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DATA - AGNOSTIC ANOMALY DETECTION should not be analyzed due to a lack of proper information . 
In other words , the methods avoid false positive alerts . 

TECHNICAL FIELD 
DESCRIPTION OF THE DRAWINGS 

The present disclosure is directed to electronic data ana - 5 
lyzing systems and , in particular , to computational methods FIG . 1 shows a flow - control diagram that provides an 
and systems for detection of anomalies in data produced by overview of data normalcy analysis . 
any complex system . FIG . 2 shows a flow - control diagram of a method for 

normalcy analysis . 
BACKGROUND 10 FIGS . 3A - 3D show example plots of data from four 

different data categories with corresponding normalcy 
With the advent of increased computing power and data bounds . 

storage , the development of computational tools to study FIG . 4 shows an example flow - control diagram of the 
ever increasingly complex systems in detail has increased routine “ parametric category detector ” called in block 202 of 
Examples of complex systems include weather systems , 15 FIG . 2 . 
ecosystems , biological systems , and information technology FIG . 5 shows a flow - control diagram of a method for 
systems . These computational tools enable vast amounts of determining whether or not data is periodic data or non 
information regarding a complex system to be collected , periodic data . 
analyzed and presented for human understanding . Of par FIG . 6 shows an example plot of elimination of outlier 
ticular importance to those who study these complex sys - 20 data . 
tems is the ability to identify variations , such as abnormali - FIGS . 7A - 7C shows three example plots of filtering using 
ties , that occur within the complex system . For instance , in a moving average filter and a median filter . 
the case of an information technology infrastructure , varia - FIG . 8 shows a flow diagram of the routine “ data quan 
tions from normal or expected operation could lead to tization ” called in block 502 of FIG . 5 . 
failures , slowdown , threshold violations , and other prob - 25 FIG . 9 shows an example of a frame with grid lines . 
lems . These types of problems are often triggered by unob - FIG . 10 shows calculation of the percentages of data in 
served variations or abnormalities in the operation of one or the grid cells arranged in a column . 
more nodes that cascade into larger problems . FIGS . 11A - 11B show an example of smoothing a grid 

In recent years , computational techniques have been cell . 
developed to detect patterns in data produced by a complex 30 FIG . 12 shows an example of a cumulative summation of 
system that do not conform to an established normal behav - a sequence of values arranged in a column . 
ior for the complex system . These anomalies may translate FIG . 13 shows an example of a 3x3 grid - cell window of 
into critical and actionable information in several applica - grid - cell values . 
tion domains . However , many anomalies in complex sys - FIG . 14 shows an example of cumulative summation of a 
tems do not adhere to common statistical definitions of an 35 weighted average of grid cells . 
outlier . As a result , many anomaly detection techniques FIG . 15 shows a flow diagram of a method for pattern 
cannot be applied to a wide variety of different types of data recognition called in block 503 of FIG . 5 . 
generated by different complex systems . For instance , typi - FIG . 16 shows an example of a T - cycle checking proce 
cal techniques for anomalous detection of time - series data dure . 
rely heavily on parametric analysis . These techniques 40 FIG . 17 shows periodic columns of a two - dimensional 
assume a known set of distributions for the metrics and footprint matrix . 
perform simple calculations to detect percent out of normal . FIG . 18 shows a cyclochart in a tabular format . 
On the other hand , non - parametric techniques make no FIG . 19 shows an example cyclochart . 
assumption about the data distribution and , as a result , can FIG . 20 shows an example cyclochart . 
be applied to any data set but at the cost of complexity and 45 FIG . 21 shows a plot of lower and upper normalcy bounds 
more resource intensive algorithms . Those working in the for periodic data . 
computing industry continue to seek tools that can be used FIG . 22 shows normalcy bounds constructed of an 
to detect anomalies in a given data set regardless of the type example footprint matrix . 
of data . FIG . 23 shows a flow - control diagram of a method for 

50 multinomial data categorization called in block 401 of FIG . 
SUMMARY 

FIG . 24 shows a flow - control diagram of a method for 
This disclosure presents computational systems and meth - transient data categorization called in block 402 of FIG . 4 . 

ods for detecting anomalies in data output from any type of FIGS . 25A - 25C show example plots of bimodal data . 
monitoring tool . The data is aggregated and sent to an 55 FIG . 26 shows a flow - control diagram of a method for 
alerting system for abnormality detection via comparison normalcy analysis . 
with normalcy bounds . The anomaly detection methods are FIGS . 27A - 27V show plots of experimental results for an 
performed by construction of normalcy bounds of the data example set of bimodal data . 
based on the past behavior of the data output from the FIG . 28 shows a flow - control diagram of a method for 
monitoring tool . The methods use data quality assurance and 60 semi - constant data categorization called in block 403 of 
data categorization processes that allow choosing a correct FIG . 4 . 
procedure for determination of the normalcy bounds . The FIG . 29A shows an example plot of semi - constant data . 
methods are completely data agnostic , and as a result , can FIG . 29B shows an example plot of piecewise semi 
also be used to detect abnormalities in time series data constant data . 
associated with any complex system . The methods described 65 FIG . 30 shows an example plot of a number of data points 
herein are comprehensive for addressing both accuracy and between a median line and an upper line . 
scalability and determination of the types of metrics that FIG . 31A shows an example plot of qualified data . 

4 
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FIG . 31B shows an example plot of the objective function may be input to an alerting engine for abnormality detection 
calculated for the data shown in FIG . 31A . via comparison with normalcy states for the data . 

FIG . 32 shows a flow - control diagram of a method for It should be noted at the onset that the input data 104 , 
trendy data categorization called in block 404 of FIG . 4 . categorized data 112 , any intermediately generated data , and 

FIGS . 33A - 33C show plots of trendy data and non - trendy 5 normalcy bounds are not , in any sense , abstract or intan 
data . gible . Instead , the input data is necessarily digitally encoded 

FIG . 34 shows lower and upper lines associated with a and stored in a physical data - storage computer - readable 
linear trend . medium , such as an electronic memory , mass - storage 
FIGS . 35A - 35D show example plots of periodic data with device , or other physical , tangible , data - storage device and 

linear trends . 10 medium . It should also be noted that the currently described 
FIGS . 35E - 35G show example plots of data with a data - processing and data - storage methods cannot be carried 

non - periodic base and linear trends out annually by a human analyst , because of the complexity 
FIG . 36 shows a flow - control diagram of the data density and vast numbers of intermediate results generated for 

detector called in block 203 of FIG . 2 . processing and analysis of even quite modest amounts of 
FIGS . 37A - 37D show example plots of non - uniform data 15 data . Instead , the currently described methods are necessar 

with and without gaps . ily carried out by electronic computing systems on elec 
FIG . 38 shows a flow - control diagram of a stability tronically stored data , with the results of the data processing 

detector method called in block 204 of FIG . 2 . and data analysis digitally encoded and stored in one or more 
FIGS . 39 A - 39C shows example stabilocharts of data . tangible , physical , data storage devices and media . 
FIG . 40 shows a flow - control diagram of a variability 20 FIG . 2 shows a flow - control diagram of a method for 

detector method called in block 205 of FIG . 2 . normalcy analysis that provides an expansion of the pro 
FIGS . 41A - 41B show plots of low - and high - variability cesses of blocks 102 and 110 introduced in FIG . 1 . The 

categories of data . method includes calls to three routines 201 , 203 , and 204 
FIGS . 42A - 42B show example plots of low - variability that comprise the DOA described above with reference to 

data with upper and lower normalcy bounds . 25 block 102 of FIG . 1 and calls to two routines 202 and 205 
FIGS . 43A - 43B show example plots of high - variability that comprise the DC operation described above with ref 

data with with upper and lower normalcy bounds . erence to block 110 of FIG . 1 . The method receives the input 
FIG . 44 shows an example of a generalized computer data 104 generated by a monitoring tool , and the routines 

system that executes efficient methods for anomaly detec 202 - 205 indentify the input data 104 as belonging to one of 
tion . 30 the data categories : parametric data 207 , sparse data 208 , 

high - variability data 209 , and low - variability data 210 , 
DETAILED DESCRIPTION respectively . In block 201 , a data quality detector receives 

the input data 104 and performs a check of sufficient 
This disclosure presents computational systems and meth - statistics . Sufficient statistics can be certain user defined 

ods for fully data - agnostic anomaly detection using time - 35 parameters about the data . For example , sufficient statistics 
series data based on normalcy analysis . FIG . 1 shows a can be a minimum number of available data points and a 
flow - control diagram that provides an overview of data minimum data - time duration . Block 201 identifies the input 
normalcy analysis . In block 102 , data quality assurance data 104 as qualified data 106 when available data points and 
( “ DQA " ) receives input data 104 supplied by any one of length of data are sufficient for further analysis or identifies 
various different types of monitoring tools . For example , the 40 the input data 104 as corrupted data 108 that may be 
monitoring tools can be sensors , such as biosensors , and discarded . In block 202 , a routine " parametric category 
network monitoring tools , such as HTTP , SMTP , or status detector ” is called to perform data categorization by veri 
requests , network traffic measurements , and network tomog - fying qualified data 106 against selected statistical paramet 
raphy . The DQA operation identifies the input data 104 as ric models . When parametric data categorization is possible , 
qualified data 106 or corrupted data 108 by checking the 45 the qualified data 106 is identified as parametric data 207 , 
input data 104 against different statistical characteristics otherwise , the qualified data 106 is identified as regular data 
defined for data qualification . Corrupted data 108 is useless 216 . The parametric category detector 202 further catego 
for further analysis and may be discarded . In block 110 , data rizes the parametric data 207 as multinomial data , transient 
categorization ( “ DC " ) is used to identify and sort the quali data , semi - constant data , and trendy data , as described 
fied data 106 into categorized data 112 . In other words , for 50 below with reference to a flow - control diagram in FIG . 4 . In 
each time series , the DC operation performs category check - block 203 , a routine “ data density detector ” is called to 
ing and identification with hierarchical / priority ordering on assess gaps in the regular data 216 . When the regular data 
the qualified data 106 . For example , the qualified data 106 216 has a high percentage of gaps the data is considered 
can be interpreted as being composed of subsets , where each corrupted data 220 that may be discarded ; otherwise , the 
subset belongs to a different data category : 55 regular data 216 has a lower percentage of gaps and is 

identified as dense data 222 . The data density detector 203 Data Set = CUCU . . . UCH also categorizes regular data 216 with a high percentage of 
where C , stands for the ith statistical data category . gaps that are uniformly distributed in time as sparse data 208 

