US010402253B2

a2 United States Patent

Harutyunyan et al.

US 10,402,253 B2
Sep. 3, 2019

(10) Patent No.:
45) Date of Patent:

References Cited

(54) METHODS AND SYSTEMS TO DETECT AND (56)

CLASSIFY CHANGES IN A DISTRIBUTED
COMPUTING SYSTEM

U.S. PATENT DOCUMENTS

. 8,156,377 B2* 4/2012 Li oo GO6F 11/079
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 714/26
8,230,262 B2* 7/2012 Li ocovivivinnie GOG6F 11/008
(72) Inventors: Ashot Nshan Harutyunyan, Yerevan 714/26
(AM); Arnak Poghosyan, Yerevan 8,291,263 B2* 10/2012 Li wcccooovvrirrrrnrrne. GOG6F 11/008
(AM); Naira Movses Grigoryan, 714726
Yerevan (AM); Nicholas Kushmerick,
Seattle, WA (US); Harutyun OTHER PUBLICATIONS
Beybutyan, Yerevan (AM) Downey, Allen B., “A novel changepoint detection algorithm,” pp.
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 1-11, Dec. 3, 2008.
" .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent is extended or adjusted under 35 Primary Examiner — Joseph R Kudirka
U.S.C. 154(b) by 170 days. 57) ABSTRACT
(21) Appl. No.: 15/607,944 Methods and systems are directed to detecting and classi-
fying changes in a distributed computing system. Diver-
(22) Filed: May 30, 2017 gence value are computed from distributions of different
types of event messages generated in time intervals of a
(65) Prior Publication Data sliding time window. Each divergence value is a measure of
US 2018/0349221 Al Dec. 6. 2018 change in types of events generated in each time interval.
v When a divergence value, or a rate of change in divergence
(51) Int. CL values, exceeds a threshold, the time interval associated with
the threshold violation is used to determine a change point
GO6F 11/07 (2006.01) o . s distributed g . 2 BP #
(52) US.CL in the operation of the distributed computing system. Base
CPC ... GOGF 11/0781 (2013.01); GOGF 11/979 ~ ©0 the change point, a start time of the change is determined.
(2013.01) The change is classified based on various previously clas-
(58) Field of Classification Search ’ sified change points in the disturbed computing system. A

CPC ..o GOG6F 11/0781; GO6F 11/079; GO6F
11/0793; GO6F 11/3452
See application file for complete search history.

recommendation may be generated to address the change
based on the classification of the change.

18 Claims, 37 Drawing Sheets

2402
AT I 1 1y 3 15 Loy fay Ay Lol 15 fea v by fnati ty
| | 1 b 1 I I I 32 |]] »
17 &1 1< ¢ 1
; ; . ; Time
! J J
5 5 e
s | {7
P i
A
/-2404
2408
(1))
<
&
o
&
2
Dy v Dy Dy 2
I D ¢ .::::(():::.'D"'>
1 2 3 ¢ n2fu-l n ol pk2 N-4 N3 N2 N1 N

2410 leasurement index

2406

U.S. Patent

Sep. 3, 2019

102
/__

Sheet 1 of 37

/—103

US 10,402,253 B2

CPU r—| CPU
MEMORY
110 " |
CcPU CcpuU
104-——/ \
N\ 108
105
112
—1 SPEC
—| sreomzeo / —
114
116
j /—‘_—_
118
120
a
BRIDGE
| | 1 |

CONTROLLER

CONTROLLER

CONTROLLER

CONTROLLER

CONTROULER CONTROLLER

| §\ l\ I \ %\ !
122 123 124 125

126

FIG. 1

127

128

U.S. Patent Sep. 3, 2019 Sheet 2 of 37 US 10,402,253 B2

Eofp

FIG. 2

U.S. Patent Sep. 3, 2019 Sheet 3 of 37 US 10,402,253 B2

N

e 5

;_—\\Z /I =

—\ T e 8
N N >

i)

5_“?: wg

— _ /‘é "

a - e

FIG. 3

316
/_

US 10,402,253 B2

Sheet 4 of 37

Sep. 3, 2019

U.S. Patent

slemple

8vy —1

wejshg
fupetado

sweibol
uopesddy

00¥
14 I/ [A%% |/ \I 0Ly \l a0y
{ \ / / /
/ | / / \
b \ / { &
\ \ ! i \
abeioig
ssel o)) oN 810880004 K3 Kiowspy
0 G\ T
ey g — ey 8Ly
b pejsiasite. EIRET]
ﬂmMM%MMMM@ Y $wuwmw__>_a.=o___ ._ nmmm__\“a suojansu; pafiojaid-uoy
SIOAHQ 1wibpy ysel
00Mag] walshs 4 suafeurpy Aowepy 15pOOS
SIBAISUI SO g = Thp || stewaniso
S —. $I5i5IBAT pUR $ S5 EAIPPE AdWSUW |
i pue suogosul pafaignid-uou
gey — o7y —~
9Ly — gey —/ ey —/ £y —/ A%% —/

US 10,402,253 B2

Sheet 5 of 37

Sep. 3, 2019

U.S. Patent

VG

Ol

1Y

A

abesols
ssepy

Ol

on

SHISSa00Id

Aiowialy

3 i L Ul ~ A
pefispaud pobannd-uou pafigpand _ suoonsu pafiaysd-uon
SISALD B0IAP SIBALP Q0IABP
Jo}uopw
%x\k P WA suyoeRl "sz>\\
$95Soppepiolsol | Se5so ppeisishal SR FET] ' 14
pabispad pafiopnd-uou pabapad _ suoponisul pabayyd-Uoy
| 4~
o
80 50 80 SO 210]
~41 1
uogeaydde vogeoydde uogeadde uojeaydde uogeojdde

/

0lg -

— Y16

US 10,402,253 B2

Sheet 6 of 37

Sep. 3, 2019

U.S. Patent

ovs /

d4¢ 9l

-

A e
AEMPIEH < m.wwmmw“m 0/l ot $105599014 frowapy
s /
Py I
o
-
wasAg fugendn <
1]
s \ STTSEEIplE SesSaIppE ABIB
L S0ejIaju| [leo-wajshs pue suoonisui pabiayalid-uou
.
._m\mms_ unjezienuip
uopezyenuip
255 7]
S0 50 S0
8y5 / v /
SOULOR
{enaipy 3
uojeddde uogendde uoeyidde
. / / \\
856 / 1557 955

swefioly
v:o_wmoﬁg{

US 10,402,253 B2

Sheet 7 of 37

Sep. 3, 2019

U.S. Patent

0¥9
J/

jsapuell §o jsebip
sapnjoul ey} ajeayien

9c9 |/ \..

ap} 83410884 J0 15910

apy 824nosal o 38ahig)

g} abeun ysip jo1sehig

8y} sbew ysip jo ysebig
abeyord jo 1s8fiq ;

Fa|
/1
N
\ \ _“<adojpauzys .
i :
‘ <U0108Jj0N) WesAS [entIp/>
/ <UON0BS nggmx BNUIAS>
/ m
; cg9 <UDN08S aleMpiEH [eniif>
<UOR08|j0D) We)SAS [BRUIA>
/ <U0N99S NIOMBN/>
0eg A :
<UOIOIS JJomaN>
<U0JOS YSiQ)/>
829 A ;
<U0[oas Ysi>
<SOUDIYSM/>
9¢9 :
<S80UIAaY>

< magmémv,
029 l\

leulo uogezienaa uadp

/l ¢c9

sbexoed 4A0

719
g} 92Inosa -
1 €l
aJi} 821n0sal
9§ 80In0sal ya Zl9
oy obewrysip | 19
\
M| @l ebew) ysip ya 019
Y
/ BN JAD e 809
\
/U/ sapuep A0 | 909
~
jodieseg 470 | 7 0%
/
’
/
/
/
209

US 10,402,253 B2

Sheet 8 of 37

Sep. 3, 2019

U.S. Patent

Jajue) eleq eoisiud

6L, —8hL
w = !/

I\

L 9l

L

A ,,

/

,

\

\

\

v

A

/ @ %!,
\ 802

ves

[004 302IN0S8Y

1
9c.

1918 Bleq [eNiA

_,
_ /
ﬁmﬁ gL

US 10,402,253 B2

Sheet 9 of 37

Sep. 3, 2019

U.S. Patent

74 1C8 0c8
/ :/

—

[t] | 068 [t oo] |O08| [weeoan] |~

L

208
/

aRmpRH SIEMPIEH aIeMpRH 908 L alempien
e aseqeyep
eheT 1aken 0AeT [BheT | g 18jued
UolEZIENMIA UoPeZIENUIA UON2ZIBNUIA 908 A Tuonezijenmuna BJE(] [BNUIA
||| | W
v
WA L TIA
(]]] (]]) —eze s
E 1uabBy 1S0H Jueby 1504 s 181u8) BleQ
™ ™ e [erLHA A

=/
/ /105

7 S 7 \
¢ N w\l glg /
\\ wﬁ@EWGWCmE 150H / \\
/ Nl

T,
918 l\%i SORINIES 8100 VTS . JuaWaBeuEw 20n0saY
—— b/ 19jnpaYyas yse|

- ~

SE0IMBS PRINGIISI] N/ BuiBBo| Jo UORIB[|02 SINSHEIS
dmyoeg R |\ﬂ /- SJUSAD 3 SUalY
uoeIfiu WA oA -\ [®oepa uswebeuen / ~ . Buwosinoid A
Angeneay ybiH -7 \ uoneInBIUeD WA
18|NPaYog 80IN0saY papnguyslq " - uogeInByuod 1SoH

S — ¢l8

0,8

US 10,402,253 B2

Sheet 10 of 37

Sep. 3, 2019

U.S. Patent

406 |/

| f |

| f {

| ; |
mwmwcmo mmu.m.v e 3“L_>

I

!

7
I V4
Vg 4
r'e #

4 4
/2940, L 9¥0

iiiiiiiii — 4
i
7
mmmh s oo - 56
siojuad ejep Ny
AR \" _ - 105941p PO \1 \\\
106 940 @mmo_wmo % D o0, Eoug
we . 66~/ 28
Y06 — — 1C6 \\
y 2 / 0L6
y T e
/ Sl mmwv [ENLIA P / iopoaitp pnojd

e — —— Sy

1 _ \.4
a06— ‘ T

A) , | -

jood qomau woy BUUGSIAGI HOMBN)
/ sBojeten eipay pue ajejdwia]
«l\ tt\ —~ vonemnBiuon 18juan ele(] jenpia uoneziueficy
FAR S 8 ~ pue uonenBiyuon ucleziuefio

§7A3)
J0}0alIp PHoga \1

el

0c6 e

soepAul SN JUA

SR0IAISS JOJI8)I PrIO)D

™~ . Buuosinold sjue) Bleq BN
— o
—

e
B

— e

aoea)u] Juaw abeuepy

US 10,402,253 B2

Sheet 11 of 37

Sep. 3, 2019

U.S. Patent

L M
0 Ol sl M
_
i pl0} - 0Ll ZI0l :
“ apou oA _
[
f
3pou DA P Janas DA - “ ”
¢ o S I { 1
_ . . 5
! T I L o | | | w M
| i ! AT - RN
i i { RO R s €col RV “ "
“ " “ : \mob_ a3 I f
L 9101 !
800} —~ L S R u) “
Ve 7 Ve b o e e e e e e e i ot e e o~ —— — o |m
— 2201 8l0} /
| | A . ¢00}
| A YR 7] eI
“ “ m T I L) N — A b Bjep [BNjIA
: e 8pou JOA 9pou DOA
’ s Vil
7 £ £
L00} 120l 610} €001
i) Y
BJEp [entiA H -
! 20 apoU DA 1B R AN

-

l\ 8PON DOA N
9004 =
SOUAIBS PO ,\ /l 7001

et o X 020}
\

|\ /l apou HoA
500}

US 10,402,253 B2

Sheet 12 of 37

Sep. 3, 2019

U.S. Patent

1} 'Ol

A

¥ L
Jakey abeioig
\\ew;me < sseyy oil on 810358001 Asowap
oy
T T T
| [sosseippe/sioibal [Sossaippe/siaisibal | suojonsul
c% mm\,c ’ uwmm\ws:w.ao: pabajiaiid suofjongsul pabsjiad-uou
SIaAU(] WSISAS Wby yse |
weishg mé%ww < BoIAa(34 swebeueyy Aowa 13|NpaYd3
oy -~ aoepal SO | eoeuaI SO
Pis e E A | S R Lo o
ocY B volezZInpIA [9A91-50
8y
70} \ = Jaugjuoo Jaueuoo JOUIBJUOD
o01 —
~
G0LL 7]
i
0LLl 60LL 80L1

US 10,402,253 B2

Sheet 13 of 37

Sep. 3, 2019

U.S. Patent

N N
sokey abelolg
alempiey S - oA oil $1088820id Aioussy
208~
T T T
.
~ S5S50IpPEaIoel | sasse ppefialsibal _ SOOI U] _ SuoRonSUl pabapad-uoy \\\\\!} 390G
paBaysud pefapaud-uoy pafiggaud - : i
SIANHP BOIASD SIBALP BOIAD L gm
09 T J0BUON L1
4 [BLI8Y WA RUBy A SUROBIA [EnYIA L 816G
P T -~
S, et S e aTbar | o550 IppeiaYEEaT SUOHOMTESU] N PR e 809
0 L pebajaid pefiapnd-uou _ pabapnd ‘ suoforsu| paBajad-uoN -
San
Py SO 18919
\ UORBZIRNHIA [9A8]-S0)
20zl \\T
v0ch JOUIEJUOD [es) JUIBJUOD
\ g
00¢t
7 4 z
/ V4
/ V4
80Z1 A4S 90z

