a2 United States Patent

Poghosyan et al.

US010452665B2

US 10,452,665 B2
Oct. 22, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHODS AND SYSTEMS TO REDUCE
TIME SERIES DATA AND DETECT
OUTLIERS

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Arnak Poghosyan, Yerevan (AM);
Ashot Nshan Harutyunyan, Yerevan
(AM); Naira Movses Grigoryan,
Yerevan (AM)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 297 days.

Appl. No.: 15/627,987

Filed: Jun. 20, 2017

Prior Publication Data

US 2018/0365298 Al Dec. 20, 2018
Int. CL.
HO3M 7/30 (2006.01)
GO6K 9/62 (2006.01)
(Continued)
U.s. Cl1
CPC GOG6F 16/2462 (2019.01); GOGF 16/2282

(2019.01); GOGF 16/2477 (2019.01);

(Continued)

Field of Classification Search

CPC GO6F 16/2462; GO6F 16/2477;, GO6F
16/2282; GO6F 17/18; GO6F 11/00;

(Continued)

2208

Increment K

(56) References Cited
U.S. PATENT DOCUMENTS
6,466,877 B1* 10/2002 Chenccoeuenn. GOIN 33/346
702/35
6,498,993 B1* 12/2002 Chencccoceveeennen D21F 7/04
702/35
(Continued)
FOREIGN PATENT DOCUMENTS

CN 102360378 A * 2/2012

EP 3107000 A2 * 12/2016 GOG6F 17/18

OTHER PUBLICATIONS

Gogoi et al. “A Survey of Outlier Detection Methods in Network
Anomaly Identification.” The Computer Journal, vol. 54, Issue 4,
Apr. 2011, pp. 570-588. (Year: 2011).*

(Continued)
Primary Examiner — Phuong Thao Cao

(57) ABSTRACT

Automated methods and systems to reduce the size of time
series data while maintaining outlier data points are
described. The time series data may be read from a data-
storage device of a physical data center. Clusters of data
points of the time series data are determined. A normalcy
domain of the time series data and outlier data points of the
time series data is determined. The normalcy domain of the
time series data comprises ranges of values associated with
each clusters of data points. The outlier data points are
located outside the ranges. Quantized time series data are
computed from the normalcy domain. When the loss of
information due to quantization is less than a limit, the
quantized time series data is compressed. The time series

(Continued)

Mathod to raduce fime series data
and detect outliers

Read a sequance ofime series data
from a date-storage device

2201
202

2203

Determine K clusiers of the time
sarles data

Determine nomal demain and
utller data polnis of

2204

the Bime series data

Compute foss of infomation
betwsen quantized time series
data and nomnal domaln of the fime.
serlss data

L—2208

2207

Repace tine series deta with
compressed fime sares data and
ouer data polnts

US 10,452,665 B2

Page 2
data in the data-storage device is replaced with the com- 2008/0027683 Al* 1/2008 Middleton GO5B 23/0272
pressed time series data and outlier data points. 702/187
2010/0030544 Al* 2/2010 Gopalan HOAL 41/142
. . 703/13
27 Claims, 32 Drawing Sheets 2010/0082638 A1* 4/2010 Marvasticcooc.... GOGF 17/18
707/748
2010/0309031 Al* 12/2010 Kawato HO1J 49/0036
341/87
(51) Int. CL 2012/0041575 AL* 2/2012 Maeda ..occoconne.. GOSB 23/024
700/80
GO6F 17/18 (2006.01) .
2013/0110761 Al1* 5/2013 Vi than GO6N 20/00
GOGF 16/2458 (2019.01) i 206/52
GO6F 16/22 (2019.01) 2013/0116939 AL* 5/2013 Dai ..cccovvvrcrvernnnnnnn. GO6Q 50/06
HO3M 7/00 (2006.01) 702/45
GO6K 9/00 (2006.01) 2013/0166572 Al* 6/2013 Fujimaki GO06Q 10/00
GOG6F 11/00 (2006.01) L 707/748
(52) US.Cl 2013/0268288 Al* 10/2013 Fujimaki G06Q 10/10
e . 705/2
CPC G06F 17/18 (2013.01), G06K 9/00536 2014/0298098 Al* 10/2014 Poghosyan """"" G06F 11/3452
(2013.01); GO6K 9/6272 (2013.01); GO6K 714/37
9/6284 (2013.01); HO3M 7/00 (2013.01); 2015/0205692 A1* 7/2015 Seto .c.ccocvvevecennee GOG6F 11/3452
HO3M 7/3059 (2013.01); GO6F 11/00 702/182
(2013.01); HO3M 7/30 (2013.01) 2016/0004620 Al* 1/2016 Ohikeocccccneer.n GOGF 11/00
. o ’ ’ 702/176
(58) Field of Classification Search 2016/0189041 Al* 62016 Moghtaderi GOGN 20/00
CPCccoee. GO6K 9/00536; GO6K 9/6284; GO6K 706/12
9/6272; HO3M 7/3059; HO3M 7/00; 2016/0313023 Al* 10/2016 Przybylski GOSB 23/0297
HO3M 7/30 2016/0371228 Al* 12/2016 Ukilccceovvvenvenenee GOG6F 17/18
USPC et 707/693 2017/0070414 AL* 3/2017 Bell . - HOAL 43/16
S lication file fi let h hist 2017/0070415 Al* 3/2017 Bellcccovvnveenneen HO4L 43/16
©c application e Ior complete search ustory. 2017/0109250 Al* 4/2017 Matsuki GOGF 9/45558
. 2017/0181098 Al* 6/2017 Shinohara HO04W 52/0261
(56) References Cited 2017/0315531 Al* 11/2017 Aparicio Ojea ... GO5B 19/4183
2017/0359478 Al* 12/2017 Deshpande HO4N 1/3217
U.S. PATENT DOCUMENTS 2018/0324199 Al* 11/2018 Crotinger HO4L 63/1425
2018/0348250 Al* 12/2018 Higginscccoevnue GOLP 5/00
6,522,978 B1* 2/2003 Chenccccoeuvee GOIN 33/346
702/182
8,171,033 B2* 5/2012 Marvasti GO6F 17/18 OTHER PUBLICATIONS
702/160 : N : ST : »
8,676,964 B2* 32014 Gopalan wo....... HO4L. 41/142 Muthukl.rshnan etal. “Mining De.Vlants in Time Series Da.ta S.tream.
370/230.1 Proceedings of the 16th International Conference on Scientific and
9,742,435 BL* 82017 Poghosyan ... HO3M 7/3064 Statistical Database Management (SSDBM’04), IEEE Computer
2002/0038197 Al* 3/2002 Chenccoooerr. D21G 9/0009 Society, 2004, 10 pages. (Year: 2004)* _
702/182 Weekley et al. “An Algorithm for Classification and Outlier Detec-
2002/0052699 A1* 5/2002 Chen wooevooeooos, D21F 7/04 tion of Time-Series Data.” Journal of Atmospheric and Oceanic
702/34 Technology, vol. 27, Issue 1, Jan. 2010, pp. 94-107. (Year: 2010).*
2004/0015458 Al* 1/2004 Takeuchi ..oooovvvvin, GO6F 17/18 Arthur, David, et al,, “k-means++: The Advantages of Careful
706/14 Seeding,” 2007 Proceedings of the eighteenth annual ACM-SIAM
2004/0093364 Al* 5/2004 Chengccccounennn HO3M 7/30 symposium on Discrete algorithms. Society for Industrial and
708/203 Applied Mathematics Philadelphia, PA, USA. pp. 1027-1035.
2006/0242706 Al* 10/2006 ROSS ..ccccoovvvvvvenenenn GO6F 21/55

726/23 * cited by examiner

U.S. Patent Oct. 22, 2019 Sheet 1 of 32 US 10,452,665 B2

/-— 102 /—‘EOB

CPU [CPU
MEMORY
110
CPU P4 cPU
104 — 1
\ \—108
105
112
— SPECIALIZED e
——i PROCESSOR —/ BRIDGE
114
— 116
J/
118

120
a

BRIDGE

I |

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

| ?\ I\ ! \ I\ i 197
122 123 124 125

MASS
126 STORAGE

DEVICE

U.S. Patent Oct. 22, 2019 Sheet 2 of 32 US 10,452,665 B2

>

FIG. 2

U.S. Patent Oct. 22, 2019 Sheet 3 of 32 US 10,452,665 B2

N\ =
3 A
= S
ey BN
QZ < é
i\;\? - i
N 7

FIG. 3

/-316
)

US 10,452,665 B2

Sheet 4 of 32

Oct. 22,2019

U.S. Patent

BIBMpIEH

8y —

Winyshs
Bugeredp

swelboid
uoneaddy

) i / /
\ , _. /
J | / NE
! \ / /
abeio)s
sse o/l ol SI058800l4 K3 AJowapy
T 7 G
P 1744 oy — 0y 8ly
G585 I PejoIo}sbal | SPaseIppe sIeianal | SuofonAsul P
pabapaud pebeyad-you pebsyatd SUOIITUSUL PRDSALI-UU
s1anQ Jwibyy yse |
someq Emﬁ\ﬂm\m__u_ u mEmmw uepy Alowspy 1INpALS
sfeataill SO % —- TP — il seaaul 50O
S0EL 01 [E- WAk SIT5I0a] PUE SHSSaIppE AoWald
il S pue suopornuysu pabayaud-uou
1147 9y
wr— wr— wr— sev— v —

US 10,452,665 B2

Sheet 5 of 32

Oct. 22,2019

U.S. Patent

V§ Ol

/

A L
abesojs 206
mmmsw o O/l S10858201d Alowapy ~
T A
palgiaud pebapaid-uou pabojnd _ suoponyst pabonid-uon 1]
SOMIP BUIADD SIOAIP S0IA8D
Jatiitory] T yos
=HES auy OB
\w_é\\‘\ oway WA WUOBI A | | 8L9
B S e S B EI S T WS TR WS 809
pabayaud pabaynud-uou _ pabajnxd _ suagorgsul paiegyid-uon 1]
\\\\I @wm
S0 $0 S0 S0 S0
PIB
uohedde uojendde uoyesldde uogeadde uojeaydde

018 -

US 10,452,665 B2

Sheet 6 of 32

Oct. 22,2019

U.S. Patent

0yS /

.