The DC operation performed in block 110 produces statis - and regular data 216 with a high percentage of gaps that are 
tically categorized data 112 . When the categorized data 112 60 localization in time is further processed in block 203 with a 
belongs to a statistical category C , determined in block 110 , gap filter that outputs dense data 222 or corrupted data 220 . 
no further categorization is performed , and in block 114 , In block 204 , a routine “ stability detector ” is called to 
category specific normalcy analysis is performed on the analyze the dense data 222 in terms of statistical stability . 
specified data 112 to end the process . It should be noted that when the dense data 222 is piecewise stable and the latest 
the type of specific normalcy analysis applied to the catego - 65 stable region is enough for further processing the block 204 
rized data 112 depends on the statistical category to which categorizes the data as stable data 224 , otherwise , the data 
the categorized data 112 belongs . The categorized data 112 222 is categorized as corrupted data 226 that may be 
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3 , 0 ) = 2n + 1 Š Xi + k ) k = - N 

( 46 ) 

discarded . In block 205 , a routine “ variability detector ” is FIG . 6 shows an example plot of elimination of outliers 601 
called to receive the stable data 224 and categorizes the data by whisker ' s method . After whisker ' s method , the moving 
as high - variability data 209 or low - variability data 210 . For median or average filter smooths the data by replacing each 
each of the data categories identified in blocks 202 - 205 , data point with a median or average of the neighboring data 
normalcy analysis is performed in blocks 212 - 215 , which is 5 points . The moving average filter is given by : 
different for each data category . The categorized data with 
normalcy bounds output from the blocks 212 - 215 may be 
input to an alerting engine for abnormality detection . ( 4a ) 

FIGS . 3A - 3D show example plots of data that belongs to 
four different data categories with corresponding normalcy 10 
bounds . In FIGS . 3A - 3D , horizontal axes represent time and 
vertical axes represent data values . FIG . 3A shows an where example plot of linear periodic data 301 located between an y ( i ) is the smoothed value for the ith data point y ( i ) ; upper linear - periodic normalcy bound 302 and a lower 
linear - periodic normalcy bound 303 . FIG . 3B shows an 15 N is the number of neighboring data points of y ( i ) ; and 
example plot of normalcy bounds 305 and 306 for high 2N + 1 is the span . 
variability periodic data 307 . FIG . 3C shows normalcy A moving average filter can be implemented by recursion . 
bounds 309 and 310 for low - variability periodic data 311 . Moving average filter are trend following indicators that can 
FIG . 3D shows normalcy bounds 313 and 314 for semi be used to reduce random noise . The moving median filter 

also smooths the data by replacing each data point with a constant non - periodic data 315 . 20 
FIG . 4 shows an example flow - control diagram of the median of the neighboring data points and is given by : 

routine " parametric category detector ” called in block 202 of 
FIG . 2 . In this example , blocks 401 - 404 represent routines ys ( i ) = median { y ( i + k ) } K = 
called in the flow - control diagram of FIG . 2 . The routines where 
401 - 404 are used to categorize the qualified data 106 as 25 y . ( i ) is the smoothed value for the ith data point y ( i ) ; 
belonging to the parametric data categories identified as N is the number of neighboring data points of y ( i ) ; and 
multinomial data 406 , transient data 407 , semi - constant data 2N + 1 is the span . 
408 , and trendy data 409 , respectively . Qualified data 106 FIGS . 7A - 7C shows three example plots of filtering using a 
that is not categorized as belonging to one of the four moving average filter and a median filter . In FIG . 7A , a 
parametric categories is categorized as regular data 216 . The 30 moving average is applied to the highly oscillatory data 
parametric data output from each of the routines 401 - 404 represented by light curve 701 to obtain smoothed data 
undergoes normalcy analysis , which is as represented by a represented by heavy curve 702 . In FIG . 7B , a moving 
single block 410 , is different for each of the parametric median is applied to data represented by light curve 703 to 
categories . The normalcy analysis applied to each of the obtain smoothed data represented by heavy curve 704 . In 
different parametric data categories includes the operation of 35 FIG . 7C , a moving average filter is applied to data repre 
determining whether or not the particular category of para sented by an oscillatory curve 705 of small fluctuations and 
metric data is periodic or non - periodic data . a spike 706 to obtain smoothed data represented by curve 

FIG . 5 shows a flow - control diagram of a period detector 707 . 
method for determining whether or not data is periodic data Returning to FIG . 5 , in block 502 a routine “ data quan 
or non - periodic data . The data can fit any of the data 40 tization ” is called to construct a footprint of historical data . 
categories discuss above . In block 501 , data preprocessing FIG . 8 shows a flow diagram of the routine " data quantiza 
performs data smoothing and outlier removal . Examples of tion ” called in block 502 of FIG . 5 . In block 802 , the range 
two techniques for data preprocessing are whisker ' s method of the data is divided into intervals by the quantiles with 
and moving median filtering or whisker ' s method and mov - k = ki , . . . , km and Osk ; < . . . < kn5100 , where the parameter 
ing average filtering . After data smoothing by whisker ' s 45 m and the values for k : are user - defined . The data may be 
method , the moving median filter or moving average filter divided into non - uniform intervals identified by grid lines . 
removes small fluctuations from the data . When the number The grid lines are close where the data is dense and the grid 
of outliers removed by whisker ’ s method is large ( e . g . , more lines are spread out where the data is sparse . For division of 
than 5 % ) one of the moving filters is applied . Whisker ' s data into parts by time , two user defined parameters " time _ 
method is carried out to remove abnormally high - value data 50 unit ” and “ time _ unit _ parts ” are used . “ Time _ unit " is a 
points . Whisker ' s method calculates two different quantiles parameter that defines a minimal length of possible cycles 
of historical data qa and qb , where Osa < bsl . Every data that can be found and any cycle can be a factor only of the 
point that lies outside the interval : length of the " time _ unit " . The parameter “ time _ unit _ parts ” 

represents the number of subintervals the " time _ unit " is 
( 9a - c ( 96 - 9a ) , 95 + c ( 96 - 9a ) ) divided by and is the measure of resolution . The larger the 

where c is a positive parameter , is an abnormal outlier to be value of " time _ unit _ parts ” , the more sensitive or higher 
removed . For example , letting c equal 1 . 5 , data points resolution of the footprint of historical data . 
greater than an upper whisker given by : FIG . 9 shows an example of a frame with grid lines . 

Vertical grid lines , such as grid line 901 , are regularly spaced 
90 . 75 + 1 . 5iqr ( 3a ) 60 along the horizontal or time axis and vertical grid lines , such 

and less than a lower whisker given by : as grid line 903 , are non - uniformly spaced along the range 
axis . The region between any two neighboring horizontal 

qa = 90 . 25 - 1 . 5iqr ( 3b ) grid lines that intersect any two neighboring vertical grid 
are removed , were iar represents the interquartile range lines is called a grid cell . For example , a grid cell 905 is the 
given by : 65 region between vertical grid lines 901 and 902 and horizon 

tal grid lines 903 and 904 . One possibility is parameters x , 
iqr = 90 . 75 - 90 . 25 ( 36 ) " time _ unit ” and “ time _ unit _ parts ” with an estimated moni 

( 2 ) 55 
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toring time At that allows sufficient statistics for normal Equation ( 6 ) to grid cells located in the end columns . 
statistical analysis . For example , the monitoring time At can Embodiments are not limited to 3x3 grid - cell windows and 
be given by : the weights presented in Equation ( 6 ) and FIG . 11B . In other 

embodiments , 4x4 and 5x5 , or even larger , grid - cell win 
At = median ( Atx ) ( 5 ) 5 dows can be used with any desired weights . After the 

weighted averages have been obtained , cumulative sums are 
where Atx = tk + 1 - the calculated for each column of the 2D matrix . A cumulative 

Examples of possible settings for “ time _ unit " are sum is a sequence of partial sums applied to a column of 
smoothed grid cell values . FIG . 12 shows an example of a 
cumulative summation of a sequence of values arranged in 

( Al > 1 day " time _ unit " = 1 week a column 1202 . Column 1204 represents the resulting cumu 
Ats1 day " time _ unit " = 1 day lative sum of the values in the column 1202 . 

FIGS . 13 and 14 show the procedure of weighted aver 
aging and cumulative summing , respectively , applied to an 

and an example of the following settings for qx and “ time _ example 2D matrix of grid - cell percentage values acquired 
unit _ parts ” are : 15 as described above with reference to FIGS . 9 and 10 . FIG . 

13 shows an example of a 3x3 grid - cell window 1304 of 
grid - cell values surrounding the grid cell 1300 . Matrix 1306 

( At < 20 minutes " time _ unit _ parts " = 12 qk = 5 % represents the grid - cell values in the window 1304 and 
matrix 1308 represents the weights shown in FIG . 11B . 20 minutes < At s 1 hour " time _ unit _ parts " = 6 Ok = 5 % 20 Matrix 1310 is a product matrix produced by element - wise 

1 hour < At < 2 hours " time _ unit _ parts " = 4 9k = 10 % multiplication 1312 of the matrix 1306 by the weights in the 
2 hour < A1 < 4 hours " time _ unit parts " = 3 qk = 10 % matrix 1308 . Equation 1314 represents the mathematical 
4 hour < At < 12 hours " time _ unit _ parts " = 1 9k = 20 % operation of Equation ( 6 ) , which gives a weighted average 
12 hour < A1 < 24 hours " time _ unit _ parts " = 1 Ok = 25 % percentage 1316 for the grid cell 1300 . Applying the 

| A1 > 1 day " time _ unit _ parts " = 7 Ok = 25 % 25 weighted average to each of the grid - cell values in the matrix 
1302 in the same manner gives a 2D weighted average 
grid - cell matrix 1318 . 