U.S. Patent Sep. 3, 2019 Sheet 14 of 37 US 10,402,253 B2

1302 1303 1304 /1305

cleolso/leca/os/s

B

) 2 (A /P
7 0 |7 ;1/
SV JT6 ST
\ =
1308 /1314 5/)
]
\(————1
....................... —
""""""""" oA]
/1320 /1321 /1322 51‘312 R %

1318
\\ |
\4326 1323

FIG. 13

US 10,402,253 B2

Sheet 15 of 37

Sep. 3, 2019

U.S. Patent

vl "9l

7 obessal jusas

A

{z oBessaiu Juaaa) spim by

e Okvl

1 abessaw Juaas

A

\ ’ | abiessaul Jusne rlrl
aivl < {| aBessall jUsAs) oyumBo|

| ofessau juone

wos\ 907}

SO 1o weibod uonen|ddy

cOyl A

US 10,402,253 B2

Sheet 16 of 37

Sep. 3, 2019

U.S. Patent

91 Ol

[PRUSTUTI (6ZFEL999L00EZLFG9689~ 'O70LESECLLLYLEBBRBY-)

sbuex IJOT ZICRFPTIOPEILP~ZLPE-FOTI-9LLO-0ZLZTIETS UoTssos ITeda] [9TL'9€:€FIEZ 0T-€0-510¢2]

[[xtedox ‘woo aiemuis-3ubTsuthoT-poad-sToojuom ‘U- ‘TO0ISPOU/UTA/QT "0 Z-eIpuessed-ayosede/qTT
suctzeotrdde/aubtsuthorT/qTT/asn/1] 1 [I0IND9XIASSID0IJ *TOINIBXD * SUOUWOD * JYHTSUTHOT " ST BMUIA " WOD]
{OANT T°0°0°L2T/96%228T-Pea3UL] [0000+658°9€:EV:€Z OL-£0-6T0Z]

\ 909 _‘\ G09 _‘\ ¥09 v\
<094

gl Ol

80G1
N

(peystury abuexs sbhuer 7o g¥g ucTssas aTeday [23ep swrlé]

[[xTedex ‘won:sxemwa-3ybrsuthol-poad-sToojuow ‘Y- ‘TOCIIPOU/UTH/QT (" Z-BIpUrRsses-aydede/qrT

uoctieortdde/qubtsuiboT/gIT/Isn/]]1 1 [I0INDIXYSSID0IJ "TOINDIDKD " SUOWLOD * 3D TSUTHOT * 2 TeMllA “WOD]
JUoT . / rsuy /ATT/asn/

\ [QANT/dT$/X$-PeRDTYL] [298p BWrL$])o3Tim BOT
0161

909 F\ 705 v\

Gog1

Nomr\.

U.S. Patent Sep. 3, 2019 Sheet 17 of 37 US 10,402,253 B2

1702
/‘

W //1?08 //1710 . //1712 >
7 7 /7
2013~12-02T10:44:24.0952 li-ge~eszd.vmware.com Rhitbpproxy: 1704
[28959B90 verbose 'Proxy Reg 46691'] Connected to "
localhost: 8307 \\“\1706

2013-12~02T10:44:24.0942 li-ge-esx5.vmware,com Rhtipprozy:
[FFPC2BY90 verbose 'Proxy Req 46691'] new proxy client
TCP (local-127.0.0.1:80, peer=127.0.0.1:50155)

2013~12-02710:44:24.0932 li~ge-esx5.vmware.com Rhitpproxy:
[2889B90 verbose 'Proxy Reqg 46685'] The client closed the
stream, not unexpectedly.

Dec 2 18:48:29% strata-ve 2013-12-02718:48:30.,2732
{(7FA39448B700 info ‘commonvpxlro' oplb=1947d6f9] [VpxLROl -
FINISH task~internal-2163522 -~ -- vim.SessionManager.logout -

2013-12-02T18:48:51.,3962 strata-esxl.eng.vimware.com Vpxa:
[65B5ARBY0 verbose 'VpxaBalCnxHostagent' oplD=WrU-ed393333}
[fWaitFerUpdatesDonel Completed callback

2013-12-02718:48:51.3852 strata-esxl.eng.vmware.com Vpxa:
{65B5ABO) verbose 'VpxaHalCnxHostagent'! opID=WFU-ed393333]
{WaitForUpdatesDone] Starting next WaltForUpdates() call to
hostd

2013-12-02T718:48:51.395Z strata-esxl.eng.vmware.com Vpxa:
[65B5ABI90 verbose 'vpxavpxalnvivm' opID=WFU-ed393333]
[VpxalnvtVmChangeListener] Guest DiskInfo Changed

2013~12-02T718:48:51.3952 strata-esxl.eng.vmware,com Vpxa:
[65B5ABS0 verbose 'vpxavpxalnvitvm' opID=WFU-ed393333]
[VpxaInvtVmChangelistener] Guest DiskiInfo Changed

FIG. 17

U.S. Patent Sep. 3, 2019 Sheet 18 of 37 US 10,402,253 B2

~1
L. b 8
RS

4

1808

1812

FIG. 18

US 10,402,253 B2

Sheet 19 of 37

Sep. 3, 2019

U.S. Patent

8261

P &m/&m

R

sadAjjueng

vmmwlxxm

9¢61

sadA peng

cee 48 /ﬁm

¢ebl

Aousnbal] anjeey

Aousnbsis anElRY

61 Ol

A

A

o4y]
o4y 1o
obdH 5]
of 4y i
oty e
1! sadk wane
7 /s
0L 4 96l
96l —
J44 RE]
e fla
JF4Y g9
L] 49
44y 4o
i 50dA] Juans
/ /
ciel olot

adA) Juana yoesd
joAsusnbay | sishjeus -
anje)jal T adfyuens Aiddy
auINR(
Fi6l ¥06} 2161
5
0i81
adA) Juans yors
johousnbay | sishRue
onlle|al o] edf3usns Aiddy ~
auwela(L
906} 2061 008} A

-
]

U.S. Patent Sep. 3, 2019 Sheet 20 of 37 US 10,402,253 B2

2002 2008 2004
/ /

[2015-03-10 23:43:36.859+0000] [Thread-1822496/127.0.0.1 INFO]
[com.vmware. loginsight.commons. executor.ProcessExecutor] [[[/usr/lib/
loginsight/application/lik/apache-cassandra-2.0.10/bin/nodetool, -h,
montools-prod-loginsight.vmware.com, repair]] [2015-03~10 23:43:36,716]
Repalr session 51312720-c77e-1led4-ad72-4769d614a3f2 for range
{~6899937477723537626, —~6896547230076663429) finished] k\\1602

identify tokens separated by white spaces
2006 / 2007 / 2008

[2015-03-10 23:43:36.859+0000] [Thread-1822496/127.0.0.1 INFO]
[com.vmware.loginsight,commons.executor.ProcessExecutor] { [[/usxr/lib/
loginsight/application/lib/apache-cassandra-2.0.10/bin/nodetoocl, -=h,
montools—prod-loginsight.vmware.com, repair]l] [(2015-03-10 23:43:36,715]
Repair session 51312720-c77e-1l1le4-ad72-4769d614a3f2 for range
(~68589937477723537626, —6896547230076663429) finished]

[dentify parameter values
2010 / 2012
2heiswac] B dAy 3t BREGAPE] [Thread-Foaedae el L INFO]
[com.vmware.loginsight.commons.executor.ProcessExecutor] [[[/usr/lib/

loq1n51qht/apol’catlon/llb/apache cassandra 2.0. lO/bln/nodetool, ~h,

for range
flnlshed}

ﬂﬁﬁ%ﬂ@@’% ?‘2’?1»‘7'?!' LI Al I "9 o7

Discard parameter values

2016
[1 [Thread ///

INFO}[com‘vmware log1n51ght commons . executor, ProcessExecutor] |

nodetoocl, -h, montcols-prod-leginsight.vmware.com, repair]]] Repair

session for range (,) finished \
2020 Discard punctuation, 2018
\ parentheses, and brackets

Thread INFO com.vmware.loginsight.commens.executor.ProcessExecutor
/usxr/lib/leginsight/application/lib/apache~cassandra~2.0.10
/bin/nodetool h montools-prod-loginsight.vmware.com repair Repair
session for range finished FlG 20

U.S. Patent Sep. 3, 2019 Sheet 21 of 37 US 10,402,253 B2

A =3
o~)
=
= o~
o
\A >
3]
o
=
b= =
@D
o~ £
[
]
[%;]
= 8
Qj =
o]
aousbiang
' ™
~ N
ol [m>]
(e >] - o
— [oouoe™ k)
\A
........... g OOOOAO000: T -1
e ; £ g N
0. = .
= o, z = (D
s s L
U>J | AN %’ &
o =
D000 5

Kousnbaig anjeisy Aouanbald sneiey

1810
1812

1806
/—

U.S. Patent Sep. 3, 2019 Sheet 22 of 37 US 10,402,253 B2

F 2R O ,f’l ;’2 1 802
' L Time
TN §
"ge A 1804 j
20002

2208
/

/€808 _
8 ™y
- g
g
r b ~ % :
iR I L
e.h ezz ets etq et:, ets et7
2204 Event types
< <
i 2210
2206 s
Y
5
~ t’Z o~ E
: 1l L
e‘tq e‘tz Ets efs el ets et? cr)
Event types
1..
o
2
&
B
=
=)
Di\h.gé_“zztlz
Q + +
1 2

F lG . 22 Measurement index

U.S. Patent Sep. 3, 2019
h &t oty o, 1802
| : PoL o Time
] S
a2
° A™9302

v{/~1806

r by ~
2304

< I <,
2306

A w,

FIG. 23

Sheet 23 of 37

Relative Frequency Relative Frequency

Divergence

US 10,402,253 B2

2308
/‘

atr e ety ety els ety ety - -

Event types

2310
/“

ety eb ey el ets efs ey * v

Event types

Y

12 3

Measurement index

US 10,402,253 B2

Sheet 24 of 37

Sep. 3, 2019

U.S. Patent

90ve

v "9l

xapu juswainsespy 017C

JHH T+U u T:\mgt

/ N I'N TN &N b-N £ 7 1
> t 1 1 1 1 v v 1 i V v i £ i O
) .<Q L) T ¥ T ﬁ A T H H+: T LI I: ﬁ ﬂ 1 _ T)
N Tonf : a a ‘gra MMQ.
N;H,zQ m
@
o2
m%m/ m
,,, /
80¥C
gﬁ\.
v v A% Q
{ A ™ i A _ { A W ™
\% v \%
/ A Y / A, i Q “« A, Q
v Vv Y
H N i A, H A
swi| P) P P it
Pl i y 3 P i 5) P
* 1 T { ¢ i I T T ¢ T T
\ Ky THTNg Ny BN Ty YR Rt KA B ot Vo9 0
AN 74

U.S. Patent Sep. 3, 2019 Sheet 25 of 37 US 10,402,253 B2

2504
s 2508 2506
S 2502
£
® S 53 St S Sxt
% 0 'S_v?,/'*\ EaN (s <3 o () (} I, »
-‘5”’ e \/ St /(SN.:: \/ Sw
£ Sy S Sy
© Measurement index
2604
1 e e e e e e e o 7 o o e e . o e e e 7 . e . ot e S o e i e S S8 2. 1 B . 0 . . 7o . e T e B T
3
g
‘ig: D 2 Dm D.os DN_3 -DN-l
(] Dl D D3 S mZ DN-4
~ A DY Doty Dyea Dy
L e G) 2 S & o e e >
12 3 0 w2l omomtime2z 0 NAN3BN2NL N |
Measurement index 2602
N / A \ v
2606 FIG. 26 2608
2704

MSE(k) MSE(m)

Mean square error
I
o |
|
I
I
i
i
i
. 1
!
i
i
H
H
]
t
i
M i
;
]
/:\\
t
i
]
I
]
t
b
]
f
3
;
]
§
¥
]
§

§ 4 4 } t 2 ¢ t l >
12 3 Uk kD w2 oml om \
Measurement index 2702

FIG. 27

U.S. Patent Sep. 3, 2019 Sheet 26 of 37 US 10,402,253 B2

2802
{Dla DZ: D}: D4: DS: Dﬁa D?s DS: D9a DIU}/

Randomize

, 2804
{Ds, D, Dy, Dyo, Ds, Dy, Dy, Ds, Dy, Dg}=

Re-order 2808

A 2806
{DII:DZEJ D317 D4]> D513 D615 D'?]: DSI,D9]= Dlol}/

2802
{D\, Dy, Ds, Dy, Ds, D, Dy, Ds, Ds, Do}~

Randomize

d

{D37 DS: Db D4: D?: DlO) D:Z: Dg: DS: D6}

Re-order

oy 2810
{Dlj: DQJa D3j: D4j: DSJ7 Dﬁja DTJJ DSJ: D9J: Dlof} /

2802
1D1, Dy, Dy, Dy, Ds, Dg, D7, Dg, Do, Dy} ~

Randomize

{D97 Dﬁ: D15D33 DIO:DS) D7:D4: Dz: DS}

Re-order

N 2812
{DiMa DZMJ D3M: D4M: DSMs DéM'.' D7M: DgMa D9M: D]OM} /

FIG. 28

US 10,402,253 B2

Sheet 27 of 37

Sep. 3, 2019

U.S. Patent

vYo6c¢ Ol

806¢ X8pul JusLaInsesyy

b 1-b 7-
) / _ ﬁ_ N_v | S m N “
J L«

Nomml\\m

BN

¢ebe

906¢

9162

US 10,402,253 B2

Sheet 28 of 37

Sep. 3, 2019

U.S. Patent

d6¢ 9l4

8062 Xapu| JusuaInsesyy 8862
/ I+h b 1-b T-b € T 1
< ———p——t——+——+—2 L ()
1+h T
a mq NQ Mq
9£6¢
TTTTTTTTT T T T T T T T e at...r..|||||||||||||||||||||||||tl|||llll||\|M
¢06¢ 0167
wmmw/m 0
L ooez_y F
w 0 s aui|

JUno9 anjeA aousfianig

US 10,402,253 B2

Sheet 29 of 37

Sep. 3, 2019

U.S. Patent

26¢ Ol

806¢ Xopul juslusinsesyy > Junoo enea sausbisng
b b 1-b 7-b
« / s >) T” S B VA 0 S

< T ¢ . X %
..&Q .wD_. 1 bQ mq NQ _Q.
(A7 iT4 90+
w.om/oam
||| a“ mnl
\ / Npose
Nomm\ 0167 ¥l6¢
A .
SRR R o
L A . aw|
YIS oy \

U.S. Patent Sep. 3,2019 Sheet 30 of 37 US 10,402,253 B2
3006 3004 / 3002
fer = (=) f=(th) = (4 + D)
FIG. 30A
/—3012 _ /30‘14
r=-A— ~ '-E
E LI ﬂ H
et: eb els o4 o5 ety e - --
3016 Event types
4 <
3010
% /3008
t + A - g
ey aly ety ek et ety * v
Event types
FIG. 30B
3020
/
3018
1 eltz

Rate of change

el B e

ets E o O AY Event types

FIG. 30C

U.S. Patent Sep. 3, 2019 Sheet 31 of 37 US 10,402,253 B2

/
/—3102
ets els .