alemple <

s/

waisAg Bupelady <

we

JEYCR]
uonezyenia

06§ /

295

<

N A

seuRy <
[BNA

a5

Ol

£ 1
abei)s $1088800) Alows
ssepy oil oll d w
A N
[l u:m_m S5SSBIPpE Aiollew
aoeL e fea-Wiajshs E.m suoyarusus pabiapaLic-uou
uoyez|enpIA
L
S0 SO SO
8ys / oS /
uopejdde uojeaydde upgealdde
866G / 1557 956 /

swelbold
e ucijeddy

US 10,452,665 B2

Sheet 7 of 32

Oct. 22,2019

U.S. Patent

99
|/

0v9
1/

jsajuew jo jsabip
Sapnul jey sjedired

aj somosal o 1sabig

By s01n088. 0 1586I0]

&y abewy ysip jo jsefiig

aj abew ysip 40 1596

abeyoed j01sfi

]

<UOI09g YIOMIBN/>
0£9 Mr\ :
<UOH08G YIOMIEN>

<U0B08S YSK1/>
829 A :
<U0Ro9g YSIO>

<S0UIBEY/>
9¢9 :
<580UBIBBY>

abeyord 4AD
— V19
3jl} 821083l
P €9
ojyy 83IN08al
\\HHHHMMMMM|i5|1liiiziu,// oy eomnosal | ¢h9
.
;! o
/ x..__ iiiiiiiiiiiiiiiiiii \ /////
/i 8y X €C9 v .
s.\ ..\ // ////// sl abewyysip |~ b9
‘<adojpaug/> NN
/ \N » N /// N | awebewnsp | s
<UORIBJ|07) WRISAS [eNIA/> N
/ : SN Y | srameg ano |- 809
/ <UON08S BIEMPIBH [BRUIAS W RN 909
! I : ~ ya
ce9 <UONOBS SIBMPIEH [ENUIAS ve9 N L Ao
<UOROBJj07 WESAS [BnliA> opduosag 4A0 | 7 09

/ <09

< maommémv,

0¢9 i;\

1eul04 uogezyenap usdp

/l 9

US 10,452,665 B2

Sheet 8 of 32

Oct. 22,2019

U.S. Patent

L 9l
18jusn eleq eashyd
61/ —8H. IL—9LL —S1L—pl O
N W arada®
. X\ /\ ¥ A A 50l \
20!
™ / % % m ¥ / w.&
%!
7" = iy A \ =
), 90
7 /- 80L
el
/ /
/ |00d 801058y
/
|
Gl _
ot/
08
1BJUSD BB BNUIA 1e/

US 10,452,665 B2

Sheet 9 of 32

Oct. 22,2019

U.S. Patent

8
/

128
1/

8 'Ol

0c8
|/

¢08
/

BiEMpIRH aempieH aiempre 908 —1 LA elempieH
aseqeiep
PRy R JELCR 1ahen iBsheT] |« 1BJB D
OB ZIEMIA UCHEZIENMIA UOIRZIENMIA 808 — 4" |uonezijenian BEQ IENdA
_Ei _§>_ _s_>_ _Ei _ss_ _2: \;;sx&
-
[]y (] D]] (W]~)i
weby 1soH Jeby 10K Icm? 150H /s Jaue) erq
_ Tdmw _ _// \ AuIA
| webe oan | | webe oan | 6c8 | webe oan | s 7\
7Y AN 4 =N
7 S 7 - / 018
¢ ~ w\ glg 7
M
7/ juswabeusw JSOH \ \\
/ Ny
S0IMBTG B0 iy
918 I\N\\\ 1SS 200 /W /™ _ juswebeueus 52mosay
L A / 19|Npauds yse |
- , seopie ~Jy bubs
IS PaINaUISI] uibo] 10 UoRo3(j00 SASHEIS
dnyoeg 18 |\ﬂ] - SIUBAS B SUBJY
uopebI A ST P N B anin jswabeuepy / ™~ Buuosiaoid WA
Angeneay ybiH - uoijeInBiyuo WA

18|NpBYOS 80IN0SeY PEINQUISIy -

yonemnfyuco 1S0M

US 10,452,665 B2

Sheet 10 of 32

Oct. 22,2019

U.S. Patent

¢06 /

£06 906 x/ \
/ Ve ! I [e
iiiiiiiii -7 “ “ __ _
Vs \\ w Emosmn_m _:> \\
Escmw mﬁu_wés / ’ T |mmw - “ \“ _ -
— — “ | i 10)2311P PNOJ \1 \\\ \\\ p i g gsp .vN@

106 l\ o%\&%ohmmo E you0 ~9u0~Z940 #1940
$m\ Emi\ \\tm\ _|;_

816 9l6
06 —\ _ 176 \\
\I T _ T
, % 016 06—
/ _ 7
7 siejued E%u [erA 7 10}084p prop
e _ o ——— — T T T T T \0) ©m®
/ 7 7 S9E]181 SN J0A
806 p / — 926
ZOM0 ~7 LOM0 —_— — 0£6
z ,. - jood joMau Woly BUOISIAGI YIOMBN \1
|I\ sfiojejen eipaiy pue ajedws
/ CQGQ:@CZOO 18jua)) eje(] [enyIp CO_HMN_CNED S30IAI8G JO12aI PRojD
cle &6 pue uceInByuos uoneziuebio / 6
™ . Bunospold sejusy ele@BMIA | anepigu jusw abeueyy

T~ B /IN%

US 10,452,665 B2

Sheet 11 of 32

Oct. 22,2019

U.S. Patent

0l "Ol4 7104 0L0L Z104

apou OU>\

apoy JoA JBAIBS Q0A - |
H// ! // “
Y T T isH 3 1
i | 1 IO 1 U pon ; i
{ [| Pl RN |
! I ! gy e 1
| { ! Y 1
|] I (R -
i t | el >
s000 — ik >
Ve 7 Id L v e e e e o o o St v v s ovie o e s o i s s [
[_ 60l /’
| Lo ¢00t
! bl m%m gt Yy T 1880
“ M S\ — <) 1P [ENJIA
; Gl apot 9OA 3pou DA
s 7 O
1001 - 120l 8101 €00}
EITE] 1
BIEP [NLIA S AT - _
“ _ 2¥) - apou 90N Gl |
S
. ,»\ BPON DDA N A !
/r /.." i
9001 N

l\ \ apou 9O
GO0t

US 10,452,665 B2

Sheet 12 of 32

Oct. 22,2019

U.S. Patent

A 2
-~
O
Li.
hl

& KA
1efe| abeinyg
alempie SSEI Ol Ol 810859301d AJOWB
0y~
T T T
(| [Sessaippe/siajsibal |S555aIppE/aIaisbal | SUORONASU]
n% o_\sﬁ ' pebajnd-tou | pabapad suononsu pabajlid-uou
FE welshs wibpy yse
1okey ualuabeuepy Aowe JUD 3se
wapshs Bugeisdg < ned ELE| W W lainpapg
Wy SO SO 1| evmuauisO
o aorp B jRO-liA|sAs | SteisiBal pue sessaippe Kiowauy pue
\\n\ ' suoponysu pabiaynid-uou
11147

UONEZYeNLEA [9ASESO

8cy
2001 \ » 18UIEII0D lauejuoo Jaulguoo

901} e

G041

1133 6041 801}

US 10,452,665 B2

Sheet 13 of 32

Oct. 22,2019

U.S. Patent

N
o
O
L
N

%08

— 809

€ L
19ke] abelolg
armpey ssep o/l 0l 108590014 Alowap
205
T T T
A
(| [SOSSSINpE/ISIsol | sassaippefis)sibar SO ST y
oabaniid peBoI-UoL _ peBainid H suononysu; pabiayasd-uoN -
SIBAUP BOINRD SIaNIP B0IABD
#0S 1/ JOPUO
{ouway A lBuisy WA SUIYIRH [BNIA
. freret""]
\u\kﬂ S IppeyisIshaT | 5a55e ppeBisibal SO
ONm 9 pafiapnrl pafiaga d-tion _ pafisyn _ suopanysul pabapad-uon .
SO Iseng
\ UORBZIBNLIA oADK
Z0Z1 \ ReZIenUiA j9AB-S0
vzl JUIBJUOD JBUIBIUOD 1BUIBJUOD
oz~
/ ‘£ i
7 7 7
80C1 L0C} 90¢1

US 10,452,665 B2

Sheet 14 of 32

Oct. 22,2019

U.S. Patent

¢l 9ld
AR Glgl £1el LIE) 601 915l
ol \ A% \82 \wwﬁ
/ y
7 Y0El
e o I Dl i -
Ve
V'
Anlsgd
rd
90g 1 7
m«mu\u_bwz
Vd (@@
yesl—> 'H S 8ee)
)
T3} %@%
¥

2lep J14el ElEp SLOs)y

0eel

Jake| uoezieniip

ommw\

US 10,452,665 B2

vl "Old

454" Olyl 901 vovl copl

Sheet 15 of 32

Oct. 22,2019

U.S. Patent

/

spuiod
Bjep Jaijino snyd
BJEp S99 DL
passaidwon

Ejep 581195 sl
pazguenb ssaidwon

A

SIRSnpa

/

/

|} ulpim ElEp <
581588 BN HZIUEND

80y

A

uojezijuenb
anp UoHRYULOL U
40 $S0f UD Jwr]

elPp sanas
LI} JO SIBIN0 pue
SR LETINEET|

BjEp 58185 BWI|

U.S. Patent Oct. 22, 2019 Sheet 16 of 32 US 10,452,665 B2

1504

Metric values
®
»
[]

.
=
3
(3]
Y

1502

U.S. Patent

Oct. 22, 2019 Sheet 17 of 32 US 10,452,665 B2

1604 —_
5
S ot
e
g |
g
1606
........... L
0 1
0 K \
1602
FIG. 16
100,
1704 1706
@
®
g ‘\
g .-
S
0 oy
’ y \ N

FIG. 17

US 10,452,665 B2

Sheet 18 of 32

Oct. 22,2019

U.S. Patent

1802

&9

o __

1

q

ganeA OB

Time

FIG. 18A

1812

<
Al
co
iy

s8NjeA OO

Time

1808

FIG. 18B

U.S. Patent

Metric values
=,

<«

Oct. 22,2019

1812

Sheet 19 of 32 US 10,452,665 B2

1820

"-*.‘Q-.--‘Q..-‘.-'.-.-0-G-.-.-.—.—-O—.-.—.-.-.-.-.l-’-‘-’f-’flff.—-——

Y

Metric values

ait

FIG. 18D

Time
FIG. 18C
/ 1812
1823
Y-/ﬁ ———
1822 1824
Time "

