (47)
Plozé&

Po1 =&



US 10,241,887 B2

23

where H, is a user defined parameter. For example, H,=60%.
The second condition p,,=¢ and third condition p,, =€ indi-
cate that the gaps are uniform in time and cleanup is not
possible. Corrupted data 3607 is identified when p>Hj,
where Hj is a user defined parameter, such as H,=95%.

FIG. 37A shows an example plot of data that is non-
uniform in time and has a gap 3702. The data is considered
dense data with p=39%, p,,=0.99991, p,,=9.4e-05,
Poo=0.99985, p,;=0.00015. FIG. 37B shows a plot of
example data that is non-uniform in time gaps. The data is
also considered dense data p=55%, p,,=0.99974,
010=0.00026, P,,=0.9998, p,,=0.00021. FIG. 37C shows an
example plot of sparse data with p=68%, p,,=0.9957,
010=0.0043, p,,=0.9979, p,,;=0.0020. FIG. 37D shows an
example of dense data with p=48%, p,;=0.9962,
D,0,=0.0038, P,,=0.9958, p,,=0.0042.

Period determination of normalcy bounds is performed
using a standard described above with reference to FIG. 5,
where the parameter “time_unit_parts™ is given by:

“— . ” “time_unit’
time_unit parts” = | ————————
median(7} ) + median(G,)

The data may be periodic or non-periodic. In both cases, the
normalcy bounds are determined as described above with
reference to FIG. 5 for classifying the data as periodic or
non-periodic.

Returning to FIG. 2, in block 204, a routine “stability
detector” is called to check the stability of the dense data 222
output from the routine “data density detector.” FIG. 38
shows a flow-control diagram of a stability detector method
called in block 204 of FIG. 2. The stability detector performs
statistical stability recognition of dense data 222. When the
dense data 222 is stable or a stable portion of the data can
be identified, the data, or a selected portion, is categorized
as stable data, otherwise the data is categorized as corrupted.
Stability categorization may be accomplished by construc-
tion a “stabilochart” that represents stability intervals of time
series and allows for selection of recent and sufficiently long
data regions for further analysis. Blocks 3802-3805 are
repeated for every m. In block 3802, calculate the quantity

5 = ligr({xe }kmfmfn) — a5 | 0 “8)
igrita oy
where n is a user defined parameter. For example,
T
(3}

where T is the length of data. In block 3803, when s, <S,
control flows to block 3805, otherwise control flows to block
3805. The parameter S can be set to 50%. In block 3804, s,
is set to zero and the associated datum x,, is identified as
stable data 3807. In block 3805, s,, is set to one and the
associated datum x,,, is identified as corrupted data 3808. In
block 3810, when another datum x,, is available the opera-
tions of blocks 3802-3805 are repeated. The collection of
data {s,,} is the stabilochart of the set of data {x,,}.
FIGS. 39A-39C shows example plots stabilocharts of data
calculated for S=50%. FIG. 39A shows an example of stable
data. FIG. 39B shows an example plot of data where the
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portion of data beyond about 1.186x10'* is considered
stable. FIG. 39C shows an example plot of unstable data.

In other embodiments, the method in FIG. 38 can be
carried out for the data tail {x,},_,”¥ with a corresponding
stabilochart denoted by S,,,. The start time of the latest stable
portion of the data is denoted by T,,. A series of stabilocharts
1S,.},,.—." are generated for each of the series of start times

rm—1 showing the start times of the latest stability
portions of data tails. The minimum time min(T,,) indicates
the start time of the longest stable portion. Note that the set
{T,.},.t” can be empty, which indicates the data is cor-
rupted.

Returning to FIG. 2, in block 205, a routine “variability
detector” is called to assess the variability of the stable data
224 output from the stability detector 204. FIG. 40 shows a
flow-control diagram of a variability detector method called
in block 205 of FIG. 2. The variability detector performs
variability recognition of input stable data 224. In block
4002, absolute jumps x,' of data points are computed accord-
ing to

(49)

—
X=Xy =%

where x, belongs to the set of data {x,},_,". Low-variability
and high-variability data categories are recognized based on
the size of the jumps x,. In block 4004, a measure R of
variability is calculated according to

oo D o S

igr(n i)

where iqr({x,},_,")=0. In block 4006, data clustering is
determined by comparing the measure R with a user defined
threshold parameter V. For example, the threshold parameter
V can be 20%. When

RV

the data is categorized as low-variability data 4008, other-
wise when

R>V

the data is categorized as high-variability data 4010.