/ 3106
;
el
‘j’PES

E Vem!

ety

fausnbald anjeey

by

Aousnbaly aniejey

o a]|
5 etz ets
Ven”ypes
. EZ egta E E /
EVenH ,!Jeiti 5
/
FIG. 31

Kousnbald amlesy

/—3104
E :

§ ts eEta
EVent {J’.Oes

Kouenbalg anjeey

U.S. Patent Sep. 3, 2019 Sheet 32 of 37 US 10,402,253 B2

Method to detect and classify
changes in event messages
generated by an event source

A 4

Receive event messages generated
by the event source

Y

Compute a divergence valuie | " 3202

for each time interval of a
sliding time window

'

Determine start time of change

'

Determine rank ordered list of L 3204

event types responsible
for the change

Y

3205
Generate recommendation based —
rank ordered iist of event types
! 3208

Classify change

FIG. 32

U.S. Patent

Sep. 3, 2019

Compute a divergence value
for each time interval of &
sliding time window

.

Sheet 33 of 37

For each time interval of a sfiding
time window

3301

ki

Partition time interval into a first sub-
time interval and a second sub-time
interval

3302

v

Determine a first event type
distribution for event messages with
time stamps in the first sub-time
interval

3303

v

Datermine a second event type
distribution for even{ messages with
ime stamps in the second sub-time

interval

3304

Y

Compute a divergence value for the
first and second event type
distribufions

3305

Move
sliding time window
?

FIG. 33

3306

US 10,402,253 B2

U.S. Patent Sep. 3, 2019 Sheet 34 of 37 US 10,402,253 B2

(Determine start time of change)

'
3401

For each divergence value

o«
4

3403

Another

divergence value
?

Threshoid violation
?

3404

Compute cumuiative sums of set of
divergence values

'

Determine largest of the cumulative
sums

v

Determine measurement index
(change point index) of the largest of
the cumulative sums

'

Partition sequence of dvergence |~ 3407
values into two sequences of
divergence values based on change
point index

! 3408

Compute mean square error of two
sequences of divergence values

.

Determine start time of change that
is less than or equal to change point

3405

3406

3409

‘ 3410

Compute confidence level of
start time of change

o
<

X

e FIG. 34

U.S. Patent Sep. 3, 2019 Sheet 35 of 37 US 10,402,253 B2

Compute confidence level of
start time of change

3501~ .

Determine smallest of the cumulative
sums

'

3502 ™~ Compute difference Sqrbetween
largest and smallest cumulative
sums
3503~
Forj=1,... M
l-‘-'.
3504 ~_ Y

Randomize and re-order sequence of
divergence vatues

|

Compute cumulative sums of
randomize and re-order sequence of
divergence values

3505 ~_|

3506 ~_ Y

Determine difference Siirbetween
iargest and smallest cumulative

3508 il
\ . 3507
increment C Y Sy : S
| nge
3909 — Increment |
3510 N
FIG. 35 v
3511 <_

Compute confidence level
CIN

U.S. Patent Sep. 3, 2019 Sheet 36 of 37 US 10,402,253 B2

C Determine start time of change)

v 3601

Foreach divergence vaiue received

Y 3602
Delete count of oldest divergence e
value from histogram of divergence
values
/ 3607
Increment C- —
3608
increment Cz —
3605 / 3609
0 Y Increment Cs —
N
3606 3610
0 Y Increment Cs a—
N ¢
ldentify coresponding time interval
as having change in divergence
; value
N 3611 <
3613 3612

Another
?
N €
FIG. 36

U.S. Patent

Sep. 3, 2019

Determine rank ordered list of
event iypes possibly responsible
for the change

.

Sheet 37 of 37

Compute event-type distribution for
event message in change index time
interval

- 3701

v

Compute eveni-type distribution for
avent messages in a preceding time
interval

- 3702

|

Compute rate of change for each
event type

|- 3703

'

Rank order event types from largest
rate of change to smallest rate of
change

|- 3704

FIG. 37

US 10,402,253 B2

US 10,402,253 B2

1
METHODS AND SYSTEMS TO DETECT AND
CLASSIFY CHANGES IN A DISTRIBUTED
COMPUTING SYSTEM

TECHNICAL FIELD

The present disclosure is directed to detecting and clas-
sifying changes in a distributed computing system based on
event messages generated by an event source running in the
distributed computing system.

BACKGROUND

Electronic computing has evolved from primitive,
vacuum-tube-based computer systems, initially developed
during the 1940s, to modern electronic computing systems
in which large numbers of multi-processor computer sys-
tems, such as server computers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies.

In order to proactively manage a distributed computing
system, system administrators are interested in detecting
anomalous behavior in the operation of the disturbed com-
puting system and changes in behavior of the distributed
computing system. In recent years, management servers
have been developed to monitor the behavior of numerous
and various virtual and physical objects of a distributed
computing system. A typical management server collects
time series metric data from the objects and applies dynamic
thresholding techniques to the metric data to identify any
number of various anomalies in the operation of the distrib-
uted computing system. For example, when metric data of
an object violates a threshold, the management server gen-
erates an alert that notifies administrators of the anomalous
behavior. However, identifying and classifying changes in
behavior of a distributed computing system has proven more
challenging. Changes have many different causes, including
a new software bug, hardware failure, software upgrade,
configuration changes, and change in workload. Adminis-
trators seek automated methods that identify and classify
changes that affect the operations of distributed computing
systems.

SUMMARY

Methods described herein are directed to detecting and
classifying changes in a distributed computing system using
event messages generated by event sources running in the
distributed computing system. Methods compare past and
current behavior of the event sources in order to detect a
change point in the operation of the event sources. A change
point is a point in time when a significant change has
occurred in the operation of the event source. In one aspect,
event messages generated by an event source of the distrib-
uted computing system are ingested over time. A divergence
value is computed from the distribution of different types of
event messages generated in each overlapping time interval
of a sliding time window. Each divergence value is a
measure of how much the different types of events recorded

10

15

20

25

30

35

40

45

50

55

60

65

2

in the event messages change within each time interval.
When a divergence value exceeds a threshold, or the rate of
change in divergence values exceeds a threshold, the time
interval associated with the threshold violation is identified
as a change point in the operation of the distributed com-
puting system. And the time interval associated with the
change point provides an approximate time for when the
behavior of the event source changed significantly from past
behavior. Based on the change point, methods described
herein detect a start time of the change and classify the
change based on various distributions of event types asso-
ciated with previously classified change points in the dis-
turbed computing system. A recommendation may be gen-
erated to address the change based on the classification of
the change. Methods also include a real-time evaluation of
event messages to determine the change point. The methods
described herein provide a unique perspective and added
dimension to the task of detecting a change in the operation
of'a distributed computing system from methods that rely on
analyzing metric data alone.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a general architectural diagram for various
types of computers.

FIG. 2 shows an Internet-connected distributed computer
system.

FIG. 3 shows cloud computing.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system.

FIGS. 5A-5B show two types of virtual machine (“VM”)
and VM execution environments.

FIG. 6 shows an example of an open virtualization format
package.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center.

FIG. 9 shows a cloud-director level of abstraction.

FIG. 10 shows virtual-cloud-connector nodes.

FIG. 11 shows an example server computer used to host
three containers.

FIG. 12 shows an approach to implementing the contain-
ers on a VM.

FIG. 13 shows an example of logging event messages in
event logs.

FIG. 14 shows an example of a source code with log write
instructions.

FIG. 15 shows an example of a log write instruction.

FIG. 16 shows an example of an event message generated
by a log write instruction.

FIG. 17 shows a small, eight-entry portion of an event log.

FIG. 18 shows event messages generated by an event
source.

FIG. 19 shows determination of separate event-type dis-
tributions for first and second sequences of event messages
in FIG. 18.

FIG. 20 shows an example of event-type analysis per-
formed on an event message.

FIG. 21 shows a plot of an example divergence value
computed for first and second event-type distributions.

FIGS. 22-23 show examples of computing divergence
values event messages in overlapping time intervals.

FIG. 24 shows a plot of a sequence of divergence values
computed for overlapping time intervals.

US 10,402,253 B2

3

FIG. 25 shows a plot of example cumulative sum values.

FIG. 26 shows a plot of example divergence values.

FIG. 27 shows a plot of example mean square error
values.

FIG. 28 shows examples of randomizing and re-ordering
a sequence of divergence values.

FIG. 29A-29C show plots of example divergence values
and a corresponding histogram of the divergence values for
a stream of event messages.

FIGS. 30A-30C show determination of a ranked list of
event types.

FIG. 31 shows an example of an event-type distribution
and examples of representative event-type distributions.

FIG. 32 shows a control-flow diagram of a method to
detect and classify changes in event messages generated by
an event source.

FIG. 33 shows a control-flow diagram of the routine
“compute a divergence value for each time interval of a
sliding time window” called in FIG. 32.

FIG. 34 shows a control-flow diagram of the routine
“determine start time of change” called in FIG. 32.

FIG. 35 shows a control-flow diagram of the routine
“compute confidence level of start time of change” called in
FIG. 34.

FIG. 36 shows a control-flow diagram of the routine
“determine start time of change” called in FIG. 32.

FIG. 37 shows a control-flow diagram of the routine
“determine rank ordered list of event types responsible for
the change” called in FIG. 32.

DETAILED DESCRIPTION

This disclosure presents computational methods and sys-
tems to detect and classify changes in event messages
generated by an event source. In a first subsection, computer
hardware, complex computational systems, and virtualiza-
tion are described. Containers and containers supported by
virtualization layers are described in a second subsection.
Logging event messages in event logs is described in a third
subsection. Methods to detect and classify changes in a
distributed computing system are described in a fourth
subsection.

Computer Hardware, Complex Computational
Systems, and Virtualization

The term “abstraction” is not, in any way, intended to
mean or suggest an abstract idea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented, ultimately, using physical computer hardware, data-
storage devices, and communications systems. Instead, the
term “‘abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-
faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently

10

15

20

25

30

35

40

45

50

55

60

65

4

encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

FIG. 1 shows a general architectural diagram for various
types of computers. Computers that receive, process, and
store event messages may be described by the general
architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types of mass-storage devices 128, electronic dis-
plays, input devices, and other such components, subcom-
ponents, and computational devices. It should be noted that
computer-readable data-storage devices include optical and
electromagnetic disks, electronic memories, and other
physical data-storage devices. Those familiar with modern
science and technology appreciate that electromagnetic
radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte
or less of information per mile, far less information than
needed to encode even the simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers

US 10,402,253 B2

5

(“PCs”), various types of server computers and worksta-
tions, and higher-end mainframe computers, but may also
include a plethora of various types of special-purpose com-
puting devices, including data-storage systems, communi-
cations routers, network nodes, tablet computers, and mobile
telephones.

FIG. 2 shows an Internet-connected distributed computer
system. As communications and networking technologies
have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted server computers or blade servers all inter-
connected through various communications and networking
systems that together comprise the Internet 216. Such dis-
tributed computing systems provide diverse arrays of func-
tionalities. For example, a PC user may access hundreds of
millions of different web sites provided by hundreds of
thousands of different web servers throughout the world and
may access high-computational-bandwidth computing ser-
vices from remote computer facilities for running complex
computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web server computers, back-end
computer systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

FIG. 3 shows cloud computing. In the recently developed
cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger orga-
nizations may elect to establish private cloud-computing
facilities in addition to, or instead of, subscribing to com-
puting services provided by public cloud-computing service
providers. In FIG. 3, a system administrator for an organi-
zation, using a PC 302, accesses the organization’s private
cloud 304 through a local network 306 and private-cloud
interface 308 and also accesses, through the Internet 310, a
public cloud 312 through a public-cloud services interface
314. The administrator can, in either the case of the private
cloud 304 or public cloud 312, configure virtual computer
systems and even entire virtual data centers and launch
execution of application programs on the virtual computer
systems and virtual data centers in order to carry out any of
many different types of computational tasks. As one
example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to

40

45

55

6

consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-
base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of

US 10,402,253 B2

7

various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor devices and other
system devices with other application programs and higher-
level computational entities. The device drivers abstract
details of hardware-component operation, allowing applica-
tion programs to employ the system-call interface for trans-
mitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory devices as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.