Returning to FIG . 8 , in block 802 , percentages are cal - FIG . 14 shows an example of cumulative summation of 
culated for each column of grid cells . Each column corre - the weighted average grid cells 1306 in the matrix 1318 . 2D 
sponds to a time interval . For a given framework the matrix 1402 represents grid - cell values generated by a 
percentage of the data in each grid - cell of a column of grid cumulative summation of the grid - cell values in each col 
cells associated with a given time interval are calculated . umn of the matrix 1318 . For example , the grid cell 1404 has 
FIG . 10 shows calculation of the percentages of data in the the value " 11 ” which is a cumulative sum of the grid - cell 
grid cells comprising the column of grid cells 1001 - 1009 values 1405 - 1410 in the matrix 1318 . Each element in the 
arranged in a column of percentages 1010 . For example , grid matrix 1402 is an approximate cumulative distribution func 

cells 1001 , 1002 , and 1009 are empty , which correspond to 35 tion of the data in that column . The resulting 2D matrix 1402 
is an example of a “ footprint ” matrix of historical data . 0 % elements in the column 1010 . Grid cells 1003 - 1008 have Returning to FIG . 5 , in block 503 , a routine " pattern data which corresponds to the percentages in the column recognition ” is is called . FIG . 15 shows a flow diagram of a 1010 . The percentages in the column 1010 correspond to the method for pattern recognition called in block 503 of FIG . data in the column of grid cells 906 in FIG . 9 . Collecting all a Collecting all 40 5 . In block 1501 , a cyclochart of the 2D footprint matrix columns percentages produces a matrix of percentages for output from data quantization 502 in FIG . 5 is constructed . that particular framework . The final matrix is a two - dimen Suppose T = Nxtime _ unit cycle checking procedure , where N 

sional ( “ 2D ” ) histogram of historical data . is a positive integer . The columns of the footprint matrix are Returning to FIG . 8 , in block 803 , the 2D histogram of collected into subgroups where L = Nxtime _ unitxtime _ unit _ historical data is smoothed . Smoothing can be a weighted ( 45 parts is the number of columns in every subgroup . The total averaging based of the percentages associated with the number of subgroups is M = length ( footprint ) / L . The foot neighbors . For example , FIGS . 11A - 11B show an example print matrix can be extended by adding columns of zeros . of smoothing a grid cell 1101 based on a weighted average The distance between any two columns is checked using a of the percentage of the grid cell 1101 and the percentages relative Lz - norm given by : of eight surrounding grid cells . Suppose that grid cell 1101 
has P % of data and the eight neighboring grid cells have the 
percentages A % , B % , C % , D % , E % , F % , G % , H % as 
represented by the nine grid cells shown in FIG . 11A . FIG . 
11B shows an example of a 3x3 grid - cell window of weights d ( A , B ) = - assigned to each of the corresponding grid cells shown in max ( | la | | , | | 601 ) 
FIG . 11A . The resulting smoothed percentage or weighted where 
average of the grid cell 1101 can be calculated as follows : 

50 
11 

A = 
4P + A + 2B + C + 2D + F + 2E + H + 2G ( 6 ) 60 new = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 4 

Applying Equation ( 6 ) to all of the grid cell percentages 
comprising a 2D matrix gives a smoothed matrix that is less 
sensitive to time and value shifts . For grid cells located in 65 
end columns of the matrix , virtual columns of neighboring 
cells with zeros may be added to the matrix in order to apply 

are any two columns in the footprint matrix . When 
d ( A , B ) scloseness ( 8 ) 

for some user - defined parameter called “ closeness , " it is 
assumed that the two columns A and B are similar . For 
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example , suppose a user defines a closeness parameter equal 77 , 14 , 21 , 28 , 
to 0 . 2 and a similarity parameter called “ similarity ” equal to 
75 % . FIG . 16 shows an example of a T - cycle checking 11 > 11 , 22 , 
procedure where columns of a footprint matrix are labeled A 14 > 14 , 28 , through P and are divided into T - cycles composed of four 5 
columns . Note that a number of the columns are identified 1919 , as zero - data columns with the number “ O ” and columns with 
data are identified with the number “ 1 . " For this particular 21 21 , example , suppose 

23 - 23 , 
d ( A , E ) > closeness , d ( 4 , 1 ) > closeness , d ( A , M ) > closeness 

In other words , column A is not similar to columns E , I , and 28 - 28 , 
M . Now suppose that for column E 

31 31 . 
d ( E , I ) scloseness , d ( E , M ) scloseness In block 1504 , the series characteristics are calculated for 

In other words , column E is similar to columns I and M . each of the period series . The following series characteristics 
Because 3 out of 4 possible columns compose 75 % or can be : 
greater similarity , the first column of the T - cycle is assumed Positive factor of a period series is the number of peaks 
to be periodic . If during comparison only p % of the columns 2 in the period series ; and 
are similar where p % < similarity then the associated column Negative factor of a period series is the number of 
is considered non - periodic . For example , FIG . 17 shows the members in the period series that are not peaks ; and 
periodic columns are marked by “ 1 ” and the non - periodic the strength of the time unit can be calculated using : 
columns are marked by " 0 . " Repeating this procedure for all Strength = Positive factor - Negative factor possible T - cycles produces a Cyclochart of the footprint 25 
data . FIG . 18 shows a cyclochart in tabular format , and FIG . Table 2 shows positive factors , negative factors , and 
19 shows a corresponding plot of the same cyclochart data . strengths for the data represented in Table 1 . 
Next , the method of pattern recognition includes a period 
determination procedure of the cyclochart data , composed of TABLE 2 
the four operations represented by blocks 1502 - 1505 . The 30 Local Positive Negative 
operations of blocks 1502 - 1505 are now described with maximum factor factor Strength Similarity 
reference to the data presented in an example cyclochart 
shown in FIG . 20 . In block 1502 , local maximums in the 34 . 7 % 

31 . 3 % cyclochart are identified according to their corresponding 82 . 5 % 
similarities . For example , peaks 2001 - 2010 are local maxi - 35 44 . 9 % 
mum similarities . Table 1 displays the local maximum time 73 . 28 % 

60 . 5 % units and the corresponding local maximum similarities 90 . 3 % represented by the peaks 2001 - 2010 in the cyclochart of 68 . 1 % 
FIG . 20 . 78 % 

37 % 
TABLE 1 

In bock 1505 , a period is determined by selecting the periods Local maximum time Local maximum 
units ( days ) Similarities with maximum strength . From that list the periods with 

minimum negative factor are selected . From that list , periods 
34 . 7 % 45 with maximum similarity are selected . Finally , the period 
31 . 3 % 
82 . 5 % with minimum length is selected . A user can define different 
44 . 9 % limitations on the calculated period . For example , when the 

73 . 28 % similarity of the determined period is small ( e . g . , less than 
60 . 5 % 20 % ) , the data may be considered non - periodic . This pro 90 . 3 % 
68 . 1 % 50 cedure applied to the cyclochart data shown in FIG . 20 leads 
78 % to the 7 - day period having the maximum Strength = 4 . 
37 % Returning to FIG . 5 , in general , the period detector 

classifies data as periodic data 504 and non - periodic data 
Returning to FIG . 15 , in block 1503 , periods for each of the 505 . The general procedure of normalcy bounds determina 
local maxima are constructed . For example , the data asso - 55 tion is described below for each of the different data cat 
ciated with each T - cycle has a k? cycle for every natural egories . Determination of normalcy bounds for both types of 
number k . So the local maximum with a 2 - day period creates data takes into account the specific data categories . For 
the following periodic series non - periodic data 505 , one approach to determining nor 

malcy bounds may be to apply whisker ' s method , and 
2 - > 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , 28 , 30 . 60 another approach may be to utilize an objective function 

based on data range or variability calculation . On the other The local maximum with a 4 - day period creates another hand , for periodic data 504 , normalcy bounds may be 
periodic series calculated column - wise for every “ time _ unit _ parts ” by the 

same procedure and then normalcy is extended into the 
4 - 4 , 8 , 12 , 16 , 20 , 24 , 28 . 65 future based on the cycle information . FIG . 21 shows a plot 

Similarly , local maximums 7 , 11 , 14 , 19 , 21 , 23 , 28 , and 31 of lower and upper normalcy bounds 2102 and 2104 for 
day periods create periodic series given by : periodic data 2106 . More specifically , consider the case of 

NEO 
31 

11 
? 

? ?? ?? 

? 
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C4 

cyclical data and the following four columns of data from a C1 = 100 , 
footprint matrix , which are shifted one from another by the C ; FP ; + . . . + Pm period of data 

Cm Pm ( 9 ) 

5 When cr < H3 , Ck - 12H3 , the integer values nz , nx + 1 , . . . nm can 
be discarded from further analysis , where HŽ is a user 
defined parameter . The user defined parameters , H7 , H , , and 

A = L ] , B = Hz can be assigned the values 2 . 5 % , 0 . 5 % , and 0 . 5 % , 
au ) 1 64 ) respectively . 

10 Blocks 2308 , 2314 and 2316 comprise normalcy analysis 
for the multinomial data 2304 represented by block 410 in 

If d ( A , B ) scloseness , d ( A , C ) scloseness , and d ( A , D ) - close FIG . 4 . In block 2308 , the routine " period detector 
ness , then the columns form a cyclical subgroup and the described above with reference to FIG . 5 is called to identify 
normalcy bounds , also called dynamic thresholds ( “ DTS ” ) , periodic multinomial data 2310 and non - periodic multino 
are calculated based on the four data columns . On the other 15 mial data 2312 , which are then subject to determination of 
hand , if d ( A , B ) scloseness , d ( A , C ) scloseness but d ( A , D ) > normalcy bounds for the periodic multinomial data 2314 and 
closeness , then only the columns A , B , and C form a cyclical determination of normalcy bounds for the non - periodic 
subgroup . If d ( A , D ) scloseness and d ( A , B ) > closeness then multinomial data 2316 , respectively . Note that while con 

structing the footprint matrix in block 2308 , instead of using column A is discarded . If less than 75 % of the four columns 20 the percentages of data in every grid cell as described above A , B , C , and D are similar , then the columns A , B , C , and with reference to FIG . 5 , the cumulative sum of percentage D for a non - cyclical subgroup . From each group of columns , values Ck , described in Equation ( 9 ) , are used to construct the DTs are calculated using whisker ' s method , or by taking min footprint matrix . In block 2314 and 2316 , when multinomial 
or max values of the data , or by maximization of the data is periodic , the normalcy set for similar columns are 
objective function described below with reference to Equa - 75 calculated as follows . Data points in similar columns are 
tion ( 34 ) . FIG . 22 shows an example of upper and lower collected and new values for the numbers Cz are calculated . 
normalcy bounds constructed from an example footprint When Cu < H , CH , the values nj , ng , . . . , n , are the most 
matrix 2202 by taking into account the information on probable set ( i . e . , normalcy set ) of similar columns , where H 
cycles . is a user defined parameter , typically equal to about 20 % . 