U.S. Patent

Metric values

Oct. 22,2019 Sheet 20 of 32 US 10,452,665 B2
] . . e o
G mmmmmmem e - -0y -~ "% *—~<-
* . 1904
.oO..o
o ®oe o ooe’® \1902

Time

FIG. 19A

FIG. 19B

U.S. Patent Oct. 22, 2019 Sheet 21 of 32 US 10,452,665 B2

1812
Qutliers
1918
gqﬁ- ——— e s 2 L B SE X L2 X TrE
‘t::; Q'1c---0-0-.---0-0-.--—0-0—0-0-0-&.-0—0—.—.-0—0—.-.-0 ------------ R et
=
Time .
FIG. 19C
1812
\Outliers
1918 1924 1902
i A A
g 1920
2 e /, A Bt e e e e mm e e @ .
2" AR \1923

Time

FIG. 19D

U.S. Patent Oct. 22, 2019 Sheet 22 of 32 US 10,452,665 B2

- .n .°.‘
@ 3T TTTTTTTTTTTTTTTTTTTmmmssssssssssssssssssooooes o--Rg-mommosho-T ¥
= . \2006
3 ._. .]]]
I b e | #2a [35 ‘
g . Tet » 2004
1T O g9 ¥ @ @WW TTTTTTTTTTTmTTm TS m ST
2002

Time

Metric values

Time

FIG. 20B

U.S. Patent Oct. 22, 2019 Sheet 23 of 32 US 10,452,665 B2

1812

Qutliers

1918
" qg- ——— 200909 -0 0080 ---
g qﬁ- --------------------------- B R R
= T -080--0 00t e
2026 Qutiier
Time g
FIG. 20C
Qutliers
2032 2033
@ 3 Tommmmm A e »- - .-
g . 2031
.§ T e
= qf- R T Y e o——----------—-—---—————--—-————————\— ————————————
AR N
2028 2029 2030 utler

Time

FIG. 20D

U.S. Patent Oct. 22, 2019 Sheet 24 of 32 US 10,452,665 B2

2104
\ |
s |4
= i
g}
S|4 2106
ARVAR 2112
Y S G . /_amz 2108
..... 00000_00000}{00/
R « 2102

U.S. Patent

Oct. 22,2019

Sheet 25 of 32

US 10,452,665 B2

Method te reduce time series data
and detect outliers

'

Read a sequence of time series data
from a data-storage device

2201

h 4

Fork=1,23, ..

2202

»l

2208
/

it 4

Determine K clusters of the time
' seties data

2203

v

Determine nomal domain and
ouilier data points of
the time series data

2204

!

Quantize normal domain of the
fime serles data

L2206

Y

Compuie loss of information
betwzen quantized time series
data and normal domain of the time
series data

2206

Increment K

FIG. 22

Loss of

information < A
?

2207

Compress quantized time series
data except for cutlier data points

L2209

A 4

Rep ace time series data with
compressed time series data and
outlier data peints

L—2210

U.S. Patent Oct. 22, 2019 Sheet 26 of 32 US 10,452,665 B2

Determine K clusters of the time
sedes data

Determine K quantiies that partition [— 2301
the time series data into K + 1
groups

v

Compute distances between eact | 2302
data point and K quantiles

»
N

A

L2303

Forxi, k=1,..,N

>F
Determine q¢% 2304

e~ g0 < o= g8 for all j; 1< <

v

Assign data point x« to cluster & |~ 2305

Change in
assignments to K clusters
7

Compute K centroids 2308
q&, .., Q%
for the K clusters

Y

Compute distances between eack — 2309
data point and K centroids

FIG. 23

U.S. Patent

Oct. 22,2019

Determine nommal domain and
ouflier data points of
the time series data

!

Sheet 27 of 32

US 10,452,665 B2

— 2404

Forxi k=1,.., N — 2401
|
s

| 2402

Forj=1 K
:l
2403
Y X+ belongs to the normat domain of
the time series data Q
N

Xk € XO

FIG. 24

U.S. Patent Oct. 22, 2019 Sheet 28 of 32 US 10,452,665 B2

Quiantize normal domain of the
time series data

Fork=1,..,N

2502
Xk & X0 Y
2
» N

Determine closest centroid g% to data |— 2503

2501

point xx

2505
' 2504 £
s closest Y
quantile unique Assign x% = ¢ —
2

2507

N /

Assign X% = X% -

2506
X% Y
?
N

2509
/

ASSIgn X% = g% -

Incrementk

FIG. 25

U.S. Patent

Oct. 22,2019 Sheet 29 of 32

¢

ompress quantized fime seﬁesD

data except for outlier data points

v

US 10,452,665 B2

2603~

Setk =1 _—2601
}
Read x% from X2 2602
¢ 2610
h 1 Vi
pk+1 Setk=p
N o
2609

2606~

increment p

N
2608

FIG. 26

U.S. Patent Oct. 22, 2019 Sheet 30 of 32 US 10,452,665 B2

2704
100 0 /
g 807 ‘ o T TR -
e R et S S
sed Fo0C 2702 g
MES B
%'—h amg
20- W
0 500 1000 1500 2000
Tirme
FIG. 27A
5 }

LFafmean{X)

2_ 2
\
{1 B B e e < Fp—— 1 v A vt 5 e 5 s, G e €4 s 5. s 53 s K3 et 5, i . s £
i [1 1
5 10 15 20
K
0304 =
!
S
- \
20204 4
= !
o 3
@ - '
£
= 0.10 |
-)
0.00 - : T Y —;""‘“'vi---“x:—-l:/—.w..»;,.....u(;.....__ﬁ__....gu.,_o__,,:._____:
5 10 16 20

FIG. 27C

U.S. Patent

Oct. 22,2019 Sheet 31 of 32

US 10,452,665 B2

.70
80‘50 ~
£ 050 -
£ 0.40
uié 0.30
— 0.20 +

.10

e)

—
O e G €

.
,

&

TN e g e ey i S e (e e 3 e G

" i,

T T T
5 10 15

K
FIG. 27D

T
20

100
89 ~
88

96 -
95
94

0.1

0.2 0.3 0.4 0.5 0.6
LF ma/mean(X)

FIG. 27F

0.7

U.S. Patent Oct. 22, 2019 Sheet 32 of 32 US 10,452,665 B2

2708 2710
/ 7

.

e

=
]

[+
<
H

e e e L

Metric value
2
1

N
o
I
A,

B
f1
3
it
=

500 1000 1500 2000
Time

FIG. 27G

o

Outliers 2714

Matric value

£on
o3

ey
<3
}

0 500 1000 1500 2000

FIG. 27H

US 10,452,665 B2

1
METHODS AND SYSTEMS TO REDUCE
TIME SERIES DATA AND DETECT
OUTLIERS

TECHNICAL FIELD

The present disclosure is directed to time series data
reduction and detection of data point outliers in the time
series data.

BACKGROUND

Electronic computing has evolved from primitive,
vacuum-tube-based computer systems, initially developed
during the 1940s, to modern electronic computing systems
in which large numbers of multi-processor computer sys-
tems, such as server computers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies.

In order to proactively manage a distributed computing
system, system administrators are interested in detecting
anomalous behavior and identifying problems in the opera-
tion of the disturbed computing system. Management tools
have been developed to collect time series data from various
virtual and physical resources of the distributed computing
system and processes the time series data to detect anoma-
lously behaving resources and identify problems in the
distributed computing system. However, each set of time
series data is extremely large and recording many different
sets of time series data over time significantly increases the
demand for data storage, which increases data storage costs.
Large sets of time series data also slow the performance of
the management tool by pushing the limits of memory, CPU
usage, and input/output resources of the management tool.
As a result, detection of anomalies and identification of
problems are delayed. System administrators seek methods
and systems to more efficiently and effectively store and
process large sets of time series data.

SUMMARY

The disclosure is directed to automated methods and
systems to reduce the size of time series data produced by a
resource of a distributed computing system while maintain-
ing outlier data points. Examples of resources include virtual
and physical resources, such as virtual and physical CPU,
memory, data storage, and network traffic. The types of time
series data include CPU usage, memory, data storage, and
network traffic of a virtual or a physical resource. The time
series data may be read from a data-storage device, such as
a mass-storage array, of a physical data center. Clusters of
data points of the time series data are determined. A nor-
malcy domain of the time series data is determined. Data
points located outside the normalcy domain of the time
series data are identified as outlier data points. Quantized
time series data are computed from the normalcy domain of
the time series data. Loss of information between the quan-
tized time series data and the normalcy domain of the time
series data is computed. When the loss of information is less

10

25

35

40

45

2

than or equal to a loss of information limit, the quantized
time series data is compressed to obtain compressed time
series data. The time series data in the data-storage device is
replaced with the compressed time series data and outlier
data points.

The methods automate the task of reducing the size of
time series data stored in data-storage devices of a distrib-
uted computing system. The compressed time series data
and outlier data points that replace the original time series
data occupy less storage space than the original time series
data, freeing storage space in the data-storage device. The
smaller compressed time series data and outlier data points
also enables faster and more timely analysis by a manage-
ment server. For example, a management server can process
the compressed time series data and outlier data points in
real time or near real time to search for anomalous behavior
of a resource or object, identify problems with the resource,
and characterize the compressed time series data. In par-
ticular, an anomaly or problem may be identified from the
outlier data points, because the outlier data points are
retained. When an anomaly or problem is detected, the
management server may generate an alert identifying the
anomaly or problem, and because there is no significant
delay, a system administrator is better able to respond
accordingly.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a general architectural diagram for various
types of computers.

FIG. 2 shows an Internet-connected distributed computer
system.

FIG. 3 shows cloud computing.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system.

FIGS. 5A-5B show two types of virtual machine (“VM”)
and VM execution environments.

FIG. 6 shows an example of an open virtualization format
package.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center.

FIG. 9 shows a cloud-director level of abstraction.

FIG. 10 shows virtual-cloud-connector nodes.

FIG. 11 shows an example server computer used to host
three containers.

FIG. 12 shows an approach to implementing the contain-
ers on a VM.

FIG. 13 shows example sources of time series data in a
physical data center.

FIG. 14 shows a flow diagram of a method to reduce time
series data and detect outlier data points in the time series
data maintained in a data-storage device.

FIG. 15 shows a plot of example time series data.

FIG. 16 shows a plot of loss function values.

FIG. 17 shows a plot of the compression rate values.

FIGS. 18A-18D show an example of clustering, quantiz-
ing and compressing applied to the time series data shown
in FIG. 15 for K=1.