20

40

45

55

8

However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware. The virtualization layer
504 provides a hardware-like interface to a number of VMs,
such as VM 510, in a virtual-machine layer 511 executing
above the virtualization layer 504. Each VM includes one or
more application programs or other higher-level computa-
tional entities packaged together with an operating system,
referred to as a “guest operating system,” such as application
514 and guest operating system 516 packaged together
within VM 510. Each VM is thus equivalent to the operat-
ing-system layer 404 and application-program layer 406 in
the general-purpose computer system shown in FIG. 4. Each
guest operating system within a VM interfaces to the virtu-
alization layer interface 504 rather than to the actual hard-
ware interface 506. The virtualization layer 504 partitions
hardware devices into abstract virtual-hardware layers to
which each guest operating system within a VM interfaces.
The guest operating systems within the VMs, in general, are
unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer 504 ensures that each of the VMs cur-
rently executing within the virtual environment receive a fair
allocation of underlying hardware devices and that all VMs
receive sufficient devices to progress in execution. The
virtualization layer 504 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a VM that includes a guest operating system
designed for a particular computer architecture to run on
hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.

The virtualization layer 504 includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the VMs executes. For execution effi-
ciency, the virtualization layer attempts to allow VMs to
directly execute non-privileged instructions and to directly
access non-privileged registers and memory. However,
when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization
layer 504, the accesses result in execution of virtualization-
layer code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
520 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-
memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 504
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

US 10,402,253 B2

9

FIG. 5B shows a second type of virtualization. In FIG. 5B,
the computer system 540 includes the same hardware layer
542 and operating system layer 544 as the hardware layer
402 and the operating system layer 404 shown in FIG. 4.
Several application programs 546 and 548 are shown run-
ning in the execution environment provided by the operating
system 544. In addition, a virtualization layer 550 is also
provided, in computer 540, but, unlike the virtualization
layer 504 discussed with reference to FIG. 5A, virtualization
layer 550 is layered above the operating system 544, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 550 comprises pri-
marily a VMM and a hardware-like interface 552, similar to
hardware-like interface 508 in FIG. 5A. The hardware-layer
interface 552, equivalent to interface 416 in FI1G. 4, provides
an execution environment for a number of VMs 556-558,
each including one or more application programs or other
higher-level computational entities packaged together with a
guest operating system.

In FIGS. 5A-5B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A VM or virtual application, described below, is encap-
sulated within a data package for transmission, distribution,
and loading into a virtual-execution environment. One pub-
lic standard for virtual-machine encapsulation is referred to
as the “open virtualization format” (“OVF”). The OVF
standard specifies a format for digitally encoding a VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an
XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a networks
section 630 that includes meta information about all of the
logical networks included in the OVF package, and a
collection of virtual-machine configurations 632 which fur-
ther includes hardware descriptions of each VM 634. There

10

15

20

25

30

35

40

45

50

55

60

65

10

are many additional hierarchical levels and elements within
a typical OVF descriptor. The OVF descriptor is thus a
self-describing, XML file that describes the contents of an
OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication cer-
tificate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of
virtual disks and device files 612 are digitally encoded
content, such as operating-system images. A VM or a
collection of VMs encapsulated together within a virtual
application can thus be digitally encoded as one or more files
within an OVF package that can be transmitted, distributed,
and loaded using well-known tools for transmitting, distrib-
uting, and loading files. A virtual appliance is a software
service that is delivered as a complete software stack
installed within one or more VMs that is encoded within an
OVF package.

The advent of VMs and virtual environments has allevi-
ated many of the difficulties and challenges associated with
traditional general-purpose computing. Machine and oper-
ating-system dependencies can be significantly reduced or
entirely eliminated by packaging applications and operating
systems together as VMs and virtual appliances that execute
within virtual environments provided by virtualization lay-
ers running on many different types of computer hardware.
A next level of abstraction, referred to as virtual data centers
or virtual infrastructure, provide a data-center interface to
virtual data centers computationally constructed within
physical data centers.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents. In FIG. 7, a physical data center 702 is shown below
a virtual-interface plane 704. The physical data center con-
sists of a virtual-data-center management server computer
706 and any of various different computers, such as PC 708,
on which a virtual-data-center management interface may be
displayed to system administrators and other users. The
physical data center additionally includes generally large
numbers of server computers, such as server computer 710,
that are coupled together by local area networks, such as
local area network 712 that directly interconnects server
computer 710 and 714-720 and a mass-storage allay 722.
The physical data center shown in FIG. 7 includes three
local area networks 712, 724, and 726 that each directly
interconnects a bank of eight server computers and a mass-
storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple VMs. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtual-inter-
face plane 704, a logical abstraction layer shown by a plane
in FIG. 7, abstracts the physical data center to a virtual data
center comprising one or more device pools, such as device
pools 730-732, one or more virtual data stores, such as
virtual data stores 734-736, and one or more virtual net-
works. In certain implementations, the device pools abstract
banks of server computers directly interconnected by a local
area network.

The virtual-data-center management interface allows pro-
visioning and launching of VMs with respect to device
pools, virtual data stores, and virtual networks, so that
virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used

US 10,402,253 B2

11

to execute particular VMs. Furthermore, the virtual-data-
center management server computer 706 includes function-
ality to migrate running VMs from one server computer to
another in order to optimally or near optimally manage
device allocation, provides fault tolerance, and high avail-
ability by migrating VMs to most effectively utilize under-
lying physical hardware devices, to replace VMs disabled by
physical hardware problems and failures, and to ensure that
multiple VMs supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplify provisioning,
launching, and maintenance of VMs and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the devices of individual server com-
puters and migrating VMs among server computers to
achieve load balancing, fault tolerance, and high availability.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server computer and physical
server computers of a physical data center above which a
virtual-data-center interface is provided by the virtual-data-
center management server computer. The virtual-data-center
management server computer 802 and a virtual-data-center
database 804 comprise the physical components of the
management component of the virtual data center. The
virtual-data-center management server computer 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server VM 810
above the virtualization layer. Although shown as a single
server computer in FIG. 8, the virtual-data-center manage-
ment server computer (“VDC management server”) may
include two or more physical server computers that support
multiple VDC-management-server virtual appliances. The
virtual-data-center management-server VM 810 includes a
management-interface component 812, distributed services
814, core services 816, and a host-management interface
818. The host-management interface 818 is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The host-management interface 818 allows the virtual-
data-center administrator to configure a virtual data center,
provision VMs, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
VMs within each of the server computers of the physical
data center that is abstracted to a virtual data center by the
VDC management server computer.

The distributed services 814 include a distributed-device
scheduler that assigns VMs to execute within particular
physical server computers and that migrates VMs in order to
most effectively make use of computational bandwidths,
data-storage capacities, and network capacities of the physi-
cal data center. The distributed services 814 further include
a high-availability service that replicates and migrates VMs
in order to ensure that VMs continue to execute despite
problems and failures experienced by physical hardware
components. The distributed services 814 also include a
live-virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical server
computer, and restarts the VM on the different physical
server computer from a virtual-machine state recorded when
execution of the VM was halted. The distributed services

10

20

25

30

35

40

45

50

55

60

65

12

814 also include a distributed backup service that provides
centralized virtual-machine backup and restore.

The core services 816 provided by the VDC management
server VM 810 include host configuration, virtual-machine
configuration, virtual-machine provisioning, generation of
virtual-data-center alerts and events, ongoing event logging
and statistics collection, a task scheduler, and a device-
management module. Each physical server computers 820-
822 also includes a host-agent VM 828-830 through which
the virtualization layer can be accessed via a virtual-infra-
structure application programming interface (“API”). This
interface allows a remote administrator or user to manage an
individual server computer through the infrastructure API.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for
offloading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server computer. The virtual-data-center agents
relay and enforce device allocations made by the VDC
management server VM 810, relay virtual-machine provi-
sioning and configuration-change commands to host agents,
monitor and collect performance statistics, alerts, and events
communicated to the virtual-data-center agents by the local
host agents through the interface API, and to carry out other,
similar virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional devices of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual devices of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the
cloud director introduces a multi-tenancy layer of abstrac-
tion, which partitions VDCs into tenant-associated VDCs
that can each be allocated to a particular individual tenant or
tenant organization, both referred to as a “tenant.” A given
tenant can be provided one or more tenant-associated VDCs
by a cloud director managing the multi-tenancy layer of
abstraction within a cloud-computing facility. The cloud
services interface (308 in FIG. 3) exposes a virtual-data-
center management interface that abstracts the physical data
center.

FIG. 9 shows a cloud-director level of abstraction. In FIG.
9, three different physical data centers 902-904 are shown
below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director server computers 920-922 and associated
cloud-director databases 924-926. Each cloud-director
server computer or server computers runs a cloud-director
virtual appliance 930 that includes a cloud-director manage-
ment interface 932, a set of cloud-director services 934, and
a virtual-data-center management-server interface 936. The
cloud-director services include an interface and tools for
provisioning multi-tenant virtual data center virtual data
centers on behalf of tenants, tools and interfaces for con-
figuring and managing tenant organizations, tools and ser-
vices for organization of virtual data centers and tenant-

US 10,402,253 B2

13

associated virtual data centers within the multi-tenant virtual
data center, services associated with template and media
catalogs, and provisioning of virtualization networks from a
network pool. Templates are VM that each contains an OS
and/or one or more VMs containing applications. A template
may include much of the detailed contents of VMs and
virtual appliances that are encoded within OVF packages, so
that the task of configuring a VM or virtual appliance is
significantly simplified, requiring only deployment of one
OVF package. These templates are stored in catalogs within
a tenant’s virtual-data center. These catalogs are used for
developing and staging new virtual appliances and published
catalogs are used for sharing templates in virtual appliances
across organizations. Catalogs may include OS images and
other information relevant to construction, distribution, and
provisioning of virtual appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

FIG. 10 shows virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-
1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Containers and Containers Supported by
Virtualization Layers

As mentioned above, while the virtual-machine-based
virtualization layers, described in the previous subsection,

15

30

40

45

55

65

14

have received widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running above a guest operating system in a
virtualized environment, traditional virtualization technolo-
gies nonetheless involve computational costs in return for
the power and flexibility that they provide.

While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system of the host. In essence, OSL virtu-
alization uses operating-system features, such as namespace
isolation, to isolate each container from the other containers
running on the same host. In other words, namespace
isolation ensures that each application is executed within the
execution environment provided by a container to be iso-
lated from applications executing within the execution envi-
ronments provided by the other containers. A container
cannot access files not included the container’s namespace
and cannot interact with applications running in other con-
tainers. As a result, a container can be booted up much faster
than a VM, because the container uses operating-system-
kernel features that are already available and functioning
within the host. Furthermore, the containers share compu-
tational bandwidth, memory, network bandwidth, and other
computational resources provided by the operating system,
without the overhead associated with computational
resources allocated to VMs and virtualization layers. Again,
however, OSL virtualization does not provide many desir-
able features of traditional virtualization. As mentioned
above, OSL virtualization does not provide a way to run
different types of operating systems for different groups of
containers within the same host and OSL-virtualization does
not provide for live migration of containers between hosts,
high-availability functionality, distributed resource schedul-
ing, and other computational functionality provided by
traditional virtualization technologies.

FIG. 11 shows an example server computer used to host
three containers. As discussed above with reference to FIG.
4, an operating system layer 404 runs above the hardware
402 of the host computer. The operating system provides an
interface, for higher-level computational entities, that
includes a system-call interface 428 and the non-privileged
instructions, memory addresses, and registers 426 provided
by thehardware layer 402. However, unlike in FIG. 4, in
which applications run directly above the operating system
layer 404, OSL virtualization involves an OSL virtualization
layer 1102 that provides operating-system interfaces 1104-
1106 to each of the containers 1108-1110. The containers, in
turn, provide an execution environment for an application
that runs within the execution environment provided by
container 1108. The container can be thought of as a
partition of the resources generally available to higher-level
computational entities through the operating system inter-
face 430.

FIG. 12 shows an approach to implementing the contain-
ers on a VM. FIG. 12 shows a host computer similar to that
shown in FIG. 5A, discussed above. The host computer

US 10,402,253 B2

15

includes a hardware layer 502 and a virtualization layer 504
that provides a virtual hardware interface 508 to a guest
operating system 1102. Unlike in FIG. 5A, the guest oper-
ating system interfaces to an OSL-virtualization layer 1104
that provides container execution environments 1206-1208
to multiple application programs.

Note that, although only a single guest operating system
and OSL virtualization layer are shown in FIG. 12, a single
virtualized host system can run multiple different guest
operating systems within multiple VMs, each of which
supports one or more OSL-virtualization containers. A vir-
tualized, distributed computing system that uses guest oper-
ating systems running within VMs to support OSL-virtual-
ization layers to provide containers for running applications
is referred to, in the following discussion, as a “hybrid
virtualized distributed computing system.”