FIGS. 41A-41B shows data from low- and high-variabil-
ity categories for a threshold V=20%. In FIG. 41A,
R=200%. Because R=20%, the data is from a high-variabil-
ity cluster of data. Plot 4102 shows original data and plot
4104 shows a zoom in of the data values shown in plot 4102,
which reveals the high-variability of the data. In FIG. 41B,
R=12%. Because R<20%, the data is from a low-variability
cluster. Plot 4106 shows the original data, and plot 4108
shows a zoom in of the data shown in plot 4108. The data
exhibits a regularly spaced pattern of 5 peaks, which rep-
resents low-variability of the data.

Returning to FIG. 40, in block 4012, the period detector
4012 described above with reference to FIG. 5 is used to
assess the periodicity and non-periodicity of the low-vari-
ability data 4008 and the high-variability data 4010. In block
4014, a normalcy boundary calculation is performed for
both low- and high-variability, non-periodic data 4016. In
block 4018, a normalcy boundary calculation is performed
for low- and high-variability periodic data 4018. Different
sets of parameters may be used in blocks 4014 and 4018
based on the variability.

FIG. 42A shows an example plot of low-variability data
with R=0%. FIG. 42B shows an example plot of the low-
variability data shown in FIG. 42A with upper and lower
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normalcy bounds 4202 and 4204, respectively. The low-
variability data in FIG. 42A is periodic with corresponding
normalcy bounds determined using a parameter “time_unit_
parts”=12, which divides a day into 12 parts and hence is
used to calculate separate dynamic thresholds on 2-hour
intervals as shown in FIG. 42B.

FIG. 43 A shows an example plot of high-variability data
with R=100%. FIG. 43B shows an example plot of the
high-variability data shown in FIG. 43B with upper and
lower normalcy bounds 4302 and 4304, respectively. The
high-variability data shown in FIG. 43A is periodic with
corresponding normalcy bounds determined using a param-
eter “time_unit_parts”=3, which divides a day into 3 parts
and hence is used to calculate separate thresholds on 8-hour
intervals as shown in FIG. 43B.

FIG. 44 shows an example of a generalized computer
system that executes efficient methods for anomaly detection
and therefore represents a data-processing system. The inter-
nal components of many small, mid-sized, and large com-
puter systems as well as specialized processor-based storage
systems can be described with respect to this generalized
architecture, although each particular system may feature
many additional components, subsystems, and similar, par-
allel systems with architectures similar to this generalized
architecture. The computer system contains one or multiple
central processing units (“CPUs”) 4402-4405, one or more
electronic memories 4408 interconnected with the CPUs by
a CPU/memory-subsystem bus 4410 or multiple busses, a
first bridge 4412 that interconnects the CPU/memory-sub-
system bus 4410 with additional busses 4414 and 4416, or
other types of high-speed interconnection media, including
multiple, high-speed serial interconnects. The busses or
serial interconnections, in turn, connect the CPUs and
memory with specialized processors, such as a graphics
processor 4418, and with one or more additional bridges
4420, which are interconnected with high-speed serial links
or with multiple controllers 4422-4427, such as controller
4427, that provide access to various different types of
computer-readable media, such as computer-readable
medium 4428, electronic displays, input devices, and other
such components, subcomponents, and computational
resources. The electronic displays, including visual display
screen, audio speakers, and other output interfaces, and the
input devices, including mice, keyboards, touch screens, and
other such input interfaces, together constitute input and
output interfaces that allow the computer system to interact
with human users. Computer-readable medium 4428 is a
data-storage device, including electronic memory, optical or
magnetic disk drive, USB drive, flash memory and other
such data-storage device. The computer-readable medium
4428 can be used to store machine-readable instructions that
encode the computational methods described above and can
be used to store encoded data, during store operations, and
from which encoded data can be retrieved, during read
operations, by computer systems, data-storage systems, and
peripheral devices.