FIGS. 19A-19D show an example of clustering, quantiz-
ing and compressing applied to the time series data shown
in FIG. 15 for K=2.

US 10,452,665 B2

3

FIGS. 20A-20D show an example of clustering, quantiz-
ing and compressing applied to the time series data shown
in FIG. 15 for K=3.

FIG. 21 shows a plot of an example loss function values
versus index K.

FIG. 22 shows a control-flow diagram of a method to
reduce time series data and detect outliers.

FIG. 23 shows a control-flow diagram of the routine
“determine K clusters of the time series data” called in FIG.
22.

FIG. 24 shows a control-flow diagram of the routine
“determine normalcy domain and outlier data points of the
time series data” called in FIG. 22.

FIG. 25 shows a control-flow diagram of the routine
“quantize normalcy domain of the time series data” called in
FIG. 22.

FIG. 26 shows a control-flow diagram of the routine
“compress quantized time series data except of the outlier
data points” called in FIG. 22.

FIGS. 27A-27H show examples of quantization and com-
pression applied to an actual sequence of time series data.

DETAILED DESCRIPTION

This disclosure presents computational methods and sys-
tems to reduce time series data and detect outliers. In a first
subsection, computer hardware, complex computational sys-
tems, and virtualization are described. Containers and con-
tainers supported by virtualization layers are described in a
second subsection. Methods to reduce time series data and
detect outliers are described below in a third subsection.

Computer Hardware, Complex Computational Systems,
and Virtualization

The term “abstraction” is not, in any way, intended to
mean or suggest an abstract idea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented, ultimately, using physical computer hardware, data-
storage devices, and communications systems. Instead, the
term “‘abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-
faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an

10

15

20

25

30

35

40

45

50

55

60

65

4

optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

FIG. 1 shows a general architectural diagram for various
types of computers. Computers that receive, process, and
store event messages may be described by the general
architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types of mass-storage devices 128, electronic dis-
plays, input devices, and other such components, subcom-
ponents, and computational devices. It should be noted that
computer-readable data-storage devices include optical and
electromagnetic disks, electronic memories, and other
physical data-storage devices. Those familiar with modern
science and technology appreciate that electromagnetic
radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte
or less of information per mile, far less information than
needed to encode even the simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

FIG. 2 shows an Internet-connected distributed computer
system. As communications and networking technologies
have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed

US 10,452,665 B2

5

systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user may access hundreds of millions of
different web sites provided by hundreds of thousands of
different web servers throughout the world and may access
high-computational-bandwidth computing services from
remote computer facilities for running complex computa-
tional tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web servers, back-end computer
systems, and data-storage systems for serving web pages to
remote customers, receiving orders through the web-page
interface, processing the orders, tracking completed orders,
and other myriad different tasks associated with an e-com-
merce enterprise.

FIG. 3 shows cloud computing. In the recently developed
cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger orga-
nizations may elect to establish private cloud-computing
facilities in addition to, or instead of, subscribing to com-
puting services provided by public cloud-computing service
providers. In FIG. 3, a system administrator for an organi-
zation, using a PC 302, accesses the organization’s private
cloud 304 through a local network 306 and private-cloud
interface 308 and also accesses, through the Internet 310, a
public cloud 312 through a public-cloud services interface
314. The administrator can, in either the case of the private
cloud 304 or public cloud 312, configure virtual computer
systems and even entire virtual data centers and launch
execution of application programs on the virtual computer
systems and virtual data centers in order to carry out any of
many different types of computational tasks. As one
example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-

10

15

20

25

30

35

40

45

50

55

60

65

6

base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor devices and other
system devices with other application programs and higher-
level computational entities. The device drivers abstract
details of hardware-component operation, allowing applica-
tion programs to employ the system-call interface for trans-
mitting and receiving data to and from communications
networks, mass-storage devices, and other /O devices and
subsystems. The file system 436 facilitates abstraction of

US 10,452,665 B2

7

mass-storage-device and memory devices as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.
However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware. The virtualization layer
504 provides a hardware-like interface 508 to a number of
VMs, such as VM 510, in a virtual-machine layer 511
executing above the virtualization layer 504. Each VM
includes one or more application programs or other higher-
level computational entities packaged together with an oper-
ating system, referred to as a “guest operating system,” such
as application 514 and guest operating system 516 packaged

10

15

20

25

30

35

40

45

50

55

60

65

8

together within VM 510. Each VM is thus equivalent to the
operating-system layer 404 and application-program layer
406 in the general-purpose computer system shown in FIG.
4. Each guest operating system within a VM interfaces to the
virtualization-layer interface 508 rather than to the actual
hardware interface 506. The virtualization layer 504 parti-
tions hardware devices into abstract virtual-hardware layers
to which each guest operating system within a VM inter-
faces. The guest operating systems within the VMs, in
general, are unaware of the virtualization layer and operate
as if they were directly accessing a true hardware interface.
The virtualization layer 504 ensures that each of the VMs
currently executing within the virtual environment receive a
fair allocation of underlying hardware devices and that all
VMs receive sufficient devices to progress in execution. The
virtualization-layer interface 508 may differ for different
guest operating systems. For example, the virtualization
layer is generally able to provide virtual hardware interfaces
for a variety of different types of computer hardware. This
allows, as one example, a VM that includes a guest operating
system designed for a particular computer architecture to run
on hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.

The virtualization layer 504 includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the VMs executes. For execution effi-
ciency, the virtualization layer attempts to allow VMs to
directly execute non-privileged instructions and to directly
access non-privileged registers and memory. However,
when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization-
layer interface 508, the accesses result in execution of
virtualization-layer code to simulate or emulate the privi-
leged devices. The virtualization layer additionally includes
a kernel module 520 that manages memory, communica-
tions, and data-storage machine devices on behalf of execut-
ing VMs (“VM kernel”). The VM kernel, for example,
maintains shadow page tables on each VM so that hardware-
level virtual-memory facilities can be used to process
memory accesses. The VM kernel additionally includes
routines that implement virtual communications and data-
storage devices as well as device drivers that directly control
the operation of underlying hardware communications and
data-storage devices. Similarly, the VM kernel virtualizes
various other types of I/O devices, including keyboards,
optical-disk drives, and other such devices. The virtualiza-
tion layer 504 essentially schedules execution of VMs much
like an operating system schedules execution of application
programs, so that the VMs each execute within a complete
and fully functional virtual hardware layer.

FIG. 5B shows a second type of virtualization. In FIG. 5B,
the computer system 540 includes the same hardware layer
542 and operating system layer 544 as the hardware layer
402 and the operating system layer 404 shown in FIG. 4.
Several application programs 546 and 548 are shown run-
ning in the execution environment provided by the operating
system 544. In addition, a virtualization layer 550 is also
provided, in computer 540, but, unlike the virtualization
layer 504 discussed with reference to FIG. SA, virtualization
layer 550 is layered above the operating system 544, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 550 comprises pri-
marily a VMM and a hardware-like interface 552, similar to

US 10,452,665 B2

9

hardware-like interface 508 in FIG. 5A. The virtualization-
layer/hardware-layer interface 552, equivalent to interface
416 in FIG. 4, provides an execution environment for a
number of VMs 556-558, each including one or more
application programs or other higher-level computational
entities packaged together with a guest operating system.

In FIGS. 5A-5B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A VM or virtual application, described below, is encap-
sulated within a data package for transmission, distribution,
and loading into a virtual-execution environment. One pub-
lic standard for virtual-machine encapsulation is referred to
as the “open virtualization format” (“OVF”). The OVF
standard specifies a format for digitally encoding a VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an
XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a networks
section 630 that includes meta information about all of the
logical networks included in the OVF package, and a
collection of virtual-machine configurations 632 which fur-
ther includes hardware descriptions of each VM 634. There
are many additional hierarchical levels and elements within
a typical OVF descriptor. The OVF descriptor is thus a
self-describing, XML file that describes the contents of an
OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication cer-
tificate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of
virtual disks and device files 612 are digitally encoded
content, such as operating-system images. A VM or a
collection of VMs encapsulated together within a virtual
application can thus be digitally encoded as one or more files

10

15

20

25

30

35

40

45

50

55

60

65

10

within an OVF package that can be transmitted, distributed,
and loaded using well-known tools for transmitting, distrib-
uting, and loading files. A virtual appliance is a software
service that is delivered as a complete software stack
installed within one or more VMs that is encoded within an
OVF package.

The advent of VMs and virtual environments has allevi-
ated many of the difficulties and challenges associated with
traditional general-purpose computing. Machine and oper-
ating-system dependencies can be significantly reduced or
entirely eliminated by packaging applications and operating
systems together as VMs and virtual appliances that execute
within virtual environments provided by virtualization lay-
ers running on many different types of computer hardware.
A next level of abstraction, referred to as virtual data centers
or virtual infrastructure, provide a data-center interface to
virtual data centers computationally constructed within
physical data centers.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents. In FIG. 7, a physical data center 702 is shown below
a virtual-interface plane 704. The physical data center con-
sists of a virtual-data-center management server 706 and any
of various different computers, such as PCs 708, on which
a virtual-data-center management interface may be dis-
played to system administrators and other users. The physi-
cal data center additionally includes generally large numbers
of server computers, such as server computer 710, that are
coupled together by local area networks, such as local area
network 712 that directly interconnects server computer 710
and 714-720 and a mass-storage array 722. The physical
data center shown in FIG. 7 includes three local area
networks 712, 724, and 726 that each directly interconnects
a bank of eight servers and a mass-storage array. The
individual server computers, such as server computer 710,
each includes a virtualization layer and runs multiple VMs.
Different physical data centers may include many different
types of computers, networks, data-storage systems and
devices connected according to many different types of
connection topologies. The virtual-interface plane 704, a
logical abstraction layer shown by a plane in FIG. 7,
abstracts the physical data center to a virtual data center
comprising one or more device pools, such as device pools
730-732, one or more virtual data stores, such as virtual data
stores 734-736, and one or more virtual networks. In certain
implementations, the device pools abstract banks of physical
servers directly interconnected by a local area network.