Running containers above a guest operating system within
a VM provides advantages of traditional virtualization in
addition to the advantages of OSL virtualization. Containers
can be quickly booted in order to provide additional execu-
tion environments and associated resources for additional
application instances. The resources available to the guest
operating system are efficiently partitioned among the con-
tainers provided by the OSL-virtualization layer 1204 in
FIG. 12, because there is almost no additional computational
overhead associated with container-based partitioning of
computational resources. However, many of the powerful
and flexible features of the traditional virtualization tech-
nology can be applied to VMs in which containers run above
guest operating systems, including live migration from one
host to another, various types of high-availability and dis-
tributed resource scheduling, and other such features. Con-
tainers provide share-based allocation of computational
resources to groups of applications with guaranteed isolation
of applications in one container from applications in the
remaining containers executing above a guest operating
system. Moreover, resource allocation can be modified at
run time between containers. The traditional virtualization
layer provides for flexible and scaling over large numbers of
hosts within large distributed computing systems and a
simple approach to operating-system upgrades and patches.
Thus, the use of OSL virtualization above traditional virtu-
alization in a hybrid virtualized distributed computing sys-
tem, as shown in FIG. 12, provides many of the advantages
of both a traditional virtualization layer and the advantages
of OSL virtualization.

Logging Event Messages in Event Logs

FIG. 13 shows an example of logging event messages in
event logs. In FIG. 13, a number of computer systems
1302-1306 within a distributed computing system are linked
together by an electronic communications medium 1308 and
additionally linked through a communications bridge/router
1310 to an administration computer system 1312 that
includes an administrative console 1314. As indicated by
curved arrows, such as curved arrow 1316, multiple com-
ponents within each of the discrete computer systems 1302-
1306 as well as the communications bridge/router 1310
generate event messages that are transmitted to and ingested
by the administration computer 1312. Event messages may
be generated by any event source. Event sources may be, but
are not limited to, application programs, operating systems,
VMs, guest operating systems, containers, network devices,
machine codes, event channels, and other computer pro-
grams or processes running on the computer systems 1302-
1306, the bridge/router 1310 and any other components of

20

25

30

35

40

45

16

the distributed computing system. Event messages may be
relatively directly transmitted from a component within a
discrete computer system to the administration computer
1312 or may be collected at various hierarchical levels
within a discrete computer system and then forwarded from
an event-message-collecting entity within the discrete com-
puter system to the administration computer 1312. The
administration computer 1312 collects and may store the
received event messages in a data-storage device or appli-
ance 1318 as event logs 1320-1324. Rectangles, such as
rectangle 1326, represent individual event messages. For
example, event log 1320 may comprise a list of event
messages generated within the computer system 1302.

FIG. 14 shows an example of a source code 1402 of an
application program, an operating system, a VM, a guest
operating system, or any other computer program or
machine code. The source code 1402 is just one example of
an event source that generates event messages. Rectangles,
such as rectangle 1404, represent a definition, a comment, a
statement, or a computer instruction that expresses some
action to be executed by a computer. The source code 1402
includes log write instructions that generate event messages
when certain events predetermined by the developer occur
during execution of the source code 1402. For example,
source code 1402 includes an example log write instruction
1406 that when executed generates an “event message 17
represented by rectangle 1408, and a second example log
write instruction 1410 that when executed generates “event
message 2” represented by rectangle 1412. In the example of
FIG. 14, the log write instruction 1408 is embedded within
a set of computer instructions that are repeatedly executed in
a loop 1414. As shown in FIG. 14, the same event message
1 is repeatedly generated 1416. The same type of log write
instructions may also be located in different places through-
out the source code, which in turns creates repeats of
essentially the same type of event message in the event log.

In FIG. 14, the notation “log.write()” is a general
representation of a log write instruction. In practice, the
form of the log write instruction varies for different pro-
gramming languages. In general, event messages are rela-
tively cryptic, including generally only one or two natural-
language words and/or phrases as well as various types of
text strings that represent file names, path names, and,
perhaps various alphanumeric parameters. In practice, a log
write instruction may also include the name of the source of
the event message (e.g., name of the application program or
operating system and version) and the name of the event log
to which the event message is written. Log write instructions
may be written in a source code by the developer of an
application program or operating system in order to record
events that occur while an operating system or application
program is running. For example, a developer may include
log write instructions that are executed when certain events
occur, such as failures, logins, or errors.

FIG. 15 shows an example of a log write instruction 1502.
In the example of FIG. 15, the log write instruction 1502
includes arguments identified with “$.” For example, the log
write instruction 1502 includes a time-stamp argument
1504, a thread number argument 1505, and an internet
protocol (“IP”) address argument 1506. The example log
write instruction 1502 also includes text strings and natural-
language words and phrases that identify the type of event
that triggered the log write instruction, such as ‘“Repair
session” 1508. The text strings between brackets “[]~
represent file-system paths, such as path 1510. When the log
write instruction 1502 is executed, parameters are assigned

US 10,402,253 B2

17

to the arguments and the text strings and natural-language
words and phrases are stored as an event message in an event
log.

FIG. 16 shows an example of an event message 1602
generated by the log write instruction 1502. The arguments
of the log write instruction 1502 may be assigned numerical
parameters that are recorded in the event message 1602 at
the time the event message is written to the event log. For
example, the time stamp 1504, thread 1505, and IP address
1506 of the log write instruction 1502 are assigned corre-
sponding numerical parameters 1604-1606 in the event
message 1602. The time stamp 1604, in particular, repre-
sents the date and time the event message is generated. The
text strings and natural-language words and phrases of the
log write instruction 1502 also appear unchanged in the
event message 1602 and may be used to identify the type of
event that occurred during execution of the application
program or operating system.

As event messages are received from various event
sources, the event messages are stored in the order in which
the event messages are received. FIG. 17 shows a small,
eight-entry portion of an event log 1702. In FIG. 17, each
rectangular cell, such as rectangular cell 1704, of the portion
of the event log 1702 represents a single stored event
message. For example, event message 1702 includes a short
natural-language phrase 1706, date 1708 and time 1710
numerical parameters, as well as, a numerical parameter
1712 that appears to identify a particular host computer.

Methods to Detect and Classify Changes in a
Distributed Computing System

Unexpected behavior detected in a distributed computing
system may be categorized as an anomaly or a change. An
anomaly is an extreme event of a random process that has
essentially the same overall characteristics in the present as
in the past. On the other hand, a change is an alteration in the
characteristics and distribution of the random process itself.
A change point is a point in time when the behavior of an
event source starts to differ significantly from past behavior.
System administrators typically rely on IT management
tools to monitor objects of a distributed computing system.
An object may be, but is not limited to, a computer system,
server computer, VM, or a container. Each object has
associated time-series metric data that is used to measure the
performance of the object. IT management tools detect
anomalies by applying dynamic threshold analytics to the
metric data and report any threshold violations. However,
changes in the behavior of objects may be attributed to other
causes, including hitting a new software bug, hardware
failure, software upgrade, configuration changes, or changes
in workload. Identifying such changes are important in
managing objects of a distributed computing system, but IT
management tools are not able to detect and classify a point
in time when such changes occur. Methods described herein
are directed to automatically detecting and classifying
changes in a distributed computing system based on event
messages generated by various event sources running in
objects of a distributed computing system.

FIG. 18 shows event messages generated by an event
source. FIG. 18 includes a time axis 1802 and a time window
1804 of length A located at a time interval [t,, t',] defined by
a lower bound t; and upper bound t';, where t', =t +A and the
subscript 1 is a first measurement index. The length A of the
time interval [t,, t';] is large enough to collect a sufficient
number of event messages. For example, the length A of the
time window may be 5 minutes, 10 minutes, 15 minutes, 20

20

30

40

45

18

minutes, or more than 20 minutes. FIG. 18 also shows a
portion of an event log 1806 with rectangles that represent
event messages. Event messages 1808 have time stamps that
lie within the time interval [t, t';]. The time interval [t, t']
is divided into two equal length sub-time intervals [t;, t,]
and [t,, t'], where t,=(t';-t,)/2. The event messages 1808
are divided into two sets of event messages. A first set of
event messages 1810 has time stamps in the first time
interval [t;, t,]. A second set of event messages 1812 has
time stamps in the second time interval [t,, t';].

Separate event-type distributions are computed for the
first and second sets of event messages. FIG. 19 shows
determination of separate event-type distributions for the
first and second sets of event messages 1810 and 1812 in
FIG. 18. In block 1902, event-type analysis is applied to
each event message of the first set of event messages 1810
to determine the event type of each event message in the first
set of event messages 1810. In block 1904, event-type
analysis is applied to each event message of the second set
of event messages 1812 to determine the event type of each
event message in the second set of event messages 1812.
Event-type analysis reduces the event message to text strings
and natural-language words and phrases (i.e., non-paramet-
ric tokens).

FIG. 20 shows an example of event-type analysis per-
formed on the event message 1602 shown in FIG. 16. The
event message 1602 is first tokenized by considering the
event message as comprising tokens separated by non-
printed characters, referred to as “white space.” In FIG. 20,
this initial tokenization of the event message 1602 is illus-
trated by underlining of the printed or visible characters. For
example, the date 2002, time 2003, and thread 2004 at the
beginning of the text contents of the event message 2002,
following initial tokenization, become a first token 2006, a
second token 2007, and a third token 2008, as indicated by
underlining. Next, a token-recognition pass is made to
recognize any of the initial tokens as various types of
parameters. Parameters are tokens or message fields that are
likely to be highly variable over a set of messages of a
particular type. Date/time stamps, for example, are nearly
unique for each event message, with two event messages
having an identical date/time stamp only in the case that the
two event messages are generated within less than a second
of one another. Additional examples of parameters include
global unique identifiers (“GUIDs”), hypertext transfer pro-
tocol status values (“HTTP statuses™), universal resource
locators (“URLs”), network addresses, and other types of
common information entities that identify variable aspects
of'an event type. By contrast, the phrase “Repair session” in
event message 1602 likely occurs within each of a large
number of repair session event messages. In FIG. 20, the
parametric-valued tokens in the event message following
initial token recognition are indicated by shading. For
example, initial token recognition determines that the first
token 2006 is a date and the second token 2007 is a time. The
tokens identified as parameters are identified by shaded
rectangles, such as shaded rectangle 2010 of the date 2006
and shaded rectangle of 2012 of the time 2007. The para-
metric-valued tokens are discarded leaving the non-para-
metric text strings, natural language words and phrases,
punctuation, parentheses, and brackets. Various types of
symbolically encoded values, including dates, times,
machine addresses, network addresses, and other such
parameters can be recognized using regular expressions or
programmatically. For example, there are numerous ways to
represent dates. A program or a set of regular expressions
can be used to recognize symbolically encoded dates in any

US 10,402,253 B2

19

of the common formats. It is possible that the token-
recognition process may incorrectly determine that an arbi-
trary alphanumeric string represents some type of symboli-
cally encoded parameter when, in fact, the alphanumeric
string only coincidentally has a form that can be interpreted
to be a parameter. The currently described methods and
systems do not depend on absolute precision and reliability
of the event-message-preparation process. Occasional mis-
interpretations generally do not result in mistyping of event
messages and, in the rare circumstances in which event
messages may be mistyped, the mistyping is most often
discovered during subsequent processing. In the implemen-
tation shown in FIG. 20, the event message 2002 is subject
to textualization in which an additional token-recognition
step of the non-parametric portions of the event message is
performed in order to remove punctuation and separation
symbols, such as parentheses and brackets, commas, and
dashes that occur as separate tokens or that occur at the
leading and trailing extremities of previously recognized
non-parametric tokens, as shown by underlining in the
retokenized event message 2014 in FIG. 20. For example,
brackets and a coma 2018 are underlined. The punctuation,
parentheses, and brackets are discarded leaving a textualized
event message of interest 2020 that comprises only the
non-parametric text strings and natural language words and
phrases of the original event message 1602. The textualized
event message 2020 represents an event type. Other textu-
alized event messages with the same non-parametric text
strings and natural language words and phrase as the textu-
alized event messages 2020 are the same event type. Another
textualized event message with one or more different non-
parametric text strings or natural language words and phrase
from those of the textualized event messages 2020 is of a
different event type. In the following discussion, the notation
et, represents an event type of one or more event messages,
where 1 is a positive integer event type index.

Returning to FIG. 19, in block 1906, relative frequencies
of the event types identified in block 1902 are computed. A
relative frequency is computed for each event type of the
first set of event messages 1810:

_ nplet;) (la)

RF}
Np

where

np(et,) is the number of times the event type et; appears in
the first set of event messages 1810; and

Ny is the total number event messages in the first set of
event messages 1810.
A first event type log 1908 is formed from the different event
types and associated relative frequencies. The first event-
type log 1908 comprises a list of the different event types
1910 in the first set of event messages 1810 and correspond-
ing relative frequencies 1912 of each event type in the first
set of event messages 1810. In block 1914, relative frequen-
cies of the event types of the second set of event messages
identified in block 1904 are also computed. A relative
frequency is computed for each event type of the second set
of event messages 1812:

(1b)

Rolet,
RF? = olety)
No

40

45

50

55

60

o
o

20

where

ng(et;) is the number of times the event type et; appears in
the second set of event messages 1812; and

N, is the total number event messages in the second set
of event messages 1812.

A second event type log 1916 is formed from the different
event types and associated relative frequencies. The second
event-type log 1916 comprises a list of the different event
types 1918 in the second set of event messages 1812 and
corresponding relative frequencies 1920 of each event type
in the second set of event messages 1812. The relative
frequencies 1912 and 1920 of the various event types are
event-type distributions.