Returning to FIG . 4 , in block 401 , the routine “ multino - 30 When data is determined to be non - periodic , the numbers of 
mial data categorization ” is called . FIG . 23 shows a flow - are calculated for all data points and the normalcy set is 
control diagram of a method for multinomial data ( " MD " ) determined similarly . 
categorization . In block 2302 , the routine receives the quali - Returning to FIG . 4 , in block 402 , the routine “ transient 
fied data 106 and calculates statistical parameters that are data categorization ” is called . FIG . 24 shows a flow - control 
compared with predefined statistical parameters that may be 35 diagram of a method for transient data categorization called 
calculated as follows . The qualified data can take different in block 402 of FIG . 4 . Transient data can be described in 
values , such as a , az , az , etc . The number of times each data terms of a transformation operator that converts the original 

qualified time series data into a different type of time series value occurs is given by n ; . For example , n , is the number data for which the final categorization can be performed . times a , occurs and n , is the number of times an occurs . Let 40 Normalcy bounds of the transient data are determined for p ; be the frequency of occurrences of the integer n ; : different data characteristics , such as range , variability , and 
distribution / structure . The concept of transiency is that a 
transformation operator , denoted by T , transforms original 
qualified time series data , denoted by Y ( t ) , into different 

45 time series data , denoted by X ( t ) , as follows : 
T : Y ( t ) - X ( t ) 

where 
j = 1 , . . . , m ; The operator T can be the identity operator E ( i . e . , T = E ) : 
N is the total number of integer values ; and E : Y ( t ) - > Y ( t ) ( 11 ) 
m is the number of different integer values . 50 which represents the case where no transformation is per 

In block 2302 , the qualified data 106 is multinomial data formed . Two different types of operators T can be used . The 
2304 when it takes less than m different integer values and operator T can be a point - wise operator or a time - window 
at least s of the integer values have frequencies greater than operator . The identity operator actually is an example of a 
a user defined parameter H . Otherwise , in block 2306 , point - wise operator . The differentiation operator ( or its dis 
de - noising is performed on the qualified data 106 with 55 crete analogue which reveals the variability of data ) is also 
sequential checking of predefined parameters . Block 2306 an example of point - wise operator . Smoothing operators are 
may be implemented using one or two different de - noising examples of time - window operators . The time series data 
procedures : Y ( t ) is called transient in terms of operator T when the 

1 ) The de - noising procedure is filtering against non - transformed data X ( t ) is transient . Transiency of X ( t ) can be 
integer values that are smaller than an H , percentage 60 confirmed by checking multimodality of the data , inertia of 
( HZ < H , ) , where H , is a user defined parameter . When the each mode of the data , and randomness of modes appearing 
condition H , < H , is satisfied , the non - integer numbers are along the time axis . Normalcy bounds for the transient data 
discarded . are determined separately for each mode as described in the 

2 ) The de - noising procedure is filtering against integer flow - control diagram shown in FIG . 26 . In block 2402 , a 
values with a small cumulative percentage . Sorting the 65 mode detector checks the multimodality of the qualified data 
percentages p ; in descending order , the cumulative sum of 106 and separates the qualified data 106 into multimode data 
percentages c ; is given by : 2406 and no mode data 2408 that may be discarded . Tran 

P ; = " 100 
( 10 ) 
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sient data has at least two modes . A mode that corresponds where the numbers H and h are user , predefined parameters . 
to lower data values is called low mode ( “ LM ” ) data , and a For example , H = 0 . 75 and h = 0 . 25 . If this process ends 
mode that correspond to higher data values is called high without finding the time interval , the region B is narrowed 
mode ( “ HM ” ) data . When the data is multimodal , the lowest and the procedure is repeated . Alternatively , the interval 
of the data values is the LM data and the other modes 5 [ x x 1 can be divided into N + 1 equally spaced subin 
correspond to HM data . In block 2410 , the multimode data 
is separated in multi - mode data with inertia 2412 and tervals given by : 
multi - mode data with no inertia 2414 . Inertia refers to data 
that maintains are range of values for a period of time before Xmin < x? < X2 < . . . < xx < & max ( 15 ) 
switching to a different range of values . In other words , and check sequentially each of the following subintervals 
inertia can be associated with the time duration that data according to Equations ( 13a ) - ( 13b ) with the conditions 
points remain in the selected mode . For example , the data given in Equation ( 14 ) : 
cannot oscillate from one mode to the other too quickly . 

FIGS . 25A - 25C show example plots of three types of ( * minu * n ) , ( * 1 , * max ) , ( Xmin XN - 1 ) , ( X1 , 6XN ) , ( x2 , bimodal data . FIG . 25A shows an example plot of bimodal Xmax ) , . . . , { minuti ) ( x1 , x2 ) , . . . , ( XN ; max ) data without a random distribution of modes along the time 15 
axis . FIG . 25B shows an example plot of bimodal data When an interval that satisfied the conditions in Equation 
without inertia of data points . FIG . 25C shows an example ( 14 ) is found the procedure stops . The procedure may also 
plot of transient data . The data plotted in FIG . 25B is an be repeated for the lowest ( A ) region and the highest ( C ) 
example of multimode data ( i . e . , modes 1 and 5 ) without region for finding new inertial modes if data is supposed to 
mode inertia . Because the LM data and HM data oscillate 20 be multi - modal . If the interval is not found then the data is 
between 1 and 5 , neither the LM data nor the HM data without inertial modes in terms of the given resolution . Now 
exhibit inertia with respect to either of the modes . By suppose that M inertial modes are found for the regions 
contrast , FIGS . 25A and 25 show examples of data with given by : 
inertial modes . For example , in FIG . 25A , the LM data are 
between 1 and 2 for a period of time ranging from 0 to about 25 4 , = [ , b? ) , . . . AM [ anbm ] ( 17 ) 
38 and HM data is between 9 and 12 for time greater than In block 2416 , for each inertial mode , the transiency is 
about 38 . FIGS . 25B and 25C show examples of data with determined in order to separate the multi - mode data with 
modes that randomly interchange over time . On the other inertia into transient data 2418 and non - transient data 2420 . hand , the data in FIG . 25A is piecewise - stable data with Transient data have periods where the LM data and the HM discoverable change points . 30 data randomly interchange over time . One of the found 

Returning to FIG . 24 , in block 2410 , the multi - mode data inertial modes is selected , and other data points outside of 
is searched for intervals of sparse data values and for data this region are deleted . Data points in the mode are denoted 
with some inertia concentrated in upper and lower regions of by x ( tz ) . Suppose that time intervals with AtzscAt are normal the intervals . Let numbers a , b satisfy the condition : data intervals and time interval with At > cAt are gaps in the 

Xminsa < bsx , ( 12 ) 35 time interval , where At is the monitoring time described 
where xw , x , are minimum and maximum data values , above in Equation ( 5 ) and the constant c is a predefined 
respectively , in an interval of sparse data . The numbers a and parameter for gap determination . It is assumed that for 
b divide the interval x , y , X , into three regions transient data the gaps are substantially uniformly distrib 
A def [ xmin , a ] , Bdel ( a , b ) , and def [ b , xmar ) . Transition probabili uted along the time axis , which can be checked by applying 
ties are given by : 40 the transition probabilities given in Equations ( 13a ) - ( 13c ) . 

Let T be the duration ( in milliseconds , seconds , minutes , 
etc . , but in the same measures as the monitoring time ) of the 

( 13a ) kth gapless data portion . For data without gaps only one 
?? portion exists and Tx = y - t? . The sum T = & = INIT is the 

duration of the gapless data , where N , is the number of ( 136 ) gapless data portions . Let G be the duration in the same 
measures as Tk ) of the kth gap . The sum G = & k = 1 NGG is the 

( 130 ) duration of gaps in the data , where Ng is the number of gap 
PC + C = - portions . As a result , G + T = ty - t? . The percentage of gaps in 

50 the data is given by : 
where 
NA is the number of data points in [ Xmin , a ) ; ( 19 ) N , is the number of data points in [ a , b ] ; 
Nc is the number of data points in ( b , Xmax ] ; 
NA - 4 is the number of points with the property x ( t ; ) ?A 

and x ( t ) A ; where pu , P10 , Poo , Pou are the probabilities of data - to - data , 
NB - > is the number of points with the property x ( t ; ) ?B data - to - gap , gap - to - gap and gap - to - data transitions , respec 

and x ( ti + 1 ) = B ; tively , and are given by 
and 
Ncc is the number of points with the property x ( t ; ) & C 

and x ( t ) C . ( 20 ) 
P11 = 1 - I , P10 = 1 - P11 , Poo = 1 - ci , and Starting from the highest possible position and shifting the AT region B to the lowest possible position , the three transition 

probabilities are calculated and the procedure is stopped 65 Poi = 1 - poo 
when the following conditions are satisfied : 

PA - > > H , PC - > c > H , PB - > B < h , and N4Nc > > 1 

NA - A 
PAA = Para = Mamma 
PB - 16 = $ * NB - B 
PB - B = B = NB 

Nc - C 
NC 

p = 617 , 100 % 
55 

60 
NT Na 

( 14 ) 
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When at least two inertial modes satisfy the following data portion of the jth mode , then from whisker ' s method , 
conditions : the normalcy bounds for durations of the jth mode is given 

p > P , P10 > E , Pon > ( 21 ) 
where P and ? are user defined parameters , the multi - mode 5 [ 90 . 25 ( T2 ) - 1 . 5iqr ( Tk ) , 90 . 75 ( Tx ) + 1 . 5iqr ( Tx ) ] ( 27 ) 
inertial data 2412 is transitory data 2418 , otherwise , the Normalcy bounds for the distribution statistical measure are 
multi - mode inertial data is non - transient data 2420 . calculated as follows . Let C be a distribution of a kth 

FIG . 26 shows a flow - control diagram of a method for gapless data portion ( provided this portion has enough 
normalcy analysis of multi - mode inertial data represented by statistics for distribution calculation ) of the jth mode . Dis 
block 410 in FIG . 4 . In block 2602 , for each inertial mode 10 tances E , - d ( C , 1 , C are calculated according to Equation 
in the multi - mode inertial data 2412 , the operations associ ( 7 ) between all distributions by some measure ( e . g . by mean 
ated with blocks 2604 , 2610 , and 2610 are repeated . Dif square distance ) . As a result , the normalcy bounds for the 
ferent inertial modes can have different normalcy bounds . In interval E , can be calculated from whisker ' s method as 
block 2604 , period detector described above with reference follows : 
to FIG . 5 is used to check the existence of periodicity in a 15 
given mode . When the mode is periodic 2606 , normalcy [ 90 . 25 ( Ex ) - 1 . 5iqr ( Ex ) ; 90 . 75 ( Ex ) + 1 . 5iqr ( Ex ) ] 
analysis 2610 is used to determine normalcy bounds along In on - line mode , when enough statistics are available for 
the found cycles , as described above with reference to FIG . distribution calculation , the corresponding distances En 
5 . On the other hand , when the inertial mode is non - periodic between historical distributions and current distribution can 
different statistical measures are applied for normalcy analy - 20 be calculated . On - line or run - time mode refers to anomaly 
sis 2612 . The following description is directed to normalcy detection when the decision on the system abnormality state 
analysis of non - periodic , multi - mode inertial data 2608 . is made for real - time data monitoring . The median of Ez 
Normalcy bounds can be set in terms of different statistical compared with normalcy bounds demonstrates the abnor 
measures , including data range , distribution , and duration . mality of the current process . Normalcy bounds for the 
The statistical measures can be calculated and used simul - 25 variability statistical measure are calculated as follows . Let 
taneously for abnormality detection and the information can X , be data points of the sth gapless portion of the jth mode . 
be stored in a binary vector : The variability of the sth portion is given by : 

a = ( Q1 , . . . , Qs ) ( 22 ) 
where a ; is either 0 or 1 . When a = 0 the jth statistical 
measure for abnormality detection is not calculated . When ( 29 ) iqr ( { x } } } = 1 ) 11 
Q = 1 appropriate normalcy bounds for the jth statistical iqr ( { wiki ) 
measure are calculated . Different modes may require differ 
ent settings for the vector a . When no normalcy determi where 
nation is wanted for a certain modes , all of the a , ' s may be 
set to 0 . The methods for process calculating normalcy iqr { { X } } k = 1 ̂ ) = 0 ; 
bounds for statistical measures data range , distribution , and xx ' are the absolute jumps of data points ; and 
duration are now described . Normalcy bounds for the sta 
tistical measure data range are calculated as follows . xx ' = \ xx + 1 = Xxl . 
Because each detected mode A , can be characterized by the 10 The normalcy bounds for the interval R . can be calculated 
interval [ a ; , b ; ] , the interval can be interpreted as a normalcy from whisker ' s method to give : 
region for the jth mode . The interval [ a , b ; ] can be divided 
into N + 1 equally spaced intervals represented by : [ 90 . 25 ( R $ ) - 1 . 5iqr ( Rs ) ; 90 . 75 ( R $ ) + 1 . 5iqr ( Rs ) ] 

a ; < x < X2 < . . . < xp < b ; for the jth mode . In block 2614 , when another inertial mode 
45 is available , the operations associated with blocks 2604 , and check sequentially the subintervals 2610 , and 2612 are repeated . 