The virtual-data-center management interface allows pro-
visioning and launching of VMs with respect to device
pools, virtual data stores, and virtual networks, so that
virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used
to execute particular VMs. Furthermore, the virtual-data-
center management server 706 includes functionality to
migrate running VMs from one physical server to another in
order to optimally or near optimally manage device alloca-
tion, provide fault tolerance, and high availability by migrat-
ing VMs to most effectively utilize underlying physical
hardware devices, to replace VMs disabled by physical
hardware problems and failures, and to ensure that multiple
VMs supporting a high-availability virtual appliance are
executing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible, even when one of the multiple virtual appliances
becomes compute bound, data-access bound, suspends
execution, or fails. Thus, the virtual data center layer of
abstraction provides a virtual-data-center abstraction of

US 10,452,665 B2

11

physical data centers to simplify provisioning, launching,
and maintenance of VMs and virtual appliances as well as to
provide high-level, distributed functionalities that involve
pooling the devices of individual physical servers and
migrating VMs among physical servers to achieve load
balancing, fault tolerance, and high availability.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center above which a virtual-data-center inter-
face is provided by the virtual-data-center management
server. The virtual-data-center management server 802 and
a virtual-data-center database 804 comprise the physical
components of the management component of the virtual
data center. The virtual-data-center management server 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server VM 810
above the virtualization layer. Although shown as a single
server in FIG. 8, the virtual-data-center management server
(“VDC management server”) may include two or more
physical server computers that support multiple VDC-man-
agement-server virtual appliances. The VM 810 includes a
management-interface component 812, distributed services
814, core services 816, and a host-management interface
818. The management interface 818 is accessed from any of
various computers, such as the PC 708 shown in FIG. 7. The
management interface 818 allows the virtual-data-center
administrator to configure a virtual data center, provision
VMs, collect statistics and view log files for the virtual data
center, and to carry out other, similar management tasks. The
host-management interface 818 interfaces to virtual-data-
center agents 824, 825, and 826 that execute as VMs within
each of the physical servers of the physical data center that
is abstracted to a virtual data center by the VDC manage-
ment server.

The distributed services 814 include a distributed-device
scheduler that assigns VMs to execute within particular
physical servers and that migrates VMs in order to most
effectively make use of computational bandwidths, data-
storage capacities, and network capacities of the physical
data center. The distributed services 814 further include a
high-availability service that replicates and migrates VMs in
order to ensure that VMs continue to execute despite prob-
lems and failures experienced by physical hardware com-
ponents. The distributed services 814 also include a live-
virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical
server, and restarts the VM on the different physical server
from a virtual-machine state recorded when execution of the
VM was halted. The distributed services 814 also include a
distributed backup service that provides centralized virtual-
machine backup and restore.

The core services 816 provided by the VDC management
server 810 include host configuration, virtual-machine con-
figuration, virtual-machine provisioning, generation of vir-
tual-data-center alarms and events, ongoing event logging
and statistics collection, a task scheduler, and a device-
management module. Each physical server 820-822 also
includes a host-agent VM 828-830 through which the vir-
tualization layer can be accessed via a virtual-infrastructure
application programming interface (“API”). This interface
allows a remote administrator or user to manage an indi-
vidual server through the infrastructure API. The virtual-
data-center agents 824-826 access virtualization-layer server
information through the host agents. The virtual-data-center
agents are primarily responsible for offloading certain of the
virtual-data-center management-server functions specific to

20

25

30

40

45

55

12

a particular physical server to that physical server. The
virtual-data-center agents relay and enforce device alloca-
tions made by the VDC management server 810, relay
virtual-machine provisioning and configuration-change
commands to host agents, monitor and collect performance
statistics, alarms, and events communicated to the virtual-
data-center agents by the local host agents through the
interface API, and to carry out other, similar virtual-data-
management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional devices of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual devices of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the
cloud director introduces a multi-tenancy layer of abstrac-
tion, which partitions VDCs into tenant-associated VDCs
that can each be allocated to a particular individual tenant or
tenant organization, both referred to as a “tenant.” A given
tenant can be provided one or more tenant-associated VDCs
by a cloud director managing the multi-tenancy layer of
abstraction within a cloud-computing facility. The cloud
services interface (308 in FIG. 3) exposes a virtual-data-
center management interface that abstracts the physical data
center.

FIG. 9 shows a cloud-director level of abstraction. In FIG.
9, three different physical data centers 902-904 are shown
below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director servers 920-922 and associated cloud-direc-
tor databases 924-926. Each cloud-director server or servers
runs a cloud-director virtual appliance 930 that includes a
cloud-director management interface 932, a set of cloud-
director services 934, and a virtual-data-center management-
server interface 936. The cloud-director services include an
interface and tools for provisioning multi-tenant virtual data
center virtual data centers on behalf of tenants, tools and
interfaces for configuring and managing tenant organiza-
tions, tools and services for organization of virtual data
centers and tenant-associated virtual data centers within the
multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are VMs
that each contains an OS and/or one or more VMs containing
applications. A template may include much of the detailed
contents of VMs and virtual appliances that are encoded
within OVF packages, so that the task of configuring a VM
or virtual appliance is significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

US 10,452,665 B2

13

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

FIG. 10 shows virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-
1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Containers and Containers Supported by Virtualization
Layers

As mentioned above, while the virtual-machine-based
virtualization layers, described in the previous subsection,
have received widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running above a guest operating system in a
virtualized environment, traditional virtualization technolo-
gies nonetheless involve computational costs in return for
the power and flexibility that they provide.

While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file

30

40

45

14

system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system of the host. In essence, OSL virtu-
alization uses operating-system features, such as namespace
isolation, to isolate each container from the other containers
running on the same host. In other words, namespace
isolation ensures that each application is executed within the
execution environment provided by a container to be iso-
lated from applications executing within the execution envi-
ronments provided by the other containers. A container
cannot access files not included the container’s namespace
and cannot interact with applications running in other con-
tainers. As a result, a container can be booted up much faster
than a VM, because the container uses operating-system-
kernel features that are already available and functioning
within the host. Furthermore, the containers share compu-
tational bandwidth, memory, network bandwidth, and other
computational resources provided by the operating system,
without the overhead associated with computational
resources allocated to VMs and virtualization layers. Again,
however, OSL virtualization does not provide many desir-
able features of traditional virtualization. As mentioned
above, OSL virtualization does not provide a way to run
different types of operating systems for different groups of
containers within the same host and OSL-virtualization does
not provide for live migration of containers between hosts,
high-availability functionality, distributed resource schedul-
ing, and other computational functionality provided by
traditional virtualization technologies.

FIG. 11 shows an example server computer used to host
three containers. As discussed above with reference to FIG.
4, an operating system layer 404 runs above the hardware
402 of the host computer. The operating system provides an
interface, for higher-level computational entities, that
includes a system-call interface 428 and the non-privileged
instructions, memory addresses, and registers 426 provided
by the hardware layer 402. However, unlike in FIG. 4, in
which applications run directly above the operating system
layer 404, OSL virtualization involves an OSL virtualization
layer 1102 that provides operating-system interfaces 1104-
1106 to each of the containers 1108-1110. The containers, in
turn, provide an execution environment for an application
that runs within the execution environment provided by
container 1108. The container can be thought of as a
partition of the resources generally available to higher-level
computational entities through the operating system inter-
face 430.

FIG. 12 shows an approach to implementing the contain-
ers on a VM. FIG. 12 shows a host computer similar to that
shown in FIG. 5A, discussed above. The host computer
includes a hardware layer 502 and a virtualization layer 504
that provides a virtual hardware interface 508 to a guest
operating system 1102. Unlike in FIG. 5A, the guest oper-
ating system interfaces to an OSL-virtualization layer 1104
that provides container execution environments 1206-1208
to multiple application programs.

Note that, although only a single guest operating system
and OSL virtualization layer are shown in FIG. 12, a single
virtualized host system can run multiple different guest
operating systems within multiple VMs, each of which
supports one or more OSL-virtualization containers. A vir-
tualized, distributed computing system that uses guest oper-
ating systems running within VMs to support OSL-virtual-
ization layers to provide containers for running applications
is referred to, in the following discussion, as a “hybrid
virtualized distributed computing system.”

US 10,452,665 B2

15

Running containers above a guest operating system within
a VM provides advantages of traditional virtualization in
addition to the advantages of OSL virtualization. Containers
can be quickly booted in order to provide additional execu-
tion environments and associated resources for additional
application instances. The resources available to the guest
operating system are efficiently partitioned among the con-
tainers provided by the OSL-virtualization layer 1204 in
FIG. 12, because there is almost no additional computational
overhead associated with container-based partitioning of
computational resources. However, many of the powerful
and flexible features of the traditional virtualization tech-
nology can be applied to VMs in which containers run above
guest operating systems, including live migration from one
host to another, various types of high-availability and dis-
tributed resource scheduling, and other such features. Con-
tainers provide share-based allocation of computational
resources to groups of applications with guaranteed isolation
of applications in one container from applications in the
remaining containers executing above a guest operating
system. Moreover, resource allocation can be modified at
run time between containers. The traditional virtualization
layer provides for flexible and scaling over large numbers of
hosts within large distributed computing systems and a
simple approach to operating-system upgrades and patches.
Thus, the use of OSL virtualization above traditional virtu-
alization in a hybrid virtualized distributed computing sys-
tem, as shown in FIG. 12, provides many of the advantages
of both a traditional virtualization layer and the advantages
of OSL virtualization.

Methods to Reduce Time Series Data and Detect Outliers

FIG. 13 shows example sources of time series data in a
physical data center. The physical data center 1302 com-
prises a management server computer 1304 and any of
various computers, such as PC 1306, on which a virtual-
data-center management interface may be displayed to sys-
tem administrators and other users. The physical data center
1302 additionally includes server computers, such as server
computers 1308-1315, that are coupled together by local
area networks, such as local area network 1316 that directly
interconnects server computers 1308-1315 and a mass-
storage array 1318. The physical data center 1302 includes
three local area networks that each directly interconnects a
bank of eight server computers and a mass-storage array.
Different physical data centers may include many different
types of computers, networks, data-storage systems and
devices connected according to many different types of
connection topologies. A virtual-interface plane 1322 sepa-
rates a virtualization layer 1320 from the physical data
center 1804. The virtualization layer 1320 includes virtual
objects, such as VMs and containers, hosted by the server
computers in the physical data center 1302. Certain server
computers host VMs as described above with reference to
FIGS. 5A-5B. For example, server computer 1324 is a host
for six VMs 1326 and server computer 1328 is a host for two
VMs 1330. Other server computers may host containers as
described above with reference to FIGS. 11 and 12. For
example, server computer 1314 is a host for six containers
1832. The virtual-interface plane 1322 abstracts the physical
data center 1302 to one or more VDCs comprising the
virtual objects and one or more virtual data stores, such as
virtual data stores 1334 and 1336, and one or more virtual
networks. For example, one VDC may comprise VMs 1326
and virtual data store 1334 and another VDC may comprise
VMs 1330 and virtual data store 1336.