FIG. 19 shows a plot of a first event-type distribution
1922 of the relative frequencies 1912 and a plot of a second
event-type distribution 1924 of the relative frequencies
1920. Horizontal axes 1926 and 1928 represent the various
event types. Vertical axes 1930 and 1932 represent relative
frequency ranges. Shaded bars represent the relative fre-
quency of each event type. In the example of FIG. 19, the
first event-type distribution 1922 and the second event-type
distribution 1924 display differences in the relative frequen-
cies of certain event types. For example, the relative fre-
quency of the event type et is same in the first and second
sub-time intervals. By contrast, the relative frequency of the
event type et; is smaller in the second sub-time interval than
in the first sub-time interval.

A divergence value between first and second event-type
distributions for a time interval is computed using any one
of various different methods. The divergence value is a
quantitative measure of a change to the object based on
event messages generated in the first and second time
intervals. In one implementation, a divergence value
between first and second event-type distributions of a time
interval may be computed using the Jensen-Shannon diver-
gence:

L 1[& L 2)
Dy=-) Milogh + 3| > PilogP +) QlogQ,
=1 =1 =1
where
the subscript “i” represents a measurement index;
P~=RF/
QRF;

M~P+Q,)/2; and

L is the number of event types.
In another implementation, the divergence value may be
computed using an inverse cosine as follows:

®

L
ZPIQI
=

L L
NP2 | N (Q*
=l =1

The divergence value D, computed according to Equation
(2) or (3) satisfies the following condition

2

D;=1-Zcos™!
n

0=Ds=1 @

The divergence value is a normalized value that is used to
measure how much, or to what degree, the first event-type
distribution differs from the second event-type distribution.
The closer the divergence is to zero, the closer the first

US 10,402,253 B2

21

event-type distribution is to the second event-type distribu-
tion. For example, when D=0, the first event-type distribu-
tion is identical to the second event-type distribution. On the
other hand, the closer the divergence is to one, the farther the
first event-type distribution is from the second event-type
distribution. For example, when D=1, the first and second
event-type distributions have no event types in common.

FIG. 21 shows a plot 2102 of an example divergence
computed for the first event-type distribution 1922 and the
second event-type distribution 1924 shown FIG. 19. Hori-
zontal axis 2104 represents measurement indices. Vertical
axis 2106 represents the divergence. Dot 2108 represents the
example divergence computed for the first event-type dis-
tribution 1922 and the second event-type distribution 1924.
Note that the divergence value is close to zero, which
indicates the distributions 1922 and 1924 are similar.

The time window is then moved or slides to a next time
interval [t,, t',] by a time step denoted by d. The time step
is less than the length of the time window A (i.e., <A). For
example, the time step may be 30 seconds, 1 minute, 2
minutes, 5 minutes, or of any suitable duration that is less
than the length of the time window. As a result, the time
interval [t,, t',] overlaps the previous time interval [t, t',].

FIG. 22 shows an example of a time window 2202 located
at a time interval [t,, t',], where the subscript 2 is a second
measurement index. The time interval [t,, t',] overlaps the
previous time interval [t;, t',]. Event messages with time
stamps in the time interval [t,, t',] are identified in the event
log 1806. The time interval [t,, t',] is divided into two equal
length sub-time intervals [t,, t,] and [t,, t',], where t,=(t',—
t,)/2. A first set of event messages 2204 with time stamps in
the first sub-time interval [t,, t,] are identified. A second set
of event messages 2206 with time stamps in the second
sub-time interval [t,, t',] are identified. A first event-type
distribution 2208 is computed from the first set of event
messages 2204 and a second event-type distribution 2210 is
computed from the second set of event messages 2206 as
described above with reference to FIG. 19. A second diver-
gence value D, 2212 is computed for the first and second
event-type distributions 2208 and 2210 according to Equa-
tion (2) or (3).

FIG. 23 shows an example of a time window 2302 that
overlaps the previous time window 2202, where the sub-
script 3 is a third measurement index. The time window
2302 corresponds to the time interval [t;, t';]. Event mes-
sages with time stamps in the time interval [t;, t'5] are
identified. The time interval [t,, t';] is divided into two equal
length sub-time intervals [t;, t.] and [t t'5], where t =(t's—
t,)/2. A first set of event messages 2304 with time stamps in
the first sub-time interval [t;, t.] are identified. A second set
of event messages 2306 with time stamps in the second
sub-time interval [t_, t';] are identified. A first event-type
distribution 2308 is computed from the first set of event
messages 2304 and a second event-type distribution 2310 is
computed from the second set of event messages 2306 as
described above with reference to FIG. 19. A third diver-
gence value D; 2312 is computed for the first and second
event-type distributions 2308 and 2310 according to Equa-
tion (2) or (3).

As the time window incrementally advances or slides in
time by the time step 9, a divergence value is computed for
event messages generated in the time interval covered by the
time window as described above with reference to FIGS.
18-23. The divergence values computed over time form a
sequence of divergence values represented by

DV=(D;);- 1N ®)

10

20

25

30

35

40

45

50

55

60

65

22

where

i=1, ..., N are measurement indices; and

N is the number of measurement.

FIG. 24 shows a plot of an example sequence of N
consecutive divergence values computed for N overlapping
time intervals. Directional arrow 2402 represents a time
axis. Overlapping time intervals located on the time axis
2402 correspond to locations of the sliding time window
incrementally advanced in time by the time step . FIG. 24
includes a plot of divergence values 2404 computed for
event messages with time stamps in each time window.
Horizontal axis 2404 represents measuring indices. Vertical
axis 2406 represents a range of divergence values. Diver-
gence values represented by dots are computed for event
messages with time stamps in each of the overlapping time
intervals located along the time axis 2402 as described
above with reference to FIGS. 18-23. Most of the divergence
values are close to zero, which indicates no significant
change in the event messages generated by the event source
over time. On the other hand, larger divergence values D,,_,
2410 and D,, 2412 indicate a change has occurred in the
event source. However, it is not clear when the change
occurred. The change may have occurred in the time interval
[t,, t',] associated with the larger of the two divergence
values D,,, or the change may have occurred in one of the
preceding time intervals [t,_;, t',_;] and time intervals [t,_,,
t, o]

When a divergence value is greater than a divergence
value threshold

D,>Thy Q)

the divergence value indicates a change in the event source.
The divergence value threshold represents a limit for accept-
able divergence value changes. For example, the divergence
value threshold may be equal to 0.1, 0.15, or 0.2. In other
implementations, when a rate of change in divergence values
is greater than a rate of change threshold

D,-D,_,>Th, @]

the divergence value D, indicates a change in the event
source. The rate of change threshold represents a limit for
acceptable increases between consecutive divergence val-
ues. For example, the rate of change threshold may be equal
t0 0.1, 0.15, or 0.2. When a change has been determined by
either of the threshold violations represented in Equations
(6) and (7), change point analysis is applied to the sequence
of divergences values in order to quantitatively detect a
change point for the object. The change point is then used to
determine a potentially earlier start time of change in the
object.

Change point analysis includes computing cumulative
sums of divergence values as follows:

Si=8_1+(Di-D) (8)

where

So=0;
i=1,..

, N;and

_ 1
D= —Z D; is the mean value of the divergence values.
N

In other implementations, rather than using the mean value,

D is the median of the sequence of divergence values.
FIG. 25 shows a plot of example cumulative sum values.

Horizontal axis 2502 represents measurement indices. Ver-

US 10,402,253 B2

23

tical axis 2504 represents a range of cumulative sum values.
Dots represent the values of the cumulative sum for each
measurement index. For example, dot 2506 represents the
cumulative sum value for the measurement index i=N-3.
Note that the initial value of the cumulative sum S, is zero
by definition. The final value of the cumulative sum S,, is
also zero.

The measurement index of the largest cumulative sum
value in the sequence of cumulative sum values is deter-
mined:

Smmax((S),=,™) ©

where m is the measurement index of the maximum
cumulative sum value S,,.
The measurement index m is called the chance point. The
change point index m is the index of the time interval [t,,
t',] in which the change is detected by the maximum
cumulative sum. The change point is the time t,, that marks
the beginning of the time interval [t,,, t',,]. For example, in
FIG. 25, cumulative sum value 2508 is the largest cumula-
tive sum value. The change point index is used to determine
a start time of the change. The start time of the change is
determined by initially partitioning the divergence values
into two sequences of divergence values based on the change
point index m as follows:

DV:(Di)i:1N:(Di)i:1mU(Di)i:m+1N (10)

FIG. 26 shows a plot of example divergence values of the
cumulative sum values shown in FIG. 25. Horizontal axis
2602 represents measurement indices. Vertical axis 2604
represents a range of divergence values. In the example of
FIG. 26, the change point index m of the maximum cumu-
lative sum value S,, is used to partition the sequence of
divergence values into two sequences. The first sequence of
divergence values 2606 comprises the first m divergence
values in the sequence (D,),_,”". The second sequence of
divergence values 2608 comprises the second N-m diver-
gence values in the sequence (D,),—,,..; -

The first and second sequences of divergence values
(D),—," and (D,),_,,. . are used to compute the mean square
error of the sequence of divergences values as follows:

m N (1D
MSEmm) =" (D;=Diw)’ + 3 (D; =Dy)’

=1 izt
where
1
Dim=—=) D
1 N
Dpiin = Nem Z D;

The quantity D, , is the average of the first sequence of
divergence values. The quantity D,,,, , is the average of the
second sequence of divergences values. Starting with a
measurement index k equal to the change point index m, and
decrementing until k=1, a mean square error MSE(k) is
computed according to Equation (11) until a mean square
error MSE(k) that is less than or equal to MSE(m) is
determined. The largest measurement index k that is less
than the change point index m and satisfies the condition
MSE(k)=MSE(m) corresponds to a time interval [t t';],
where the time t, is the start time of change and k is called
the start time of change index. If MSE(k)>MSE(m) for
k=1, ..., m, then the start time of change is the change point

10

15

20

25

30

35

40

45

50

55

60

65

24

t,,. The following pseudocode represents one of many dif-
ferent ways of determining a start time of change:

1 int k = m;
2 for(k=m-1;k=0; k—)
30
4 compute MSE (k); // using Equation (11)
5 if (MSE (k) = MSE (m))
6
7 Start time of change index = k;
8 return (Change index);
9
10
11 Start time of change index = m;
12 return (Change index);

The above procedure minimizes the mean square error by
decrementing from the measurement index m until a mea-
surement index k that satisfies the condition MSE(k)=sMSE
(m) is determined. The resulting start time of change index
k is a “best” partition of the divergence values for which the
divergence values in the sequence (D,),_,“ and the diver-
gence values in the sequence (D,),_,,,” are maximum fits to
the respective means of these two sequences.

FIG. 27 shows a plot of example mean square error values
for measurement indices. Horizontal axis 2702 represents
measurement indices. Vertical axis 2704 represents mean
square error range. Dot 2706 represents the MSE(m) with
the change point index m. Dot 2708 represents the MSE(k)
computed for a measurement index k. In this example, the
mean square error MSE(k) is smaller than the mean square
error MSE(m). The MSE for indices k+1, . . ., m-1 are
greater than MSE(m). As a result, the measurement index k
is the start time of change index.

A confidence level is computed for the start time of
change index k as follows. A cumulative sum difference
between the maximum cumulative sum represented by
Equation (9) and a minimum cumulative sum is computed as
follows:

Saig=Smax=Smin (12)

where

S a=S,,; and

Smin:min({si}ile)~

The N divergence values in Equation (5) are randomized
and re-ordered M times to form M randomized and re-
ordered sequences of the N divergence values represented
by:

RDV:{(Dil)iZINa(Diz)iZINa R >(DiM)i:1N} 13)

The value of M is a large positive integer. For example, the
value of M may be 500, 1000, 1500, 2000 or any suitable
large positive integer.

FIG. 28 shows examples of randomizing and re-ordering
the same sequence of divergence values to generate three
different randomized and re-ordered sequences of diver-
gence values. The ordered sequence of 10 divergence values
2802 is randomized to obtain a randomized sequence of
divergence values 2804. The randomized sequence of diver-
gence values 2804 is then re-ordered to obtain a first
randomized and re-ordered sequence of divergence values
2806. For example, after randomization, the first divergence
value D, in the ordered sequence of divergence values 2802
is placed in the sixth position 2808 in the randomized
sequence of divergence values 2804. The divergence value
D, is then re-ordered as D4'. In other words, after random-
ization and re-ordering D¢'=D, in the randomized and
re-ordered sequence of divergence values 2806. FIG. 28 also

US 10,402,253 B2

25

shows a j-th randomized and re-ordered sequence of diver-
gence values 2810 and an M-th randomized and re-ordered
sequence of divergence values 2812.

Cumulative sum values are computed for j=1, ..., M of
the M randomized and re-ordered sequences of divergence
values as follows:

§7=8, {+D{-D) 14)

A cumulative sum difference is computed forj=1,..., M
of the M randomized and re-ordered sequences of diver-
gence values as follows:

Sif =S =Spii 1%
where

S,,,.¢—max ((3/),-,"); and

Sminj:min ((Sl])l:1N)

A count of the number of cumulative sum differences S dl.ff
of the M randomized and re-ordered sequences of diver-
gence values that are less than the cumulative sum difference
Sz of the original sequence of divergence values is deter-

mined and denoted by

C=Count(S/ <Sz;z (16)

The count is used to compute a confidence level for the start
time of change index determined above as follows:

. C (17
Confidence level = v x 100

The confidence level indicates that if the process used to
determine the start time of change index k were repeated M
times, the start time of change index obtained each time
would equal the start time of change index k obtained from
the original sequence of divergence values (C/N)x100 per-
cent of the time.