[ xx ; b ; ] , [ XN - 1 , b ; ] , [ XN - 2 , 6 ; ] , . . . [ x ] , b ; ] ( 24 ) FIGS . 27A - 27V show plots of experimental results for an 
by calculating transition probabilities PA - > A , where A is the example set of bimodal data displayed in FIG . 27A . FIGS . 

27B - 27E show different [ a , b ] data value intervals repre region corresponding to the given interval . Subintervals for 
which p < 0 . 1 are discarded . Performing similar calcula - 50 sented by shaded rectangles with tables of corresponding 
tions and eliminations for intervals transition probabilities calculated according to Equations 

( 13a ) - ( 13c ) . No inertial modes are present with this resolu 
[ Q ; 1 ] , [ ; x2 ] , [ ; X3 ] , . . . [ Q ; ?ni ] ( 25 ) tion for the [ a , b ] intervals selected in FIGS . 27B - 27E . FIGS . 

gives strict normalcy bounds [ a ' ; , b ' ; ] , where 27F - 27K show different [ a , b ] intervals with tables of corre 
55 sponding transition probabilities calculated according to 

a , sa ' < h ' sb ; ( 26 ) Equations ( 13a ) - ( 130 ) . The transition probabilities for the 
Normalcy bounds for the duration statistical measure are [ a , b ] intervals in FIGS . 27F - 27K are collected and displayed 
calculated as follows . Let T be duration of the kth gapless in Table 3 . 

30 

( 30 ) 
( 23 ) 

TABLE 3 

P _ CC 0 . 21429 0 . 1875 0 . 58108 0 . 7913 X X 
P _ BB 0 . 15385 0 . 59091 0 . 85149 0 . 89524 0 . 54902 0 . 125 X X 
P _ AA 0 . 95963 0 . 91638 0 . 89238 0 . 90783 0 . 88732 0 . 90338 X X 

15 13 . 5 10 . 5 7 . 5 6 4 . 5 
a10 . 597 . 564 . 5 31 . 5 0 
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The seventh column of the data displayed in Table 3 reveals particular , block 2806 performs an iterative data selection 
an interval [ 3 , 7 . 5 ] ( see FIG . 27K ) with a small transition process by cutting off the last portion of data and returning 
probability PB - > B = 0 . 125 while transition probabilities for the data back to block 2802 . When this iterative process 
upper and lower regions are Pc - c - 0 . 7913 and between blocks 2802 and 2806 fails to reveal semi - constant 
PA = 0 . 90338 , respectively , which are indicators of inertial 5 data , the qualified data 106 is considered non - semi - constant 
modes . data . In other words , when after cutting the next portion of For transiency checking according to block 2416 the remaining data has insufficient statistics or when the 
described above , calculations were performed for an esti remaining data is shorter than some user defined smallest mated monitoring time of At = 1 minute . As a result , every portion , control flows to block 2808 . Formally , in block 
duration time of 5 minutes or more in an interval without 10 2802 , when data points is considered a gap . The percentage of gaps 
calculated according to Equation ( 19 ) is p = 62 . 3 % and the iqr ( { xx } x = 1 ̂ ) = 0 probabilities given by Equations ( 20 ) are 

control flows to block 2806 where cut data { xx } k = m . No is Pu = 0 . 93 , P10 = 0 . 067 , Poo = 0 . 965 , Po1 = 0 . 035 15 determined for 1 < msN < N . In block 2802 , the interquartile 
Therefore , the data is bimodal transient according to the range is calculated for 
given resolution . 
FIGS . 27M - 270 show plots of data used in the determi Sm = iqr { { x } } = m ) 

nation of normalcy bounds for upper and lower inertial When sm = 0 for m = m , the cut data { Xx } kem . No is semi modes . In FIG . 27L , the upper region is the interval [ 7 . 5 , 151 20 constant data and this portion of the qualified data 106 flows identified by a line 2702 that corresponds to the value 7 . 5 . to the process in block 2808 . In FIGS . 27M - 27P , lines 2704 - 2707 represent values for the 
constant c described above with reference to Equation ( 18 ) . FIG . 29A shows an example plot of semi - constant data . 

The operations associated with blocks 2802 and 2806 can For data values greater than corresponding lines 2704 - 2707 , also identify piecewise semi - constant data . FIG . 29B shows transition probabilities para are displayed for the intervals 25 an example plot of piecewise semi - constant data . [ c , 15 ] , 7 . 5sc < 15 in Table 4 . Returning to FIG . 28 , blocks 2808 , 2814 , 2820 , and 2822 
are used to carry out normalcy analysis on the semi - constant TABLE 4 data as described in block 410 of FIG . 4 . In block 2808 , 

PA - A 0 0 0 0 0 0 0 outlier detection is used to check the percentage of outliers 
14 . 625 14 . 25 13 . 875 13 . 5 13 . 125 12 . 75 in the semi - constant data 2804 . For semi - constant data every 

pin 0 . 21 0 . 21 0 . 21 0 . 19 0 . 19 0 . 19 0 . 63 data point greater than 90 . 75 or less than 90 . 25 is identified as 12 . 375 12 11 . 625 11 . 25 10 . 875 10 . 5 10 . 125 
PAA 0 . 63 0 . 58 0 . 74 0 . 73 0 . 79 0 . 79 0 . 79 an outlier . When the percentage of outliers is greater than a 
C 9 . 75 9 . 375 9 8 . 625 8 . 25 7 . 875 7 . 5 user defined percentage p % ( e . g . , p = 15 % ) , the semi 

constant data is identified as semi - constant data with a large 
number of outliers 2810 ; otherwise , the semi - constant data Eliminating all regions with probabilities PA - > 450 . 25 gives is identified as semi - constant data with a small number of the normalcy region [ 7 . 5 , 10 . 125 ] also identified in FIG . 270 outliers 2812 . The outlier data 2810 or 2812 is passed to by lines 2708 and 2709 . Similar calculations for the lower block 2814 to identify periodic semi - constant data 2816 . region lead to FIG . 27R where lines 2710 and 2711 represent When no periods are detected , the semi - constant data is the normalcy bounds and shaded interval 2712 represents an 40 declared non - periodic data 2818 . Periodicity analysis of intermediate region within the inertial modes . FIG . 27S 

shows the normalcy regions 2713 and 2714 for the lowest outlier data 2810 in block 2814 is performed using the 
period detector described above with reference to FIG . 5 , and highest inertial modes . FIG . 27T shows another example excluding the data points equal to the median of the original of bimodal data . Computational experiments show that the qualified data 106 . In block 2820 , normalcy bounds are data represented in FIG . 27T is not transient , because the 45 determined for periodic semi - constant data 2816 , and in upper mode is not inertial in terms of the identity operator , block 2822 , normalcy bounds are determined for non but it is transient in terms of the differentiator operator . FIG . periodic semi - constant data 2818 . Normalcy bounds deter 27U shows a plot of X ( t ) after differentiation of the data mination is performed separately for upper ( for data points represented in FIG . 27T , which gives bimodal data . FIG . 

27V shows associated normalcy bounds represented by lines 50 that are greater or equal to the median ) and lower ( for data 
points that are less than or equal to the median ) parts of data . 2716 and 2717 and inertial modes with normalcy regions 

2718 and 2719 for the data displayed in FIG . 270 . Because the computational operation for determining both 
Returning to FIG . 4 , in block 403 , a routine “ semi upper and lower bounds are similar , for the sake of brevity , 

determination of the upper bound is now described . The constant categorization ” is called . FIG . 28 shows a flow process includes maximization of an objective function control diagram of a method for semi - constant data catego - 55 
rization called in block 403 of FIG . 4 . In block 2802 , the given by : 
qualified data 106 is considered semi - constant data 2804 
when ( 34 ) 

iqr ( { xx } t = IM = 0 
where 
N corresponds to data length ; and where 
iqr stands for interquartile range of the qualified data a > 0 is a sensitivity parameter ; and 
Xxx ( 1x ) . Pis the percentage of data points between the median of 

Otherwise , control flows to block 2806 in which data 65 data and an upper line higher than the median . 
selection is performed to search the qualified data 106 for the The sensitivity parameter may be user selected . For 
longest data portion of the data that is semi - constant . In example , the sensitivity parameter can be a = 0 . 9 . FIG . 30 

f ( P , S ) = papS 
Smax ( 31 ) 60 
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shows an example plot of a number of data points between non - trendy data 3206 . In block 3208 , trend recognition 
a median line 3002 and an upper line 3004 . The denominator identifies the trendy data 3204 as linear data 3210 , log - linear 
of equation ( 34 ) is given by : data 3212 , or non - linear data 3214 . The operation in block 

3208 is to decompose the original time series f ( t ) of N data Smax = ( tmax - imin ) ( Upper Line - Data Median ) ( 35 ) 5 points into a sum of non - trendy time series , f ( t ) , and trend 
and the numerator S of Equation ( 34 ) is the square of the component trend ( t ) as follows : 
area within data points , such as data points 3006 , and the 
data median 3002 . In the data - range - based analysis , the fo ( t ) = f ( t ) + trend ( t ) 
range within the median line and maximum of the data is Equation ( 37 ) provides normalcy analysis based on f ( t ) . In divided into m parts and for each level values gk for k = 1 , 10 block 3216 , specific normalcy bounds are calculated for 2 , . . . m of the objective function are calculated . The level each of the categories 3210 , 3212 , and 3214 . that corresponds to a maximum of gk is the upper bound . The The trend detector in block 3202 performs a number of same procedure is valid for determination of the lower 
bound with the minimum of gt corresponding to the lower different trend detection tests . For example , the Mann 

Kendall ( “ MK ” ) test can be used to calculate an MK statistic bound . Instead of dividing the range into equal parts , the 15 given by : range can also be divided by corresponding quantiles that 
give unequal division according to the density of data points 
along the range . In the data - range - based approach , prelimi ( 38 ) nary abnormality cleaning of data can also be performed . So = sign ( x ; – xk ) 
Data points with abnormal concentrations are removed in a 20 
given time window . Abnormal concentrations can be 
detected as follows . For a given time window ( e . g . , 10 % of 
data length ) the percentage of data points with values greater The trend detector 3202 performs the following three opera 
than the 0 . 75 quantile are calculated . As the window is tions : 
moved along the data , corresponding percentages are cal - 25 1 . Data smoothing as described above with reference to 
culated . Any percentage greater than the upper whisker block 501 in FIG . 5 . 
indicates an abnormal concentration of data , which is dis - 2 . Calculation of the MK statistic S , for the smoothed 
carded . The same abnormality cleaning procedure is data . When S . > 0 a trend is identified as increasing , and 
repeated for data points lower than the 0 . 25 quantile . when So < 0 the trend is identified as decreasing . 