Embodiments are not intended to be limited to the
descriptions above. For example, any number of different
computational-processing-method  implementations that
carry out the methods for identifying anomalies in data may
be designed and developed using various different program-
ming languages and computer platforms and by varying
different implementation parameters, including control
structures, variables, data structures, modular organization,
and other such parameters. The systems and methods can be
executed in near-real time. The term “near-real time” refers
to a time delay due to data transmission and data processing
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that is short enough to allow timely use of the data generated
by the methods and systems described above.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A data-anomaly detection system comprising:

one or more processors;

one or more computer-readable media; and

a routine that executes on the one or more processors to

analyze digitally encoded data output from a system

monitoring tool and stored in the computer-readable

media by

identifying the output data as qualified data or cor-
rupted data;

identifying and sorting the qualified data into catego-
rized data;

calculating normalcy bounds for the categorized data;

discarding the corrupted data from the computer-read-
able media; and

inputting the categorized data and normalcy bounds to
an alerting engine that generates an alert when the
categorized data is outside the normalcy bounds.

2. The system of claim 1, wherein identifying qualified
data further comprises

determining whether the input data is qualified data or

corrupted data; and

determining whether the qualified data is dense data or

sparse data.

3. The system of claim 2, wherein determining whether
the qualified data is dense data or sparse data further
comprises

calculating a percentage of gaps in the qualified data,

based on a user defined gap parameter;

calculating data-to-data, data-to-gap, gap-to-gap, and

gap-to-data transition probabilities; and

based on the transitions probabilities and the percentage

of gaps, classifying the qualified data as dense data,
sparse data, or corrupted data.

4. The system of claim 1, wherein identifying the qualified
data further comprises

determining whether the qualified data is stable data or

corrupted data; and

categorizing stable qualified data as high-variability data

or low-variability data.

5. The system of claim 4, wherein determining whether
the qualified data is stable data or corrupted data further
comprises

generating a stabilochart for the qualified data; and

for each stabilochart value,

when the stabilochart value is less than a user defined
value, the qualified data is stable data, otherwise the
qualified data is corrupted data.

6. The system of claim 4, wherein categorizing stable data
as high-variability data or low-variability data further com-
prises

calculating jumps for the stable qualified data;

calculating a measure of variability based on the jumps

and the stable data; and
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identifying the stable data as low-variability data when
the measure of variability is less than a user defined
threshold, otherwise the stable data is high-variability
data.

7. The system of claim 1, wherein identifying and sorting
the qualified data into categorized data further comprises

determining whether the qualified data as parametric data

or regular data; and

when the qualified data is parametric data, calculating

normalcy bounds for the parametric data.

8. The system of claim 7, wherein determining whether
the qualified data is parametric data further comprises

checking the qualified data for categories of multinomial

data;
when no categories of multinomial data are found, de-
noising the qualified data followed by rechecking the
qualified data for categories of multinomial data;

determining whether the qualified data is periodic or
non-periodic; and

calculating normalcy bounds for the qualified data based

on the periodicity.

9. The system of claim 7, wherein determining whether
the qualified data is parametric data further comprises

searching for two or more modes in the qualified data;

checking each mode of qualified data for inertia;
checking each mode identified as having inertia for tran-
siency;

for each inertial mode,

determining whether the mode is periodic or non-
periodic; and

calculating normalcy bounds for the inertial mode
based on the periodicity of the mode.

10. The system of claim 7, wherein determining whether
the qualified data is parametric data further comprises

checking parameters of the qualified data for semi-con-

stant data;

when no semi-constant data is found, searching the quali-

fied data for the longest data portion of the data that is
semi-constant;

detecting the number of outliers in the semi-constant data;

determining whether the semi-constant data is periodic or

non-periodic; and

calculating normalcy bounds for the semi-constant data

based on the periodicity.