FIG. 13 also shows a management server 1338 located in
the virtualization layer 1320 and hosted by the management

30

35

40

45

55

65

16

server computer 1304. The management server 1338
receives and stores time series data generated by various
physical and virtual resources. The physical resources
include processors, memory, network connections, and stor-
age of each computer system, mass-storage devices, and
other physical components of the physical data center 1804.
Virtual resources also include virtual processors, memory,
network connections and storage of the virtualization layer
1320. The management server 1338 monitors physical and
virtual resources by collecting time series data from the
physical and virtual objects. Time series data includes physi-
cal and virtual CPU usage, amount of memory, network
throughput, network traffic, and amount of storage. CPU
usage is a measure of CPU time used to process instructions
of'an application program or operating system as a percent-
age of CPU capacity. High CPU usage may be an indication
of usually large demand for processing power, such as when
an application program enters an infinite loop. Amount of
memory is the amount of memory (e.g., GBs) an object uses
at a given time. Because time series data is collected with
such high frequency, the data sets are extremely large and
occupy large volumes of storage space within the physical
data center 1302. In addition, because the data sets are large
and each data set alone comprises a large amount of time
series data points, the management server 1338 is typically
overloaded and unable to timely detect anomalies, problems,
and characterize each time series data set.

FIG. 14 shows a flow diagram of a method to reduce time
series data and detect outlier data points in the time series
data maintained in a data-storage device. The time series
data 1402 may be time series metric data generated by a
physical or virtual object of a distributed computing system.
The time series data 1402 may be stored in a data-storage
device, such as a mass-storage array, of the physical data
center 1302. In block 1404, outlier data points and clusters
of time series data within the time series data 1402 are
determined based on a set of quantiles. In block 1406,
excluding the outliers, each cluster of time series data is
quantized based on the quantiles to generate quantized time
series data and the outlier data points. In general, quantiza-
tion 1406 causes a loss of information recorded in the time
series data. Quantization 1406 is performed subject to a limit
on the loss of information, A. The limit on the loss of
information defines an acceptable amount of information
loss 1408 due to quantization. In block 1410, the quantized
time series data is compressed to reduce the number of
consecutive duplicate or repetitive quantized data points in
the quantized time series data. Compression 1410 is not
applied to the outlier data points. Compressed time series
data and outliers 1412 are output and used to replace the
original time series data 1402 in the data-storage device. The
compressed time series data and outliers 1412 occupy far
less storage space than the original time series data 1402,
freeing storage space in the data-storage device. The smaller
data set of compressed time series data and outlier data
points 1412 enables faster and more timely analysis by the
management server 1338 to determine anomalous behavior,
problems and characterization of the time series data. Note
that outlier data points are retained and not subjected to
quantization, because the outliers may contain information
about anomalous behavior and problems that would be lost
if the outlier data points where subjected to quantization as
explained below.

A sequence of time series data is denoted by

x=x(t)k=1, ... N

where

M

US 10,452,665 B2

17

subscript k is a time index;
N is the number of data points;
X(t,) is a data point; and
1, is a time stamp that represents when the data point is
recorded in a data-storage device.
The collection of time series data in Equation (1) may be
also be represented as a sequence X={x,},_~.

FIG. 15 shows a plot of example time series data com-
prising 36 data points. Horizontal axis 1502 represents time.
Vertical axis 1504 represents a range of metric data values.
Dots represent individual data points recorded in the data
storage device at corresponding time stamps. For example,
dot 1506 represents a data point x, recorded at a time stamp
t,. The time series data may represent metric data generated
by a physical or a virtual object. For example, the time series
data may represent CPU usage of a core in a multicore
processor of a server computer at each time stamp. Alter-
native, the time series data may represent the amount of
virtual memory a VM uses at each time stamp.

Returning to FIG. 14, clusters and outliers 1404 of the
time series data are determined prior to quantization 1406.
Clusters are determined based on a number K of quantiles
denoted by q;, q,, - - . , g The quantiles satisfy the
condition min(X)=q,;=max(X), where j=1, . . . , K. The set of
quantiles {q,},_,* divides the time series data into K+1
groups of data points based on the values of the data points
in the time series data. Each group contains about the same
fraction, or number, of data points of the time series data.
For example, each group may contain N/(K+1) data points
in each group where K+1 evenly divides N. On the other
hand, K+1 may not divide N evenly and certain groups may
contain one or two more data points than other groups.

Methods determine a set of quantiles {q,}_,* with a
minimum K value such that the distance between the time
series data X and quantized time series data X7 satisfies a
user defined limit on the loss of information A (i.e., mini-
mum accuracy). For each value of K=1, 2, 3, . . ., the set of
quantiles {q,} jle are an initial set of centroids in an iterative
process of determining K clusters of time series data. In
particular, the K quantiles are used as initial mean values
(i.e., initial K centroids) for K clusters of the time series
data. The values of the K quantiles are iteratively changed to
the K centroids of the K clusters and each data point x, in the
time series data is assigned to a cluster in each iteration.
Each cluster of data points is defined by

Cm={x:lx-q,™slx,-q, IV, 15/<K})

where
C™ is the i-th cluster i=1, 2, . . . , K; and
m is an iteration index m=1, 2, 3,
The value of the quantile g, is assigned the mean value of
the i-th cluster determined by Equation (2) as follows

1 ©)

1) _ X,

4qi

cim
|G |Xke cm

where IC,| is the number of data points in the i-th
cluster.

Equation (2) is used to assign data points to the i-th cluster
of data points. Equation (3) is used to compute the centroid
of the i-th cluster. The operations represented by Equations
(2) and (3) are repeated until the data points assigned to the
K clusters does not changed.

The time series data in each cluster is assumed to be
normally distributed about the centroid of the cluster. Con-

10

15

20

25

30

35

40

45

50

55

60

65

18

sider a set of centroids Q={q,°, q.°, . . . , qx°} each
iteratively determined using Equations (2) and (3). Suppose
x, % is a data point that belongs to the j-th cluster C; with
centroid q,°. For j=1, 2, . . ., K, a normalcy range for the j-th
cluster C; comprises the data points in the interval:

Olg,-B*std(x-¢,°),q,+B *std (1P~ ¢,°)] 4

where
std(*) is the standard deviation; and
B represents the number of standard deviations from
the centroid q,° of the j-th cluster C,.
The width of the normalcy range is determined by the
parameter B. The normalcy range comprises the data points
that are located within B standard deviations of the centroid
q,”- When the parameter B is large (e.g., approaches infin-
ity), all of the data points of the j-th cluster C; belong to the
normalcy range Q,. On the hand, when the parameter B is
smaller (e.g., when the parameter B equals 2 or 3) the
normalcy range Q; comprises data points in the j-th cluster
C; that are within B standard deviations of the centroid q,°.
Data points located outside the K normalcy ranges are
identified as outlier data points. The union of the normalcy
ranges forms a normalcy domain of the time series data
given by

®

The normalcy domain of the time series data contains R
number of data points of the time series data, where R<N.
Data points located outside the normalcy domains are called
outliers. The outlier data points form a set of outliers
represented by X°. The number of outlier data points in the
set X° is given by the difference N-R. Quantization and
compression are applied to the data points in the normalcy
domain of the time series data Q and not to outlier data
points in the set of outliers X°.

Quantization 1404 of time series data 1402 of FIG. 14 is
carried by determining quantized time series data from the
time series data and the K centroids. Quantized data points
obtained from the data points in the normalcy domain of the
time series data Q are denoted by

X A=) k=1, ... R (6)

The sequence of quantized time series data is represented by
X?={x,7},.,%, which does not include the set of outlier data
points X°. The quantized time series data X7 is created from
the time series data in Q. Each quantized data point x,7, in
the quantized time series data X7 has a corresponding data
point x, in Q. Quantization assigns to each quantized data
point x,7, the value of the centroid in the set of quantiles
{qjc jle that is closest to the corresponding data point x;, in
Q. For a data point x, in Q, the closest unique centroid is
given by

argmin by - gl = 4, @

=

where qjo”E{qjc % is the closest unique centroid to the
data point X,.

The corresponding quantized data point x,7, of the quantized

time series data X7 is assigned the value of the quantile g, °

closest to the data point x,. A data point x, in Q that is

7=1

US 10,452,665 B2

19

located midway between two quantiles, has two closest
non-unique quantiles given by:

argmiiy_;

o=y © ;
&—q,°1=q; ¢ and argmin,_,
I 0

o

. ,K‘xk‘

®)

where g, %, qjo+1cE{qjc jle are adjacent quantiles.

The data point X, 18 located midway between two adjacent
centroids g, “ and ¢, ,,°. In this case, when the precedlng
quantized data point X, 1q equals either q,“ and q ,,%, he
quantized data point x,7 is assigned the value of X%
Otherwise, when the preceding quantized data point x, 7
does not equal either q, “and q, ,,°, then x,? is assigned the
larger of q,° and q, ,,". Alternatively, x,7 is assigned the
smaller of q,“ and q, "

The loss of information due to quantization of time series
data can be measured between the quantized time series data
X7 and the time series data X using any one of the following
loss functions (“LFs”):

L x 1 & . (]
(X9, X) =1 = EI(’Z::I s =%,
. 1R . (10)
LF (X9, X) =1, = Ek/z:l b =7,

and

LF (X9, X) = byey = medianlxy — x7, (1D

The value of a loss function is a measure of how much the
quantized time series data X7 differs from the time series
data X. The larger a loss function value is, the farther, or
more distant, the quantized time series data X7 is from the
time series data X. Any one of the loss functions given by
Equations (9), (10), and (11) may be used as a metric to
determine the distance between the quantized time series
data X7 and the time series data X.

Let A be a limit on the loss of information (i.e., accuracy)
1408 for the quantization 1406 in FIG. 14. Methods are
directed to determining a set of centroids {q,°, q,°, . . ., "}
such that K is a minimum and the loss function value (i.e.,
distance) between the quantized time series data X7 and the
time series data in the normalcy domain of the time series
data Q satisfies the condition:

LF(X%,X)sA (12)

where the loss function is any one or the loss functions
given by Equations (9), (10), and (11).
In other words, the process of iteratively minimizing K stops
when the loss function is less than or equal to the limit on
the loss of information A.