FIG . 31A shows an example plot of qualified data with 30 . 3 . A trend measure is calculated according to 
iqr = 0 and with an upper bound 3102 . FIG . 31B shows an 
example plot of the objective function calculated for the data 

( 39 ) in FIG . 31A using Equation ( 34 ) . Abnormality cleaning was 
also performed for the data represented in FIG . 31B . 

In the data variability - based approach for determining 35 where 
normalcy bounds , the variability of data points Xt against 
median of data u is calculated according to Simax = 

N - 1 N 

k = 1 ; = k + 1 

p = 100 % 
N - 1 

max = 
k = 1 ; = k + 1 

( 36 ) 40 When the trend med 

45 

50 R = 1 
Rregression 

Ro 

When the trend measure p is greater than a user defined 
threshold , for example p > 40 % , the data is trendy data 3204 . 

Trend recognition in block 3208 reveals the nature ( i . e . , 
linear , log - linear or non - linear ) of the trendy data 3204 . Consider the following set of upper lines Linear and log - linear trends can be checked using linear 

[ u + z ; v ] regression analysis . Trend recognition includes determining 
where j is a positive integer . For each interval j , the corre a goodness of fit given by : 
sponding values g ; of the objective function are calculated 
and the max ( g ; ) is taken as the appropriate normalcy upper ( 40 ) bound . For example , experimental values for z ; were 

z1 = 1 , 22 = 1 . 5 , 23 = 2 , 34 = 3 , z5 = 4 
Normalcy bounds are determined for semi - constant periodic where 
data 2816 as follows . Period detection as described above Rrepression is the sum of squares of the vertical distances of 
with reference to FIG . 5 is a way to get the period of the data 55 the points from the regression line ; and 
and similar columns . For normalcy bounds ( i . e . , dynamic Ro is the sum of squares of the vertical distances of the 
thresholds ) determination of similar columns , the discarded points from the line with zero slop and passing through 
data points ( recall that the periodicity procedure was per the mean of data ( i . e . , the null hypothesis ) . 
formed only for outliers in block 2808 ) are returned , the When R is , for example , greater than a user defined param 
variability vz is calculated for each column against the global 60 eter 0 . 6 it is assumed that the trend is linear , otherwise the 
data median u and the normalcy bounds are determined for log - linearity is checked by the same procedure for f ( ec ) , 
each column , as described above for the non - periodic case . where c is a constant . When the goodness of fit given by 

Returning to FIG . 4 , in block 404 , a routine trendy data Equation ( 40 ) is greater than 0 . 6 the data is assumed to be 
categorization ” is called . FIG . 32 shows a flow - control log - linear . If the data is not linear or not log - linear , the data 
diagram of a method for trendy data categorization called in 65 is assumed to be non - linear trendy data . 
block 404 of FIG . 4 . In block 3202 , a trend detector is used FIG . 33A shows a plot of increasing trendy data with 
to separate the qualified data 106 into trendy data 3204 and So = 48464 , Smax = 77421 , p = 62 . 6 % > 40 % . In this example , 

reg 
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R = 0 . 44 < 0 . 6 . FIG . 33B also shows a plot of increasing trendy regression line 3518 . In this example , the goodness of fit is 
data with So = 77421 , Spor = 77421 , p = 100 % > 40 % . The trend R = 0 . 99 , which indicates a linear trend . FIG . 35F shows the 
is linear because R = 0 . 999 > 0 . 6 . FIG . 33C shows a plot of data 3516 with final DTs represented by lines 3520 and 
non - trendy data with So = - 3504 , S = 77421 , and 3522 . In this example , no periods were found and the DTs 
p = 4 . 5 % < 40 % . 5 are straight lines . The lines 3520 and 3522 can be con 

Block 3216 is the normalcy analysis represented by block structed by maximization of objective function . FIG . 35G 
410 in FIG . 4 performed on the different categories of trendy shows an example plots of data with a non - linear trend base . 
data 3210 , 3212 , and 3214 to calculate the normalcy bounds Line 3524 is a regression line for the last portion of the data 

3526 and boundary lines 3528 and 3530 are upper and lower for each category . When the data has a linear trend , the data thresholds for the same portion . fo ( t ) is decomposed into 10 Returning to FIG . 2 , in block 203 , a routine “ data density 
fo ( t ) = f ( t ) + trend ( t ) ( 41 ) detector ” is called . FIG . 36 shows a flow - control diagram of 

where trend ( t ) = kt + b is a linear function with coefficients k the data density detector called in block 203 of FIG . 2 . The 
data density detector performs data density recognition and b determined by linear regression analysis . When f ( t ) is based on probability calculations that reveal the distribution non - periodic , normalcy bounds of fo ( t ) are straight lines 15 of . nu unes 15 of gaps in the data . Gaps in the regular data 216 are with upper and lower dynamic thresholds that are deter determined relative to data monitoring time At , which is mined by maximizing the objective function given by : estimated statistically from data time stamps . For categori 
zation purposes , the following measures characterize the 
nature of the gaps present in the data 216 : 1 ) percentage of 

eaP - 1 s ( 42 ) 20 gaps , 2 ) probabilities of gap - to - gap , data - to - data , gap - to 
data and data - to - gap transitions . When the total percentage 
of gaps is acceptable , the data is categorized as dense data . 
When the total percentage of gaps is greater than a user 

where defined limit and the percentage of gags have a non - uniform 
S is the square of the area limited by tmin and tmax and as distribution in time then a gap clean - up procedure gives 

lower and upper lines as shown in the example of plot dense data . When gaps in data have a uniform distribution in 
of FIG . 34 ; time , the data belongs to a sparse data cluster . When gaps in 

Smax = h ( tmax - tmin ) ; and the data occur with an extremely high percentage , further 
analysis is not typically possible , and the data is identified as 

Pis the fraction of data within the upper and lower lines corrupted data . In block 3601 , as described above , an 
and a is a user defined parameter . estimate of the monitoring time At is calculated according 

Variability ( i . e . , standard deviation ) of f ( t ) is calculated by : Equation ( 18 ) as the median of Atx = k + 1 - tz . In block 3602 , 
time intervals with At , scât are normal data intervals while o = std ( f ( ( ) ) ( 43 ) At ; > cAt are gaps are calculated , where c is user predefined 

The upper and lower lines are given by : gap parameter . As also described above with reference to 
35 Equation ( 19 ) , the percentage of gaps are represented by p . 

[ kt + b - z , 0 , kt + b + z ; 0 ] ( 44 ) In block 3603 , the probabilities P11 , P10 , Poo , and Poi in 
where j is a positive integer . The corresponding value g ; of Equations ( 20 ) are calculated for data - to - data , data - to - gap , 
the objective function is calculated for each time . Lines that gap - to - gap and gap - to - data transitions . In block 3604 , the 
correspond to max ( g : ) are appropriate normalcy bounds . percentage of gaps p , and the probabilities P11 , P10 , Poo , and 
Experimentally determined values for Z , are given by : 40 Poi are used to classify the data . For example , dense data 222 

with gaps non - uniformly distributed in time can be specified 
21 = 1 , 22 = 1 . 5 , 23 = 2 , 24 – 3 , 25 = 4 by the condition : 

When f ( t ) is periodic , the variability Om of the mth is 
calculated for each set of similar columns and the normalcy 
bounds are given by p > H1 ( 46 ) 

P10 < 8 [ kt + b - zomkt + b + z ; om ] ( 45 ) 
Poi < E 

The maximum of the objective function gives the normalcy 
bounds of the mth set . When the data has a log - linear trend , 
the time series f ( ect ) is data with a linear trend using the same 50 where H , and ? are user defined parameters , and E is a small 
procedure in Equations ( 41 ) - ( 45 ) . For data with a non - Linear parameter . For example , H = 25 % and e = 0 . 0005 . The main 
trend , the last portion of data is selected and normalcy reason for smallness of p10 and poi is the smallness of the 
bounds are calculated according to the above described numbers N? and NG , while G and T are as large as p . The 
procedure for non - periodic case . data of this category can be further processed via data 

FIGS . 35 A - 35D show example plots of periodic with 55 selection procedure to eliminate concentration of gaps , 
linear trends . FIG . 35A shows periodic data 3502 that which can be done as follows . The total percentage of gaps 
follows and a linear regression line 3504 . For this example , in the series of data { Xk & k = 1 , JJ1 , J2 . . . , Js , 1911 , 12 , . . . , 
the goodness of fit is R = 0 . 7 , which indicates a linear trend i , , is calculated and the portion for which psH , is selected . 
as shown . FIG . 35B shows the periodic data 3506 after Sparse data 3606 has gaps that are uniformly distributed in 
subtraction of the linear trend shown in FIG . 35A . FIG . 35C 60 time and are specified by the condition 
shows an example of dynamic thresholds 3508 and 3510 for 
periodic data 3506 shown in FIG . 35B . FIG . 35D shows 
normalcy bounds 3512 and 3514 for the original periodic p > H2 2 H1 
data 3503 after reconstruction of the linear trend . P10 SE 

FIGS . 35E - 35G show example plots of data with a 65 Poi 2€ 
non - periodic base but also have linear trends . FIG . 35E 
shows data 3516 with a linear trend represented by linear 

45 

V 
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where H , is a user defined parameter . For example , H2 = 60 % . portion of data beyond about 1 . 186x1012 is considered 
The second condition poze and third condition poize indi stable . FIG . 39C shows an example plot of unstable data . 
cate that the gaps are uniform in time and cleanup is not In other embodiments , the method in FIG . 38 can be 
possible . Corrupted data 3607 is identified when p > Hz , carried out for the data tail { X2 } tem with a corresponding 
where H , is a user defined parameter , such as Hy = 95 % . 5 stabilochart denoted by Sm . The start time of the latest stable 