In another implementation, rather than using cumulative
sums and confidence levels to determine the start time of
change for historical event messages generated by an event
source, methods include maintaining an empirical distribu-
tion of divergence values for a stream of event messages
generated in real time by an event source. The empirical
distribution of divergence values is constructed for an event
source and updated as event messages are generated. In
other words, for each time step of the sliding time window,
a divergence value for event messages generated within the
time interval covered by the time window is computed an an
empirical distribution of divergence values is updated. The
divergence range [0,1] is partitioned into a number of
histogram subranges. Counters of divergence values that fall
into the different histogram ranges are maintained. The
resulting distribution of divergence values over time con-
tains patterns of consecutive changes in the stream of event
messages. Any divergence values that exhibit variation in
neighboring sliding time windows will appear in the e-tail of
the distribution, indicating an atypicality or change at the
event source.

FIG. 29A-29C show plots of example divergence values
2902 and a corresponding histogram of the divergence
values 2904 for a stream of event messages generated in real
time by an event source. FIGS. 29A-29C include a horizon-
tal time axis 2906. For each incremental step of a sliding
time window along the time axis 2906, a divergence value
is computed for the event messages with time stamps in the
time interval covered by the time window. In plot 2902,
horizontal axis 2908 represents measurement indices. Ver-
tical axis 2910 represents a range of divergence values. Dots,

5

10

15

20

25

30

35

40

45

50

55

60

65

26

such as dot 2912, represent divergence values computed for
event messages generated in real time with time stamps in
time intervals covered by a sliding time window as
described above with reference to FIGS. 18-24. In histogram
plot 2904, vertical axis 2914 represents a range of diver-
gence values that corresponds to the range of divergence
values of axis 2910. Horizontal axis 2916 represents a
divergence value count. Bars in the plot 2904 represent the
count of divergence values that fall within associated diver-
gence value intervals or histogram ranges. Histogram ranges
are denoted by [0, h,), [h;, h,), ..., [h, h,,), ..., [hs 1]
and corresponding counters are denoted by C,, Cy, . . .,
C,, ..., Cs When a divergence value falls within one of the
intervals, the corresponding counter is incremented. Bar
2922 represents the number of divergence values in the
sequence (D,),_,? with values in the histogram range [O,
0.067) 2924. Bar 2926 represents the number of divergence
values in the sequence (D,),_,? with values in the histogram
range [0.067, 0.134) 2928. Bar 2930 represents the number
of divergence values in the sequence (D,),_, ¢ with values in
the histogram range [0.134,2] 2932. The counts of the
divergence values represented in the histogram 2904 are
distributed according to a dashed curve 2918.

In certain implementations, the divergence values are
distributed according to a normal distribution with a mean
denoted by x_mean and a standard deviation denoted by
x_std. Although divergence values are greater than or equal
to zero, assuming the divergence values are normally dis-
tributed, the standard deviation of the assumed normal
distribution, denoted by x_std, is determined. Divergence
values that occur outside an interval [0, x_std] are identified
as outliers, where x_std is the x-th standard deviation of the
counts of divergence values assuming the divergence values
are normally distributed. The x_std is used as a threshold to
identify outlier divergence values. For example, x_std may
be the first, second, third, or higher standard deviation.
Counters C,, . . ., Cg may correspond to divergence values
(i.e., outliers) that are greater than the standard deviation
x_std. In other implementations, a threshold to identify
outlier divergence values may be a selected value greater
than zero.

In FIG. 29A, a time window 2920 is located at the time
interval [t,, t',]. The sequence of divergence values dis-
played in the plot 2902 is {D,},_,?. The divergence value D,
2912 is the g-th divergence value computed for event
messages with time stamps in the time interval [t , t',]. In
FIG. 29B, the time window 2934 is moved by the time step
d to a time interval [t ,,, t',,,]. A divergence value D,,,
2936 is computed for event messages generated within the
time interval [t ,,, t',,,] 2930. The sequence of divergence
values (D,),_,7 is updated by deleting the oldest divergence
value D, and associated time stamps, as represented by open
circle 2938 and adding the most recently computed diver-
gence value D_,, 2936 to obtain the sequence of divergence
values (D,),_,7*'. The divergence value counts in the histo-
gram 2904 are updated. In FIG. 29C, the time window is
moved a number of times by the time step d to a time interval
[te, t'2] 2940. A divergence value D, 2942 is computed for
event messages with time stamps in the time interval [t,, t';]
2940. The sequence of divergence values has been updated
for each incremental advance of the time window by delet-
ing the oldest divergence value as represented by open
circles 2944 and adding the most recently computed diver-
gence value D, 2942. In this example, when the divergence
value counts in the histogram 2904 are updated, the histo-
gram includes a count for the divergence value D, 2942 as
represented by bar 2946. Because the count of divergence

US 10,402,253 B2

27

values represented by bar 2946 is greater than the x-th
standard deviation (i.e., x_std), the divergence value D,
2942 is identified as an outlier and the measurement index
k is the start time of change index.

The start time of change index k is obtained from change
point analysis or from the divergence value outlier deter-
mined for streaming event messages has a corresponding
change time interval [t,, t'.]. A rate of change is calculated
for each event type. A ranked list of event types of mis-
matched pre- and post-change point event type patterns is
determined. In particular, a rate of change or difference
between relative frequencies is computed for each event
type in the event type distribution in the change time interval
[t t',] of the start time of change index k and in the event
type distribution in a preceding, or pre-change, time interval.

FIGS. 30A-30C show determination of a ranked list of
event types for a start time of change index k. In FIG. 30A,
horizontal axis 3002 represents time. Change time interval
[tz t'%] 3004 corresponds to the start time of change index k
obtained from change point analysis. Time interval [t ,,
t',_;] 3006 is a pre-change time interval. In FIG. 30B, an
event type distribution 3008 is computed for event messages
3010 with time stamps in the change time interval [t,, t',]
3004 recorded in an event log 3012. An event type distri-
bution 3014 is computed for event messages 3016 with time
stamps in a pre-change time interval [t,_,, t'. ;] 3006
recorded in the event log 3012. A rate of change is computed
for each event type as a difference between relative frequen-
cies in the pre-change time interval and the change time
interval as follows:

RC=RE ~RF (18)

where

RF,, is a relative frequency of the 1-th event type in the
event-type distribution of the change time interval [t,, t',];
and

RF,,_, is a relative frequency of the 1-th event type in the
event-type distribution of the pre-change time interval [t,_;,
]
FIG. 30C shows a plot of rates of change for the event types
in the pre-change time interval and event types in change
time interval. Horizontal axis 3018 represents event types.
Vertical axis 3020 represents rate of change. In FIG. 30C,
event types et; and ets increase while other event types
decrease. The event types may be rank ordered from event
types with the largest absolute rates of change to event types
with the smallest absolute rates of change. For example, the
event types in FIG. 30C may be rank order from largest to
smallest absolute rates of change as follows:

IRC,|>|RC3]>IRC|>|RC}1>IRC51>RC4|>IRCs] (19)

The event types with the largest rates of change, such as
event types et; and et,, may be examined using a search to
identify what kind of events generated by the event source
am decreasing or increasing. For example, the event type et;
may include warnings statements or phrases that correspond
to recommendations for how to address the problem. The
recommendations may be generated for event types with the
largest of rates of change.

In other implementations, the event types may be grouped
according to increasing (i.e., positive) and decreasing (i.e.,
negative) rates of change and rank ordered within each
group. For example, event types in FIG. 30 with increasing
rates of change are rank ordered (i.e., RC;>RCs>0) from
largest to smallest rates of change are {et,, ets}. Event types
in FIG. 30 with corresponding decreasing rates of change are
rank ordered (i.e., RC,>RC,>RC,>RC,>RC>0) from larg-

10

15

20

25

30

35

40

45

50

55

60

65

28

est to smallest rates of changes to obtain corresponding rank
ordered event types {et,, et,, et,, et,, et;}. The event types
with the largest rate of change, such as event types et; and
et,, may be examined using a search to identify what kind
of events generated by the event source are responsible for
the largest changes.

A change is classified by comparing the event-type dis-
tribution associated with the change point index (i.e., mea-
surement index m) with event-type distributions that have
been identified as representing various kinds of changes at
previous change point indices. A system administrator may
classify event-type distributions associated with previously
identified change point indices. For example, overprovision-
ing of particular resource, such memory, CPU, data storage,
is a type class. A systems administrator may have observed
that when overprovisioning of particular resource has
occurred at previously observed change point indices,
approximately the same event-type distribution is produced
in the time intervals of the change point indices. Workload
increases are another type of class. A systems administrator
may have observed that when workload increases occur at
previously observed change point indices, approximately the
same event-type distribution is produced in the time inter-
vals of the change point indices. A change may be classified
by computing the divergence between an event-type distri-
bution produced in the time interval of a change point index
and each of the event-type distributions of the different
identified change classifications.

FIG. 31 shows an example of an event-type distribution
3102 of events generated in a time interval that corresponds
to a change point as described above with reference to
Equations (6) and (7). The change point index (i.e., mea-
surement index m) is determined as described above with
reference Equation (9) and the event-type distribution 3102
is obtained from the event types generated in the time
interval [t,t',]. FIG. 31 shows three of many classes of
event types denoted by “Class 1,” “Class 2,” and “Class 3.”
Each class represents a different kind of previously classified
change. For example, Class 1 may be overloaded memory,
Class 2 may be an overloaded CPU usage, and Class 3 may
be an increase in workload. FIG. 31 also shows examples of
representative event-type distributions 3104-3106 for each
of the three classes. The representative event-type distribu-
tion 3104 represents the event-type distributions identified
as being of Class 1. The representative event-type distribu-
tion 3105 represents the event-type distributions identified
as being of Class 2. The representative event-type distribu-
tion 3106 represents the event-type distributions identified
as being of Class 3.

A divergence value is computed between the event-type
distribution 3102 and each of the event-type distributions in
the classes using either Equation (2) or (3). The divergence
values may be rank ordered. The k-nearest neighbor repre-
sentative event-type distributions to the event-type distribu-
tion 3201 have the k smallest divergence values. The change
may be identified as the class with the largest number (i.e.,
largest frequency) of divergence values in the set of k
smallest divergence values. For example, suppose the fol-
lowing set of seven (k=7) smallest divergence values is
computed for the event-type distribution 3102 and seven
event-type distributions in the classes Class 1, Class 2, and
Class 3:

{Dl 1’D2 1’D12’D22’D_’:2’D13’D23}

where superscripts represent the class and the subscripts
distinguish the event-type distributions within the three
classes. In this example, the highest frequency divergence

US 10,402,253 B2

29

value occurs for the Class 2. As a result, the event-type
distribution 3102 is closest to the event-type distributions in
the Class 2 and the change is identified as a Class 2 change.
The change has been classified, the systems administrator
may be notified of the type of the change that has occurred
and a corresponding recommendation may be generated for
addresses the change.

FIG. 32 shows a control-flow diagram of a method to
detect and classify changes in event messages generated by
an event source. In block 3201, event messages generated by
an event source of an object in a distributed computing
system are received. In block 3202, a routine “compute a
divergence value for each time interval of a sliding window”
is called. In block 3303, a routine “determine start time of
change” is called. In block 3204, a routine “determine rank
ordered list of event types responsible for the change” is
called. In block 3205, a recommendation based on the rank
ordered list of event types is generated. In block 3206, the
change identified at the change point is classified as
described above with reference to FIG. 31.

FIG. 33 shows a control-flow diagram of the routine
“compute a divergence value for each time interval of a
sliding time window” called in block 3202 of FIG. 32. A
loop beginning with block 3301 repeats the operations of
blocks 3302-3305 for each time interval of sliding time
window. In block 3302, a time interval is partitioned into a
first sub-time interval and a second time interval as
described above with reference to FIG. 18. In block 3303 a
first event-type distribution of event messages with time
stamps in the first sub-time interval is determined as
described above with reference to FIG. 19. In block 3304, a
second event-type distribution of event message with time
stamps in the second sub-time interval is determined as
described above with reference to FIG. 19. In block 3305, a
divergence value is computed for the first and second event
types distributions using Equation (2) or (3). In decision
block 3306, the sliding time window is moved to an over-
lapping time interval as described above with reference to
FIG. 24.

FIG. 34 shows a control-flow diagram of the routine
“determine start time of change” called in block 3203 of
FIG. 32. A loop beginning with block 3401 repeats the
operations of blocks 3402-3406 for each divergence value.
In decision block 3402, when a threshold violation has
occurred, as described above with reference to Equation (6)
or (7), control flows to block 3404. Otherwise control flows
to block 3403. In block 3404, cumulative sums of the
divergence values are computed for the time intervals as
described above with reference to Equation (8). In block
3405, a largest of the cumulative sums is determined as
described above with reference to Equation (9). In block
3406, a measurement index of the largest of the cumulative
sums, also called a change point index, is determined as
described above with reference to FIG. 25. In block 3407,
the divergence values are partitioned into two sequences of
divergence values based on the measurement index of the
largest of the cumulative sums as described above with
reference to Equation (10). In block 3408, a mean square
error at the measurement index is computed based on the
two sequences of divergence values as described above with
reference to Equation (11). In block 3409, a start time of
change that is less than or equal to the change point is
determined as described above with reference to FIG. 27.
The start time of change may be less than or equal to the
change point. In block 3410, a routine “compute confidence
level of start time of change” is called.