When a minimum number K of centroids has been
determined according to the condition of Equation (12),
compression 1410 is applied to the quantized time series
data in order eliminate sequential repetitions, or consecutive
duplications, of quantized data points x,7, from the quan-
tized time series data X9. In one implementation, compres-
sion is carried out by retaining the first data point in a
sequential repetition of the quantized time series data and
deleting other data points in the same sequence. In another
implementation, the first and the last data points in a
sequential repetition of the quantized time series data are
retained and the data points between the first and last data
points are deleted. The data points in the sequence of
compressed time series data are denoted by:

20

25

30

35

40

45

50

20

X=Xty k=1, . ..

where M=N.
The sequence of compressed time series data is represented
by X={x ™

The compression rate is given by:

M (13)

14
CR= 100— 14

The compression rate is a measure of how much of the time
series data X has been reduced to obtain the compressed
time series data X°. A large compression rate corresponds to
a large amount of the quantized time series data having been
removed as a result of compression. A small compression
rate corresponds to small amount of the quantized time
series data having been removed as a result of compression.

The sequence of combined compressed time series data
combined with the outliers, X UX°, may be used to replace
the time series data X in the data-storage device. For
example, the time series data may be deleted from the
data-storage device and the compressed time series data
combined with outlier data points may be written to the
data-storage device. Alternatively, the time series data may
be over written by the compressed time series data combined
with outliers. The compressed time series data and outliers,
X% UX®, occupies far less storage space than the original
time series data, freeing storage space in the data-storage
device. The smaller data set of compressed time series data
also enables faster and more timely analysis by a manage-
ment server. Because the outlier data points are retained, the
outliers may be used to identify anomalous behavior and
problems that would be lost if the outlier data points had
been quantization as described above.

Quantization creates a loss of information from the time
series data. As the number of centroids K is increased, the
amount of information lost is decreased, as represented in
FIG. 16. FIG. 16 shows a plot of a loss function versus
quantiles. Horizontal axis 1602 represents a range of values
for the index K. Vertical axis 1604 represents a range of loss
function values. Dashed curve 1606 represents the value of
the loss function over K. Note that as the number K
increases, the loss function decreases. The asymptotic por-
tion of the loss function indicates that increasing K achieves
only a marginal decrease or insignificant decrease in the loss
of information from the time series data.

Compression, on the other hand, is a lossless transforma-
tion of the quantized time series data. In other words,
information is not lost from compressing the quantized time
series data. The compression rate is a linear function of the
number M of quantized data points in the compressed time
series data. FIG. 17 shows a plot of the compression rate as
a function M. Horizontal axis 1702 represents a range of
values for M between 0 and N. Vertical axis 1704 presents
the range of compression rate values between 0 and 100.
Negatively sloped line 1706 represents the compression rate.
A small compression rate (i.e., large M) indicates that
compression has resulted in a small reduction in the amount
of data stored. In other words, as the number M approaches
the number N, the amount of data storage used to store the
compressed time series data X° approaches the amount of
data storage used to store the original time series data X. As
the number M approaches zero, the amount of data storage
used to store the compressed time series data X is far less
than the storage used to store the original time series data X.

US 10,452,665 B2

21

FIGS. 18-20 illustrate an example of the operations rep-
resented by blocks 1404, 1406, and 1408 of FIG. 14 applied
to the time series data represented in FIG. 15 for the index
K equal to 1, 2, and 3.

FIG. 18 A shows an example of a single quantile q, for the
36 data points of the time series data with K=1. The quantile
q, is the median of the time series data as represented by
dashed line 1802. The quantile q, partitions the data points
into two groups of 18 data points greater than ¢, and another
18 data points less than q,. For K=1, the cluster is the entire
sequence of time series data X. Equations (2) and (3) are
applied to adjust the quantile q, to a mean value of the time
series data which is the centroid g, of the time series data.

FIG. 18B shows a dashed line 1804 the represents the
mean value or centroid q,“ of the time series data. Note that
the centroid 1804 does not coincide with the median or
quantile q, represented by a thin dashed line 1806. The
values of the data points are distributed according to a
normal distribution represented by curve 1808. Shaded
region 1810 defines a normalcy domain for the cluster. The
data points that lie within the normalcy domain 1810 are not
outliers. Data point 1812 is an outlier because the data point
1812 is located within a tail 1814 of the distribution 1810.
The data points within the normalcy domain 1810 are
quantized to the centroid q,°, as represented by directional
arrows, such as directional arrows 1816 and 1818.

FIG. 18C shows the quantized time series data that result
from quantization of the data points in the normalcy domain
to the centroid q,°. The quantized time series data have the
same value as the centroid ¢, such as quantized data point
1820, except the outlier data point 1812 is not included in the
quantized time series data.

In one implementation, compression reduces subse-
quences of the quantized time series data of FIG. 18C to data
points 1822-1825 and the outlier data point 1812 as illus-
trated in FIG. 18D. Alternatively, compression reduces the
subsequences of the quantized time series data of FIG. 18C
to data points 1822 and 1824 and the outlier data point 1812.

FIG. 19A shows an example of two quantiles q; and q,
that partition the 36 data points of the time series data with
K=2. The quantiles q, and q, are represented by dashed lines
1902 and 1904, respectively, which partition the data points
into two groups of data points with 12 data points in each
group. For K=2, the time series data is assumed to have two
clusters. Equations (2) and (3) are applied iteratively to
adjust the quantile q; to a centroid q,“ of a first cluster data
points and adjust the quantile q, to a centroid q,° of a second
cluster of data points.

FIG. 19B shows dashed lines 1906 and 1908 that repre-
sent the centroids q,“ and g, of the first and second clusters
of the time series data. The values of the data points in each
cluster are distributed according to normal distributions
represented by curves 1910 and 1912. Shaded region 1914
defines a normalcy domain for the first cluster. Shaded
region 1916 defines a normalcy domain for the second
cluster. The data points 1812 and 1918 lie outside the
normalcy domains 1914 and 1916 and are identified as
outliers. The data points within the normalcy domain 1914
are quantized to the centroid q,°. The data points within the
normalcy domain 1916 are quantized to the centroid g,°.

FIG. 19C shows the quantized time series data that result
from quantization of the data points in the normalcy
domains 1914 and 1916 to the centroids of and q,°, respec-
tively. The outlier data points 1812 and 1918 are not part of
the quantized time series data.

In one implementation, compression reduces subse-
quences of the quantized time series data of FIG. 19C to data

20

25

30

40

45

55

65

22

points with centroids q,“ and q,° and the outlier data points
1812 and 1918 as illustrated in FIG. 19D. Alternatively,
compression reduces the quantized time series data of FIG.
19C to data points 1920-1925 and the outlier data points
1812 and 1918.

FIG. 20A shows an example of three quantiles q,, q,, and
q, that partition the 36 data points of the time series data
with K=3. The quantiles q,, q,, and g5 are represented by
dashed lines 2002, 2004, and 2006, respectively, which
partition the data points into four groups of data points with
9 data points in each group. For K=3, the time series data are
assumed to have three clusters of data points. Equations (2)
and (3) are applied iteratively to adjust the quantile q; to a
centroid q,° of the first cluster, adjust the quantile q, to a
centroid g, of the second cluster, and adjust the quantile q;
to a centroid q;° of the third cluster.

FIG. 20B shows dashed lines 2008, 2010, and 2012 that
represent the centroids q,°, q,°, and q;° of the first, second,
and third clusters of the time series data. The values of the
data points in each cluster are distributed according to
normal distributions represented by curves 2014, 2016, and
2018. Shaded region 2020 defines a normalcy domain for the
first cluster of data points. Shaded region 2022 defines a
normalcy domain for the second cluster of data points.
Shaded region 2024 defines a normalcy domain for the third
cluster of data points. The data points 1812, 1918, and 2026
lie outside the normalcy domains 2020, 2022, and 2024 are
identified as outliers. The data points within the normalcy
domain 2020 are quantized to the centroid q,°. The data
points within the normalcy domain 2022 are quantized to the
centroid q,°. The data points within the normalcy domain
2024 are quantized to the centroid q;°

FIG. 20C shows the quantized time series data that result
from quantization of the data points in the normalcy
domains 2020, 2022, and 2024 to the centroids q,°, q,°, and
q5°, respectively. The outlier data points 1812, 1918, and
2026 are not part of the quantized time series data.

In one implementation, compression reduces the quan-
tized time series data of FIG. 20C to data points with
centroid values q,°, q,°, and q;° and the outlier data points
1812, 1918, and 2026 as illustrated in FIG. 20D. In another
implementation, compression reduces the quantized time
series data of FIG. 20C to data points 2028-2033 and the
outlier data points 1812, 1918, and 2026.

Suppose the distance between the quantized time series
data shown in FIG. 20C and the original time series data
show in FIG. 20A satisfies the condition d(X9, X)=<A, then
the minimum K is equal to 3 and the compressed time series
data and outlier data points shown in FIG. 20D may be used
to replace the original time series data, shown in FIG. 15, in
the data-storage device, which decreases the amount of
storage space used to store the time series data.

FIG. 21 shows a plot of an example loss function values
versus index K. Horizontal axis 2102 represents a range of
K values. Vertical axis 2104 represents a range of loss
function values. Dots, such as dot 2106, represent the loss
function value calculated for each K integer value. Dotted
curve 2108 tracks the overall value of the loss function as K
increases. The loss function is largest for K equal to “1” and
takes a sharp drop in value at K equal to “2.” The loss
function then approaches an asymptote for values greater
than 3. The decrease in loss function values as K increases
demonstrates that increasing K beyond the point where the
loss function value 2110 is less than the limit on the loss of
information A as represented by dot-dash line 2112 does not
significantly decrease the loss of information due to quan-
tization. Therefore, the iterative process of minimizing K as

US 10,452,665 B2

23

described above with reference to the example illustrated in
FIGS. 18-20 stops when the value of the loss function is less
the limit on the loss of information A.

FIG. 22 shows a control-flow diagram of a method to
reduce time series data and detect outliers. In block 2201, a
sequence time series data is read from a data-storage device.
A loop beginning with block 2202, repeats to operations
represented by blocks 2203-2208 until a minimum K is
determined. In block 2203, a routine “determine K clusters
of the time series data” is called. In block 2204, a routine
“determine normalcy domain and outlier data points of the
time series data” is called. In block 2205, a routine “quantize
normalcy domain of the time series data” is called. In block
2206, loss of information between the quantized time series
data and the normalcy domain of the time series data is
computed. In decision block 2207, when the loss of infor-
mation is less than or equal to a limit on the loss of
information due to quantization, control flows to block 2209.
Otherwise, control flows to block 2208 and the parameter K
is incremented. In block 2209, a routine “compress quan-
tized time series data except of the outlier data points™ is
called. In block 2210, time series data stored in the data-
storage device is replaced by compressed time series data
and the outlier data points.