FIG . 37 A shows an example plot of data that is non - portion of the data is denoted by Tm . A series of stabilocharts 
uniform in time and has a gap 3702 . The data is considered { Sm } m = i “ are generated for each of the series of start times 
dense data with p = 39 % , P11 - 0 . 99991 , P10 = 9 . 4e - 05 , { Tm } m = 1 " showing the start times of the latest stability 

portions of data tails . The minimum time min ( T ) indicates Poo = 0 . 99985 , Poi = 0 . 00015 . FIG . 37B shows a plot of 
example data that is non - uniform in time gaps . The data is 10 the start time of the longest stable portion . Note that the set 
also considered dense data p = 55 % , Pu = 0 . 99974 , { Tm } m = 1 " can be empty , which indicates the data is cor 

rupted . P10 = 0 . 00026 , P00 = 0 . 9998 , Por = 0 . 00021 . FIG . 37C shows an Returning to FIG . 2 , in block 205 , a routine “ variability example plot of sparse data with p = 68 % , P11 - 0 . 9957 , detector ” is called to assess the variability of the stable data P10 = 0 . 0043 , Poo = 0 . 9979 , Pon = 0 . 0020 . FIG . 37D shows an 15 224 output from the stability detector 204 . FIG . 40 shows a example of dense data with p = 48 % , Pu1 = 0 . 9962 , flow - control diagram of a variability detector method called P10 = 0 . 0038 , P . . = 0 . 9958 , P . 1 - 0 . 0042 . in block 205 of FIG . 2 . The variability detector performs Period determination of normalcy bounds is performed 
using a standard described above with reference to FIG . 5 , variability recognition of input stable data 224 . In block 

4002 , absolute jumps Xx ' of data points are computed accord where the parameter “ time _ unit _ parts ” is given by : 20 ing to 

( 49 ) 

R = 

Xx ' = \ Xz + 1 - xXx 
" time _ uni? 

" time _ unit _ parts ” = I median ( . ) + mediantG ) . where Xz belongs to the set of data { xx } t = 1 . Low - variability 
and high - variability data categories are recognized based on 

25 the size of the jumps xz ' . In block 4004 , a measure R of 
The data may be periodic or non - periodic . In both cases , the variability is calculated according to 
normalcy bounds are determined as described above with 
reference to FIG . 5 for classifying the data as periodic or 
non - periodic . R - iqr ( kvenkaat ) 1000 ( 50 ) 

Returning to FIG . 2 , in block 204 , a routine “ stability 30 " igr ( { X } } = 1 ) 
detector ” is called to check the stability of the dense data 222 
output from the routine " data density detector . " FIG . 38 
shows a flow - control diagram of a stability detector method where iqr ( { Xx } k = 1 ̂  ) 0 . In block 4006 , data clustering is 
called in block 204 of FIG . 2 . The stability detector performs determined by comparing the measure R with a user defined 
statistical stability recognition of dense data 222 . When the 35 threshold parameter V . For example , the threshold parameter 
dense data 222 is stable or a stable portion of the data can V can be 20 % . When 
be identified , the data , or a selected portion , is categorized RsV as stable data , otherwise the data is categorized as corrupted . 
Stability categorization may be accomplished by construc - the data is categorized as low - variability data 4008 , other 
tion a “ stabilochart ” that represents stability intervals of time 40 wise when 
series and allows for selection of recent and sufficiently long 

R > V data regions for further analysis . Blocks 3802 - 3805 are 
repeated for every m . In block 3802 , calculate the quantity the data is categorized as high - variability data 4010 . 

FIGS . 41A - 41B shows data from low - and high - variabil 
45 ity categories for a threshold V = 20 % . In FIG . 41A , 

ligr { { x { } K = m - n ) – iqr ( { x } } k = m 1nno ( 48 ) R = 200 % . Because R220 % , the data is from a high - variabil 
iqr ( { x { } & = 1 ) ity cluster of data . Plot 4102 shows original data and plot 

4104 shows a zoom in of the data values shown in plot 4102 , 
which reveals the high - variability of the data . In FIG . 41B , 

where n is a user defined parameter . For example , 50 R = 12 % . Because R < 20 % , the data is from a low - variability 
cluster . Plot 4106 shows the original data , and plot 4108 
shows a zoom in of the data shown in plot 4108 . The data 

n = [ ] exhibits a regularly spaced pattern of 5 peaks , which rep 
resents low - variability of the data . 

55 Returning to FIG . 40 , in block 4012 , the period detector 
where T is the length of data . In block 3803 , when sm < S , 4012 described above with reference to FIG . 5 is used to 
control flows to block 3805 , otherwise control flows to block assess the periodicity and non - periodicity of the low - vari 
3805 . The parameter S can be set to 50 % . In block 3804 , Sm ability data 4008 and the high - variability data 4010 . In block 
is set to zero and the associated datum xm is identified as 4014 , a normalcy boundary calculation is performed for 
stable data 3807 . In block 3805 , s , is set to one and the 60 both low - and high - variability , non - periodic data 4016 . In 
associated datum x , is identified as corrupted data 3808 . In block 4018 , a normalcy boundary calculation is performed 
block 3810 , when another datum x , is available the opera - for low - and high - variability periodic data 4018 . Different 
tions of blocks 3802 - 3805 are repeated . The collection of sets of parameters may be used in blocks 4014 and 4018 
data { sm } is the stabilochart of the set of data { x } . based on the variability . 

FIGS . 39A - 39C shows example plots stabilocharts of data 65 FIG . 42A shows an example plot of low - variability data 
calculated for S = 50 % . FIG . 39A shows an example of stable with R = 0 % . FIG . 42B shows an example plot of the low 
data . FIG . 39B shows an example plot of data where the variability data shown in FIG . 42A with upper and lower 

Sm = 
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normalcy bounds 4202 and 4204 , respectively . The low - that is short enough to allow timely use of the data generated 
variability data in FIG . 42A is periodic with corresponding by the methods and systems described above . 
normalcy bounds determined using a parameter “ time _ unit _ It is appreciated that the previous description of the 
parts ” = 12 , which divides a day into 12 parts and hence is disclosed embodiments is provided to enable any person 
used to calculate separate dynamic thresholds on 2 - hour 5 skilled in the art to make or use the present disclosure . 
intervals as shown in FIG . 42B . Various modifications to these embodiments will be readily 

FIG . 43A shows an example plot of high - variability data apparent to those skilled in the art , and the generic principles 
with R = 100 % . FIG . 43B shows an example plot of the defined herein may be applied to other embodiments without 
high - variability data shown in FIG . 43B with upper and departing from the spirit or scope of the disclosure . Thus , the 
lower normalcy bounds 4302 and 4304 , respectively . The 10 present disclosure is not intended to be limited to the 
high - variability data shown in FIG . 43A is periodic with embodiments shown herein but is to be accorded the widest 
corresponding normalcy bounds determined using a param scope consistent with the principles and novel features 
eter “ time _ unit _ parts ” = 3 , which divides a day into 3 parts disclosed herein . 
and hence is used to calculate separate thresholds on 8 - hour The invention claimed is : 
intervals as shown in FIG . 43B . 1 . A data - anomaly detection system comprising : 

FIG . 44 shows an example of a generalized computer one or more processors ; 
system that executes efficient methods for anomaly detection one or more computer - readable media ; and 
and therefore represents a data - processing system . The inter a routine that executes on the one or more processors to 
nal components of many small , mid - sized , and large com analyze digitally encoded data output from a system 
puter systems as well as specialized processor - based storage 20 monitoring tool and stored in the computer - readable 
systems can be described with respect to this generalized media by 
architecture , although each particular system may feature identifying the output data as qualified data or cor 
many additional components , subsystems , and similar , par rupted data ; 
allel systems with architectures similar to this generalized identifying and sorting the qualified data into catego 
architecture . The computer system contains one or multiple 25 rized data ; 
central processing units ( “ CPUs ” ) 4402 - 4405 , one or more calculating normalcy bounds for the categorized data ; 
electronic memories 4408 interconnected with the CPUs by discarding the corrupted data from the computer - read 
a CPU / memory - subsystem bus 4410 or multiple busses , a able media ; and 
first bridge 4412 that interconnects the CPU / memory - sub inputting the categorized data and normalcy bounds to 
system bus 4410 with additional busses 4414 and 4416 , or 30 an alerting engine that generates an alert when the 
other types of high - speed interconnection media , including categorized data is outside the normalcy bounds . 
multiple , high - speed serial interconnects . The busses or 2 . The system of claim 1 , wherein identifying qualified 
serial interconnections , in turn , connect the CPUs and data further comprises 
memory with specialized processors , such as a graphics determining whether the input data is qualified data or 
processor 4418 , and with one or more additional bridges 35 corrupted data ; and 
4420 , which are interconnected with high - speed serial links determining whether the qualified data is dense data or 
or with multiple controllers 4422 - 4427 , such as controller sparse data . 
4427 , that provide access to various different types of 3 . The system of claim 2 , wherein determining whether 
computer - readable media , such as computer - readable the qualified data is dense data or sparse data further 
medium 4428 , electronic displays , input devices , and other 40 comprises 
such components , subcomponents , and computational calculating a percentage of gaps in the qualified data , 
resources . The electronic displays , including visual display based on a user defined gap parameter ; 
screen , audio speakers , and other output interfaces , and the calculating data - to - data , data - to - gap , gap - to - gap , and 
input devices , including mice , keyboards , touch screens , and gap - to - data transition probabilities ; and 
other such input interfaces , together constitute input and 45 based on the transitions probabilities and the percentage 
output interfaces that allow the computer system to interact of gaps , classifying the qualified data as dense data , 
with human users . Computer - readable medium 4428 is a sparse data , or corrupted data . 
data - storage device , including electronic memory , optical or 4 . The system of claim 1 , wherein identifying the qualified 
magnetic disk drive , USB drive , flash memory and other data further comprises 
such data - storage device . The computer - readable medium 50 determining whether the qualified data is stable data or 
4428 can be used to store machine - readable instructions that corrupted data ; and 
encode the computational methods described above and can categorizing stable qualified data as high - variability data 
be used to store encoded data , during store operations , and or low - variability data . 
from which encoded data can be retrieved , during read 5 . The system of claim 4 , wherein determining whether 
operations , by computer systems , data - storage systems , and 55 the qualified data is stable data or corrupted data further 
peripheral devices . comprises 