11. The system of claim 7, wherein determining whether
the qualified data is parametric data further comprises

searching the qualified data for a trend;

identifying the trend of the qualified data as linear, log-

linear, or non-trendy; and

calculating normalcy bounds based on the identified trend

for the qualified data.

12. The system of claim 1, wherein calculating the nor-
malcy bounds further comprises

removing abnormal outliers from the data;

smoothing the data;

generating a footprint matrix of the smooth data;

determining whether the data in the footprint matrix is

periodic or non-periodic; and

calculating upper and lower normalcy bounds based on

the footprint matrix.

13. Amethod carried out within a computer system having
one or more processors and an electronic memory that
analyzes digitally encoded data stored in one or more
computer-readable media, the method comprising:

identifying data output from a system monitoring tool as

qualified data or corrupted data;

28
identifying and sorting the qualified data into categorized
data;
calculating normalcy bounds for the categorized data;
discarding the corrupted data from the computer-readable
5 media; and

inputting the categorized data and normalcy bounds to an
alerting engine that generates an alert when the catego-
rized data is outside the normalcy bounds.

14. The method of claim 13, wherein identifying qualified
data further comprises

determining whether the input data is qualified data or

corrupted data; and

determining whether the qualified data is dense data or

sparse data.

15. The method of claim 14, wherein determining whether
the qualified data is dense data or sparse data further
comprises

calculating a percentage of gaps in the qualified data,

10

20 based on a user defined gap parameter;
calculating data-to-data, data-to-gap, gap-to-gap, and
gap-to-data transition probabilities; and
based on the transitions probabilities and the percentage
of gaps, classifying the qualified data as dense data,
25 sparse data, or corrupted data.

16. The method of claim 13, wherein identifying the
qualified data further comprises

determining whether the qualified data is stable data or

corrupted data; and

categorizing stable qualified data as high-variability data

or low-variability data.

17. The method of claim 16, wherein determining whether
the qualified data is stable data or corrupted data further
comprises

generating a stabilochart for the qualified data; and

for each stabilochart value,

when the stabilochart value is less than a user defined
value, the qualified data is stable data, otherwise the
qualified data is corrupted data.

18. The method of claim 16, wherein categorizing stable
data as high-variability data or low-variability data further
comprises

calculating jumps for the stable qualified data;

calculating a measure of variability based on the jumps

and the stable data; and

identifying the stable data as low-variability data when

the measure of variability is less than a user defined
threshold, otherwise the stable data is high-variability
data.

19. The method of claim 13, wherein identifying and
sorting the qualified data into categorized data further com-
prises

determining whether the qualified data as parametric data

or regular data; and

when the qualified data is parametric data, calculating

normalcy bounds for the parametric data.

20. The method of claim 19, wherein determining whether
the qualified data is parametric data further comprises

checking the qualified data for categories of multinomial
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when no categories of multinomial data are found, de-
noising the qualified data followed by rechecking the
qualified data for categories of multinomial data;
determining whether the qualified data is periodic or
65 non-periodic; and

calculating normalcy bounds for the qualified data based
on the periodicity.
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21. The method of claim 19, wherein determining whether
the qualified data is parametric data further comprises

searching for two or more modes in the qualified data;

checking each mode of qualified data for inertia;
checking each mode identified as having inertia for tran-
siency;

for each inertial mode,

determining whether the mode is periodic or non-
periodic; and

calculating normalcy bounds for the inertial mode
based on the periodicity of the mode.

22. The method of claim 19, wherein determining whether
the qualified data is parametric data further comprises

checking parameters of the qualified data for semi-con-

stant data;

when no semi-constant data is found, searching the quali-

fied data for the longest data portion of the data that is
semi-constant;

detecting the number of outliers in the semi-constant data;

determining whether the semi-constant data is periodic or

non-periodic; and

calculating normalcy bounds for the semi-constant data

based on the periodicity.

23. The method of claim 19, wherein determining whether
the qualified data is parametric data further comprises

searching the qualified data for a trend;

identifying the trend of the qualified data as linear, log-

linear, or non-trendy; and

calculating normalcy bounds based on the identified trend

for the qualified data.