20

30

40

45

50

30

FIG. 35 shows a control-flow diagram of the routine
“compute confidence level of start time of change” called in
block 3410 of FIG. 34. In block 3501, a minimum cumu-
lative sum is determined. In block 3502, a cumulative sum
difference S ;- is computed between the maximum cumula-
tive sum and the minimum cumulative sum as described
above with reference to Equation (12). A loop beginning
with block 3503 repeats the computational operations of
blocks 3504-3510 for the M randomized and re-order diver-
gence values. In block 3504, the sequence of divergence
values is randomized and re-order to form a randomized and
re-ordered sequence of divergence values as described
above with reference to FIG. 28. In block 3505, cumulative
sum values are computed the sequence of randomized and
re-ordered sequences of divergence values as described
above with reference to Equation (14). In block 3506, a
cumulative sum difference S dl.ff is computed for the random-
ized and re-ordered sequence of divergence values as
described above with reference to Equation (15). In decision
block 3507, when the cumulative sum difference S dl.ff is less
than the cumulative sum difference S, control flows to
block 3608 in which a counter C is incremented as described
above with reference to Equation (16). In block 3509, the
randomized and re-order index j is incremented. In decision
block 3510, when the index j is greater than M, control flows
to block 3611. In block 3511, a confidence level for the
change index is computed according to Equation (17).

FIG. 36 shows a control-flow diagram of the routine
“determine start time of change” called in block 3203 of
FIG. 32. A loop beginning with block 3601 repeats the
operations of blocks 3602-3613 for a divergence value
computed in a time interval of streaming event messages. In
block 3602, the counter of histogram range associated with
an oldest divergence value in a histogram of divergence
values is decremented. Decision blocks 3603-3606 represent
histogram ranges as described above with reference to FIGS.
29A-29C. When a divergence value falls within one of the
histogram ranges, the corresponding counter represented by
blocks 3607-3610 is incremented. In decision block 3611,
when any of the counters C, . . . , C; is greater than zero,
control flows to block 3612. In block 3612, the time interval
associated with the divergence value is identified as having
the change. In decision block 3613, blocks 3602 are repeated
for another received divergence value.

FIG. 37 shows a control-flow diagram of the routine
“determine rank ordered list of event types responsible for
the change” called in block 3204 of FIG. 32. In block 3701,
a first event-type distribution is computed for event mes-
sages with time stamps in the time interval associated with
the change index, as described above with reference to FIG.
30B. In block 3702, a second event-type distribution is
computed for event messages with time stamps in a time
interval that precedes the time interval associated with the
change index, as described above with reference to FIG.
30B. In block 3703, a rate of change is computed for each
event type in the first and second event type distributions as
described above with reference to Equation (18). In block
3704, the event types are rank ordered from largest to
smallest rate of change.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the

US 10,402,253 B2

31

embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A method stored in one or more data-storage devices
and executed using one or more processors to detect and
classify a change in a distributed computing system, the
method comprising:

computing a sequence of divergence values from event

messages with time stamps in each overlapping time
interval of a sliding time window applied to the event
messages; and

when a threshold violation in the sequence of divergence

values is detected,

determining a start time of a change in behavior of an
event source, the start time corresponding to a time
interval when the change occurred,

rank ordering event types of event messages with time
stamps in the time interval to obtain a rank ordered
list of event types,

classifying the change based on classifications of pre-
viously observed changes, and

generating a recommendation to address the change
based on the rank ordered list of event types and the
classification of the change.

2. The method of claim 1 wherein computing the
sequence of divergence values comprises:

for each overlapping time interval of the sliding time

window

partitioning each time interval into a first sub-time
interval and a second sub-time interval,

determining a first event-type distribution of event
messages with time stamps in the first sub-time
interval,

determining a second event-type distribution of event
message with time stamps in the second sub-time
interval, and

computing a divergence value for the first and second
event-type distributions.

3. The method of claim 1 wherein determining the start
time of the change comprises:

computing cumulative sums of the divergence values;

determining a largest cumulative sum of the cumulative

sums;
identifying a change point as corresponding to a mea-
surement index of a time interval of the sliding time
window that corresponds to the largest cumulative sum;

partitioning the sequence of divergence values into a first
sequence of divergence values generated from event
messages in time intervals before the change point and
a second sequence of divergence values generated from
event messages in time intervals after the change point;

computing a mean square error for the first and second
sequences of divergence values;

for each measurement index of the time intervals before

the change point,

partitioning the sequence of divergence values into a
first sequence of divergence values generated from
event messages in time intervals before the measure-
ment index and a second sequence of divergence
values generated from event messages in time inter-
vals after the measurement index, and

computing a mean square error for the first and second
sequences of divergence values;

identifying a largest measurement index of the mean

square error that is less than or equal to the mean square
error at the change point; and

10

15

25

30

35

40

45

50

55

60

65

32

identifying the time interval of the largest measurement
index as the start time of change.
4. The method of claim 1 wherein determining the start
time of the change comprises:
receiving the sequence of divergence values;
for each divergence value of the sequence of the diver-
gence values
when a divergence value falls within a histogram range
of a histogram of divergence values, incrementing a
counter for the histogram range;
when the counter for a histogram range of the histogram
of divergence values is greater than a standard devia-
tion threshold, identifying a measurement index of a
time interval associated with the divergence value as a
change index, indicating that the start time of the
change occurs in the time interval; and
decrementing a counter of a histogram range that contains
an oldest divergence value in the histogram of diver-
gence values.
5. The method of claim 1 wherein rank ordering the event
types of the event messages comprises:
computing a first event-type distribution for event mes-
sages with time stamps in a time interval associated
with a change index;
computing a second event-type distribution for event
messages with time stamps in a time interval that
precedes the time interval associated with the change
index;
computing a rate of change for each event type in the first
and second event type distributions; and
rank ordering the event types from largest to smallest rates
of change to obtain the rank ordered list of event types.
6. The method of claim 1 wherein classifying the change
based on the classifications of the previously observed
changes comprises:
determining an event-type distribution of event messages
generated in a time interval of a change point;
computing a divergence value between the event-type
distribution and each representative event-type distri-
bution of the classifications of previously observed
changes;
determining k-nearest neighbors of representative event-
type distributions to the event-type distribution as hav-
ing the k-smallest divergence values; and
classifying the change as a classification with a largest
number of divergence values in the k-nearest neigh-
bors.
7. A system to detect and classify a change in a distributed
computing system, the system comprising:
one Or mMore processors;
one or more data-storage devices; and
machine-readable instructions stored in the one or more
data-storage devices that, when executed using the one
or more processors, control the system to carry out
operations comprising:
computing a sequence of divergence values from event
messages with time stamps in each overlapping time
interval of a sliding time window applied to the event
messages; and
when a threshold violation in the sequence of diver-
gence values is detected,
determining a start time of a change in behavior of an
event source, the start time corresponding to a
time interval when the change occurred,
rank ordering event types of event messages with
time stamps in the time interval to obtain a rank
ordered list of event types,

US 10,402,253 B2

33

classifying the change based on classifications of
previously observed changes, and
generating a recommendation to address the change
based on the rank ordered list of event types and
the classification of the change.
8. The system of claim 7 wherein computing the sequence
of divergence values comprises:
for each overlapping time interval of the sliding time
window;
partitioning each time interval into a first sub-time
interval and a second sub-time interval,
determining a first event-type distribution of event
messages with time stamps in the first sub-time
interval,
determining a second event-type distribution of event
message with time stamps in the second sub-time
interval, and
computing a divergence value for the first and second
event-type distributions.
9. The system of claim 7 wherein determining the start
time of the change comprises:
computing cumulative sums of the divergence values;
determining a largest cumulative sum of the cumulative
sums;
identifying a change point as corresponding to a mea-
surement index of a time interval of the sliding time
window that corresponds to the largest cumulative sum;
partitioning the sequence of divergence values into a first
sequence of divergence values generated from event
messages in time intervals before the change point and
a second sequence of divergence values generated from
event messages in time intervals after the change point;
computing a mean square error for the first and second
sequences of divergence values;
for each measurement index of the time intervals before
the change point,
partitioning the sequence of divergence values into a
first sequence of divergence values generated from
event messages in time intervals before the measure-
ment index and a second sequence of divergence
values generated from event messages in time inter-
vals after the measurement index, and
computing a mean square error for the first and second
sequences of divergence values;
identifying a largest measurement index of the mean
square error that is less than or equal to the mean square
error at the change point; and
identifying a time interval of the largest measurement
index as the start time of change.
10. The system of claim 7 wherein determining the start
time of the change comprises:
receiving the sequence of divergence values;
for each divergence value of the sequence of the diver-
gence values
when a divergence value falls within a histogram range
of a histogram of divergence values, incrementing a
counter for the histogram range;
when the counter for a histogram range of the histogram
of divergence values is greater than a standard devia-
tion threshold, identifying a measurement index of a
time interval associated with the divergence value as a
change index, indicating that the start time of the
change occurs in the time interval; and
decrementing a counter of a histogram range that contains
an oldest divergence value in the histogram of diver-
gence values.

10

20

30

35

40

45

50

60

65

34

11. The system of claim 7 wherein rank ordering the event
types of the event messages comprises:

computing a first event-type distribution for event mes-

sages with time stamps in a time interval associated
with a change index;

computing a second event-type distribution for event

messages with time stamps in a time interval that
precedes the time interval associated with the change
index;

computing a rate of change for each event type in the first

and second event-type distributions; and

rank ordering the event types from largest to smallest rates

of change to obtain the rank ordered list of event types.
12. The system of claim 7 wherein classifying the change
based on the classifications of the previously observed
changes comprises:
determining an event-type distribution of event messages
generated in a time interval of a change point;

computing a divergence value between the event-type
distribution and each representative event-type distri-
bution of the classifications of previously observed
changes;

determining k-nearest neighbors of representative event-

type distributions to the event-type distribution as hav-
ing the k-smallest divergence values; and

classifying the change as a classification with a largest

number of divergence values in the k-nearest neigh-
bors.

13. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform operations of comprising:

computing a sequence of divergence values from event

messages with time stamps in each overlapping time
interval of a sliding time window applied to the event
messages; and

when a threshold violation in the sequence of divergence

values is detected,

determining a start time of change in behavior of an
event source, the start time corresponding to time
interval when the change occurred,

rank ordering event types of event messages with time
stamps in the time interval to obtain a rank ordered
list of event types,

classifying the change based on classifications of pre-
viously observed changes, and

generating a recommendation to address the change
based on the rank ordered list of event types and the
classification of the change.

14. The medium of claim 13 wherein computing the
sequence of divergence values comprises:

for each overlapping time interval of the sliding time

window

partitioning each time interval into a first sub-time
interval and a second sub-time interval,

determining a first event-type distribution of event
messages with time stamps in the first sub-time
interval,

determining a second event-type distribution of event
message with time stamps in the second sub-time
interval, and

computing a divergence value for the first and second
event-type distributions.

US 10,402,253 B2

35

15. The medium of claim 13 wherein determining the start
time of the change comprises:
computing cumulative sums of the divergence values;
determining a largest cumulative sum of the cumulative
sums;
identifying a change point as corresponding to a mea-
surement index of a time interval of the sliding time
window that corresponds to the largest cumulative sum;
partitioning the sequence of divergence values into a first
sequence of divergence values generated from event
messages in time intervals before the change point and
a second sequence of divergence values generated from
event messages in time intervals after the change point;
computing a mean square error for the first and second
sequences of divergence values;
for each measurement index of the time intervals before
the change point,
partitioning the sequence of divergence values into a
first sequence of divergence values generated from
event messages in time intervals before the measure-
ment index and a second sequence of divergence
values generated from event messages in time inter-
vals after the measurement index, and
computing a mean square error for the first and second
sequences of divergence values;
identifying a largest measurement index of the mean
square error that is less than or equal to the mean square
error at the change point; and
identifying a time interval of the largest measurement
index as the start time of change.
16. The medium of claim 13 wherein determining the start
time of the change comprises:
receiving the sequence of divergence values;
for each divergence value of the sequence of the diver-
gence values
when a divergence value falls within a histogram range
of a histogram of divergence values, incrementing a
counter for the histogram range;

10

15

20

25

36

when the counter for a histogram range of the histogram
of divergence values is greater than a standard devia-
tion threshold, identifying a measurement index of a
time interval associated with the divergence value as a
change index, indicating that the start time of the
change occurs in the time interval; and

decrementing a counter of a histogram range that contains

an oldest divergence value in the histogram of diver-
gence values.

17. The medium of claim 13 wherein rank ordering the
event types of the event messages comprises:

computing a first event-type distribution for event mes-

sages with time stamps in the time interval associated
with the change index;

computing a second event-type distribution for event

messages with time stamps in a time interval that
precedes the time interval associated with the change
index;

computing a rate of change for each event type in the first

and second event-type distributions; and

rank ordering event types from largest to smallest rates of

change to obtain the list of event types.
18. The medium of claim 13 wherein classifying the
change based on the classifications of the previously
observed changes comprises:
determining an event-type distribution of event messages
generated in the time interval of the change point;

computing a divergence value between the event-type
distribution and each representative event-type distri-
bution of the classifications of previously observed
changes;

determining k-nearest neighbors of representative event-

type distributions to the event-type distribution as hav-
ing the k-smallest divergence values; and

classifying the change as a classification with a largest

number of divergence values in the k-nearest neigh-
bors.