Embodiments are not intended to be limited to the generating a stabilochart for the qualified data ; and 
descriptions above . For example , any number of different for each stabilochart value , 
computational - processing - method implementations that when the stabilochart value is less than a user defined 
carry out the methods for identifying anomalies in data may 60 value , the qualified data is stable data , otherwise the 
be designed and developed using various different program qualified data is corrupted data . 
ming languages and computer platforms and by varying 6 . The system of claim 4 , wherein categorizing stable data 
different implementation parameters , including control as high - variability data or low - variability data further com 
structures , variables , data structures , modular organization , prises 
and other such parameters . The systems and methods can be 65 calculating jumps for the stable qualified data ; 
executed in near - real time . The term “ near - real time ” refers calculating a measure of variability based on the jumps 
to a time delay due to data transmission and data processing and the stable data ; and 
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identifying the stable data as low - variability data when identifying and sorting the qualified data into categorized 
the measure of variability is less than a user defined data ; 
threshold , otherwise the stable data is high - variability calculating normalcy bounds for the categorized data ; 
data . discarding the corrupted data from the computer - readable 

7 . The system of claim 1 , wherein identifying and sorting 5 media ; and 
the qualified data into categorized data further comprises inputting the categorized data and normalcy bounds to an 
determining whether the qualified data as parametric data alerting engine that generates an alert when the catego 

or regular data ; and rized data is outside the normalcy bounds . 
when the qualified data is parametric data , calculating 14 . The method of claim 13 , wherein identifying qualified 

normalcy bounds for the parametric data . data further comprises 
8 . The system of claim 7 , wherein determining whether determining whether the input data is qualified data or 

the qualified data is parametric data further comprises corrupted data ; and 
checking the qualified data for categories of multinomial determining whether the qualified data is dense data or 
data ; 

when no categories of multinomial data are found , de 15 . The method of claim 14 , wherein determining whether 
noising the qualified data followed by rechecking the the qualified data is dense data or sparse data further 
qualified data for categories of multinomial data ; comprises 

determining whether the qualified data is periodic or calculating a percentage of gaps in the qualified data , 
non - periodic ; and based on a user defined gap parameter ; 

calculating normalcy bounds for the qualified data based calculating data - to - data , data - to - gap , gap - to - gap , and 
on the periodicity . gap - to - data transition probabilities , and 

9 . The system of claim 7 , wherein determining whether based on the transitions probabilities and the percentage 
the qualified data is parametric data further comprises of gaps , classifying the qualified data as dense data , 

searching for two or more modes in the qualified data ; 25 sparse data , or corrupted data . 
checking each mode of qualified data for inertia ; 16 . The method of claim 13 , wherein identifying the 
checking each mode identified as having inertia for tran - qualified data further comprises 

siency ; determining whether the qualified data is stable data or 
for each inertial mode , corrupted data ; and 
determining whether the mode is periodic or non - 30 categorizing stable qualified data as high - variability data 

periodic ; and or low - variability data . 
calculating normalcy bounds for the inertial mode 17 . The method of claim 16 , wherein determining whether 

based on the periodicity of the mode . the qualified data is stable data or corrupted data further 
10 . The system of claim 7 , wherein determining whether comprises 

the qualified data is parametric data further comprises 35 generating a stabilochart for the qualified data ; and 
checking parameters of the qualified data for semi - con - for each stabilochart value , 

stant data ; when the stabilochart value is less than a user defined 
when no semi - constant data is found , searching the quali value , the qualified data is stable data , otherwise the 

fied data for the longest data portion of the data that is qualified data is corrupted data . 
semi - constant ; 40 18 . The method of claim 16 , wherein categorizing stable 

detecting the number of outliers in the semi - constant data ; data as high - variability data or low - variability data further 
determining whether the semi - constant data is periodic or comprises 

non - periodic ; and calculating jumps for the stable qualified data ; 
calculating normalcy bounds for the semi - constant data calculating a measure of variability based on the jumps 
based on the periodicity . 45 and the stable data ; and 

11 . The system of claim 7 , wherein determining whether identifying the stable data as low - variability data when 
the qualified data is parametric data further comprises the measure of variability is less than a user defined 

searching the qualified data for a trend ; threshold , otherwise the stable data is high - variability 
identifying the trend of the qualified data as linear , log data . 

linear , or non - trendy ; and 50 19 . The method of claim 13 , wherein identifying and 
calculating normalcy bounds based on the identified trend sorting the qualified data into categorized data further com 

for the qualified data . prises 
12 . The system of claim 1 , wherein calculating the nor - determining whether the qualified data as parametric data 

malcy bounds further comprises or regular data ; and 
removing abnormal outliers from the data ; 55 when the qualified data is parametric data , calculating 
smoothing the data ; normalcy bounds for the parametric data . 
generating a footprint matrix of the smooth data ; 20 . The method of claim 19 , wherein determining whether 
determining whether the data in the footprint matrix is the qualified data is parametric data further comprises 

periodic or non - periodic ; and checking the qualified data for categories of multinomial 
calculating upper and lower normalcy bounds based on 60 data ; 

the footprint matrix . when no categories of multinomial data are found , de 
13 . A method carried out within a computer system having noising the qualified data followed by rechecking the 

one or more processors and an electronic memory that qualified data for categories of multinomial data ; 
analyzes digitally encoded data stored in one or more determining whether the qualified data is periodic or 
computer - readable media , the method comprising : 65 non - periodic ; and 

identifying data output from a system monitoring tool as calculating normalcy bounds for the qualified data based 
qualified data or corrupted data ; on the periodicity . 
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21 . The method of claim 19 , wherein determining whether based on the transitions probabilities and the percentage 

the qualified data is parametric data further comprises of gaps , classifying the qualified data as dense data , 
searching for two or more modes in the qualified data ; sparse data , or corrupted data . 
checking each mode of qualified data for inertia ; 28 . The medium of claim 25 , wherein identifying the 
checking each mode identified as having inertia for tran - 5 qualified data further comprises 

siency ; determining whether the qualified data is stable data or 
for each inertial mode , corrupted data ; and 

determining whether the mode is periodic or non categorizing stable qualified data as high - variability data 
or low - variability data . periodic ; and 

calculating normalcy bounds for the inertial mode 10 29 . The medium of claim 28 , wherein determining 
whether the qualified data is stable data or corrupted data based on the periodicity of the mode . further comprises 22 . The method of claim 19 , wherein determining whether generating a stabilochart for the qualified data ; and the qualified data is parametric data further comprises for each stabilochart value , checking parameters of the qualified data for semi - con - 15 . when the stabilochart value is less than a user defined 

stant data ; value , the qualified data is stable data , otherwise the when no semi - constant data is found , searching the quali qualified data is corrupted data . 
fied data for the longest data portion of the data that is 30 . The medium of claim 28 , wherein categorizing stable 
semi - constant ; data as high - variability data or low - variability data further 

detecting the number of outliers in the semi - constant data ; 20 comprises 
determining whether the semi - constant data is periodic or calculating jumps for the stable qualified data ; 

non - periodic ; and calculating a measure of variability based on the jumps 
calculating normalcy bounds for the semi - constant data and the stable data ; and 

based on the periodicity . identifying the stable data as low - variability data when 
23 . The method of claim 19 , wherein determining whether 25 the measure of variability is less than a user defined 

the qualified data is parametric data further comprises threshold , otherwise the stable data is high - variability 
searching the qualified data for a trend ; data . 
identifying the trend of the qualified data as linear , log - 31 . The medium of claim 25 , wherein identifying and 

linear , or non - trendy ; and sorting the qualified data into categorized data further com 
calculating normalcy bounds based on the identified trend 30 prises 

for the qualified data . determining whether the qualified data as parametric data 
24 . The method of claim 13 , wherein calculating the or regular data ; and 

normalcy bounds further comprises when the qualified data is parametric data , calculating 
removing abnormal outliers from the data ; normalcy bounds for the parametric data . 
smoothing the data ; 35 32 . The medium of claim 31 , wherein determining 
generating a footprint matrix of the smooth data ; whether the qualified data is parametric data further com 
determining whether the data in the footprint matrix is prises 

periodic or non - periodic ; and checking the qualified data for categories of multinomial 
calculating upper and lower normalcy bounds based on data ; 

the footprint matrix . 40 when no categories of multinomial data are found , de 
25 . A non - transitory computer - readable medium encoded noising the qualified data followed by rechecking the 

with machine - readable instructions that implement a method qualified data for categories of multinomial data ; 
carried out by one or more processors of a computer system determining whether the qualified data is periodic or 
to perform the operations of non - periodic ; and 

identifying data output from a system monitoring tool as 45 calculating normalcy bounds for the qualified data based 
qualified data or corrupted data ; on the periodicity . 

identifying and sorting the qualified data into categorized 33 . The medium of claim 31 , wherein determining 
data ; whether the qualified data is parametric data further com 

calculating normalcy bounds for the categorized data ; prises 
discarding the corrupted data from the computer - readable 50 searching for two or more modes in the qualified data ; 
media ; and checking each mode of qualified data for inertia ; 

inputting the categorized data and normalcy bounds to an checking each mode identified as having inertia for tran 
alerting engine that generates an alert when the catego siency ; 
rized data is outside the normalcy bounds . for each inertial mode , 

26 . The medium of claim 25 , wherein identifying quali - 55 determining whether the mode is periodic or non 
fied data further comprises periodic ; and 

determining whether the input data is qualified data or calculating normalcy bounds for the inertial mode 
corrupted data ; and based on the periodicity of the mode . 

determining whether the qualified data is dense data or 34 . The medium of claim 31 , wherein determining 
sparse data . 60 whether the qualified data is parametric data further com 

27 . The medium of claim 26 , wherein determining prises 
whether the qualified data is dense data or sparse data further checking parameters of the qualified data for semi - con 
comprises stant data ; 

calculating a percentage of gaps in the qualified data , when no semi - constant data is found , searching the quali 
based on a user defined gap parameter ; 65 fied data for the longest data portion of the data that is 

calculating data - to - data , data - to - gap , gap - to - gap , and semi - constant ; 
gap - to - data transition probabilities ; and detecting the number of outliers in the semi - constant data ; 
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determining whether the semi - constant data is periodic or 
non - periodic ; and 

calculating normalcy bounds for the semi - constant data 
based on the periodicity . 

35 . The medium of claim 31 , wherein determining 5 
whether the qualified data is parametric data further com 
prises 

searching the qualified data for a trend ; 
identifying the trend of the qualified data as linear , log 

linear , or non - trendy ; and 
calculating normalcy bounds based on the identified trend 

for the qualified data . 
36 . The medium of claim 25 , wherein calculating the 

normalcy bounds further comprises 
removing abnormal outliers from the data ; 15 
smoothing the data ; 
generating a footprint matrix of the smooth data ; 
determining whether the data in the footprint matrix is 

periodic or non - periodic ; and 
calculating upper and lower normalcy bounds based on 20 

the footprint matrix . 