24. The method of claim 13, wherein calculating the
normalcy bounds further comprises

removing abnormal outliers from the data;

smoothing the data;

generating a footprint matrix of the smooth data;

determining whether the data in the footprint matrix is

periodic or non-periodic; and

calculating upper and lower normalcy bounds based on

the footprint matrix.

25. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations of

identifying data output from a system monitoring tool as

qualified data or corrupted data;

identifying and sorting the qualified data into categorized

data;

calculating normalcy bounds for the categorized data;

discarding the corrupted data from the computer-readable

media; and

inputting the categorized data and normalcy bounds to an

alerting engine that generates an alert when the catego-
rized data is outside the normalcy bounds.

26. The medium of claim 25, wherein identitying quali-
fied data further comprises

determining whether the input data is qualified data or

corrupted data; and

determining whether the qualified data is dense data or

sparse data.

27. The medium of claim 26, wherein determining
whether the qualified data is dense data or sparse data further
comprises

calculating a percentage of gaps in the qualified data,

based on a user defined gap parameter;

calculating data-to-data, data-to-gap, gap-to-gap, and

gap-to-data transition probabilities; and
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based on the transitions probabilities and the percentage
of gaps, classifying the qualified data as dense data,
sparse data, or corrupted data.

28. The medium of claim 25, wherein identifying the
qualified data further comprises

determining whether the qualified data is stable data or

corrupted data; and

categorizing stable qualified data as high-variability data

or low-variability data.

29. The medium of claim 28, wherein determining
whether the qualified data is stable data or corrupted data
further comprises

generating a stabilochart for the qualified data; and

for each stabilochart value,

when the stabilochart value is less than a user defined
value, the qualified data is stable data, otherwise the
qualified data is corrupted data.

30. The medium of claim 28, wherein categorizing stable
data as high-variability data or low-variability data further
comprises

calculating jumps for the stable qualified data;

calculating a measure of variability based on the jumps

and the stable data; and

identifying the stable data as low-variability data when

the measure of variability is less than a user defined
threshold, otherwise the stable data is high-variability
data.

31. The medium of claim 25, wherein identifying and
sorting the qualified data into categorized data further com-
prises

determining whether the qualified data as parametric data

or regular data; and

when the qualified data is parametric data, calculating

normalcy bounds for the parametric data.

32. The medium of claim 31, wherein determining
whether the qualified data is parametric data further com-
prises

checking the qualified data for categories of multinomial

data;
when no categories of multinomial data are found, de-
noising the qualified data followed by rechecking the
qualified data for categories of multinomial data;

determining whether the qualified data is periodic or
non-periodic; and

calculating normalcy bounds for the qualified data based

on the periodicity.

33. The medium of claim 31, wherein determining
whether the qualified data is parametric data further com-
prises

searching for two or more modes in the qualified data;

checking each mode of qualified data for inertia;

checking each mode identified as having inertia for tran-
siency;

for each inertial mode,

determining whether the mode is periodic or non-
periodic; and

calculating normalcy bounds for the inertial mode
based on the periodicity of the mode.

34. The medium of claim 31, wherein determining
whether the qualified data is parametric data further com-
prises

checking parameters of the qualified data for semi-con-

stant data;

when no semi-constant data is found, searching the quali-

fied data for the longest data portion of the data that is
semi-constant;

detecting the number of outliers in the semi-constant data;
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determining whether the semi-constant data is periodic or

non-periodic; and

calculating normalcy bounds for the semi-constant data

based on the periodicity.

35. The medium of claim 31, wherein determining 5
whether the qualified data is parametric data further com-
prises

searching the qualified data for a trend;

identifying the trend of the qualified data as linear, log-

linear, or non-trendy; and 10
calculating normalcy bounds based on the identified trend
for the qualified data.

36. The medium of claim 25, wherein calculating the
normalcy bounds further comprises

removing abnormal outliers from the data; 15

smoothing the data;

generating a footprint matrix of the smooth data;

determining whether the data in the footprint matrix is

periodic or non-periodic; and

calculating upper and lower normalcy bounds based on 20

the footprint matrix.
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