FIG. 23 shows a control-flow diagram of the routine
“determine K clusters of the time series data” called in block
2203 of FIG. 22. In block 2301, K quantiles that partition the
time series data into K+1 groups data points are determined
as described above. In block 2302, distances between each
data point of the time series data and each of the K quantiles
are computed. A loop beginning with block 2303 repeats the
operations of blocks 2304 and 2305 for each data point in the
time series data. In block 2304, the smallest distance 1x,~q,
of the distances Ix,~q;°l, where j=1, . . ., N, is determined
as described above with reference to Equation (2). In block
2305, the data point x, is assigned to the cluster C that
corresponds to the smallest distance 1x,~q,°l determined in
preceding block 2304. In decision block 2306, when the
time series index k equals the number of data points N,
control flows to decision block 2307. In decision block
2307, when there is no change to the data point assignments
to the K clusters, the routine returns. Otherwise, control
flows to block 2308. In block 2308, the centroids of each
cluster are recalculated as described above with reference to
Equation (3). In block 2309, distances between each data
point of the time series data and each of the K centroids are
computed.

FIG. 24 shows a control-flow diagram of the routine
“determine normalcy domain and outlier data points of the
time series data” called in block 2204 of FIG. 22. A loop
beginning with block 2401 repeats the operations of blocks
2402-2406 for each data point in the time series data. A loop
beginning with block 2402 repeats the operations of blocks
2403-2406 for each cluster. In decision block 2403, if a data
point X, is within the interval defined by the normalcy range
Q, described above with reference to Equation (4), control
flows to block 2404. Otherwise, control flows to block 2405.
In block 2404, the data point x,, is identified as belonging to
the normalcy domain of the time series data Q. In block
2405, the data point x,, is identified as an outlier data point.
In decision block 2406, when j equals the number of clusters
K, control flows to decision block 2407. In decision block
2407, when k equals the number of data points N, the routine
returns.

FIG. 25 shows a control-flow diagram of the routine
“quantize normalcy domain of the time series data” called in
block 2205 of FIG. 22. A loop beginning with block 2501

20

35

40

45

55

24

repeats the computational operations represented by blocks
2502-2511 for each data point in the sequence of time series
data. In decision block 2502, when a data point has not been
identified as an outlier, control flows to block 2503. Other-
wise, the data point is skipped for quantization and control
flows to decision block 2510. In block 2503, the closest
centroid of the K centroids to the data point x, is determined
as described above with reference to Equation (7). In deci-
sion block 2504, if the closest quantile is unique (i.e., the
data point x; is not midway between two centroids g, “ and
q;.1" as described above with reference to Equation (7)),
control flows to block 2504. In block 2505, the correspond-
ing quantized data point x,7 is assigned the value of the
closest centroid g, “ to the data point x; and added to the
quantized time series data X7, as described above with
reference to FIGS. 18B, 19B, and 20B. In decision block
2506, when the preceding quantized data point X, 7 is equal
to either of the two centroids q, “ and q ., control flows to
block 2507. In block 2507, the quantized data point x,7 is
assigned the value of the preceding quantized data point
X7 In decision block 2508, when g, is less than q, ,,%,
control flows to block 2509 and the quantized data point x,7
is assigned the larger value g, ,“. In decision block 2510,
when k is not equal to N, control flows to block 2511 in
which k is incremented.

FIG. 26 shows a control-flow diagram of the routine
“compress quantized time series data except of the outlier
data points” called in block 2209 of FIG. 22. In block 2601,
the parameters k is initialized to “1.” In block 2602, the
quantized data point x,? is read from the quantized time
series data X?. In block 2603, the parameter p is set equal to
k+1. In block 2604, the quantized data point x,,? is read from
the quantized time series data X?. In decision block 2605,
when the quantized data points x,? and x,,7 are equal, control
flows to block 2606. Otherwise, control flows to block 2609.
In block 2606, the quantized data point x,,? is removed from
the quantized time series data X?. In decision block 2607,
when p is less than N control flows to block 2608 in which
p is incremented. In decision block 2609, when p is less than
N control flows to block 2610 in which k is assigned the
value of p.

The method of FIGS. 22-26 automates the task of reduc-
ing the size of time series data stored in data-storage devices
of a distributed computing system. The compressed time
series data and outlier data points that replace the original
time series data in block 2210 of FIG. 22 occupies far less
storage space than the original time series data, freeing
storage space in the data-storage device. The smaller com-
pressed time series data and outlier data points also enables
faster and more timely analysis by a management server. For
example, the management server can process the com-
pressed time series data and outlier data points in real time
or near real time to search for anomalous behavior of a
resource or object, identify problems with the resource, and
characterize the compressed time series data. For example,
an anomaly or problem may be identified when any one or
more of the outlier data points violate a threshold. When an
anomaly or problem is detected, the management server may
generate an alert identifying the anomaly or problem, and
because there is no significant delay, a system administrator
is better able to respond accordingly.

FIGS. 27A-27H show examples of quantization and com-
pression applied to an actual sequence of time series data
comprising 2346 data points. FIGS. 27A-27H demonstrate
two types of coverage applied to the time series data shown
in FIG. 27A. FIG. 27A shows an example of time series data
with two different clusters 2702 and 2704. The two types of

US 10,452,665 B2

25

coverage are optimal coverage (“OC”) and outlier optimal
coverage (“OOC”) are variations of the methods described
above with respect to the choice for the parameter B of
Equation (4). In the case of OC, the parameter B in Equation
(4) is very large (e.g., B—>®). In the case of 00C, the
parameter B is much smaller (e.g., B=3).

FIGS. 27B-27D show relative errors (i.e., loss function/
mean(X)) corresponding to different number of clusters K
for the three different loss functions for OC. In all cases, a
significant drop in relative error occurs from K=1 to K=2. In
FIG. 27D, another drop in relative error occurs from K=9 to
K=10. For a limit on information loss where A=0.5, FIG.
27D shows that starting at K=2, the corresponding relative
errors are smaller than 0.4 and the minimum value for K
providing the required relative accuracy is K=2. The corre-
sponding centroids of the two clusters 2702 and 2704
determined as described above are 29.7 and 76.5 with a
relative error 2706 of LF,,, /mean(X)=0.37 in FIG. 27D.
FIG. 27E shows corresponding compression rates for dif-
ferent values of K. The compression rate corresponding to
K=2 is between 99%-100%. FIG. 27F shows a plot of
compression rates versus relative errors LF,, , /mean(X) aids
in the selection of the limit on loss of information A. FIG.
27F shows an expected compression rate for different accu-
racies. Taking a slightly smaller A increases the compression
rate by several percentage points. FIG. 27G shows a plot of
the quantized time series data represented by dashed curve
2708 and solid curve 2710 that represents the original time
series data show in FIG. 27A. FIGS. 27D-27G illustrate that
the OC can be achieved for K=2 with the centroids 29.7 and
76.5 for the two clusters 2702 and 2704, respectively.

FIG. 27H shows a shaded region 2712 that corresponds to
a normalcy domain of [12.7,46.7] for the first cluster 2702
and a shaded region 2714 that corresponds to a normalcy
domain of [65.5,87.5] for the second cluster 2704 obtained
for OOC. The normalcy domains 2702 and 2704 are created
using a smaller parameter B=3 in Equation (4). Data points
located outside normalcy domains 2712 and 2714 are outlier
data points. With the outlier data points identified and not
included in the quantization of the time series data, the
relative error decreases to LF,,, /mean(X)=0.23, which is
less than 0.37 where the outlier data points were included in
the quantization of FIG. 27G. Because the outlier data points
are excluded from the compression, the compression rate is
98.8% for the data shown in FIG. 27H, which is lower than
the compression rate of 99.7% for the compressed data
shown in FIG. 27G where the outlier data points were
quantized.

The results in FIGS. 27G and 27H demonstrate the
differences between OOC and OC. FIG. 27G illustrates that
when the error is 0.37, there are no outliers, all of data points
are quantized to the centroids, which increases the compres-
sion rate. On the other hand, FIG. 27H illustrates that when
the error is decreased to 0.23, the outliers are preserved, but
the compression rate is lower by comparison.

In the implementation described above, quantiles are used
as the initial centroids in the clustering process described
above with reference to Equations (2) and (3). In an alter-
native implementation, the quantiles may be omitted as
starting points for determining the centroids of the clusters
of data points. Other approaches to determining an initial set
of centroids may be applied followed by centroid-based
clustering. For example, a first cluster center is chosen
uniformly at random from the data points. Each subsequent
cluster center is chosen from the remaining data points with
a probability proportional to the centers distance from the
data point closest to an existing cluster center. For K=1, 2,

30

40

45

50

55

65

26

3, . . ., the process proceeds as described above by
determining clusters for each centroid, calculating the dis-
tances between the cluster data points from the correspond-
ing centroids, adjusting the centroids, detection of outliers
for a given parameter B, and determining a minimum K that
quantizes the time series data with a respect to a limit on the
loss of information A.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A method stored in one or more data-storage devices
and executed using one or more processors of a management
server computer to reduce time series data generated by an
object of a distributed computing system, the method com-
prising:

determining clusters of data points of the time series data

recorded in a data-storage device;
determining a normalcy domain and outlier data points of
the time series data, the normalcy domain comprising
aunion of one or more normalcy ranges, each normalcy
range containing data points of one of the clusters with
data values in an associated interval, and the outlier
data points located outside the one or more normalcy
ranges;
quantizing time series data in the normalcy domain of the
time series data to generate quantized time series data;

compressing the quantized time series data to obtain
compressed time series data when loss of information
due to quantization is less than or equal to a loss of
information limit; and

replacing the time series data in the data-storage device

with the compressed time series data and outlier data
points to reduce an amount of data stored in the
data-storage device.
2. The method of claim 1 wherein determining clusters of
data points of the time series data comprises:
determining quantiles that partition the time series data
into groups of data points, each quantile representing
an initial centroid of one cluster of the time series data;

computing distances between each data point and the
centroids;
for each data point in the time series data, assigning each
data point to the cluster with a minimum distance
between the data point and the centroid of the cluster;

computing a centroid for each of the clusters based on the
data points assigned to the cluster; and

repeating the computing distances between each data

point and the centroids, assigning each data points to
the cluster with a minimum distance, and computing a
centroid for each cluster until assignment of data points
to the clusters does not change.

3. The method of claim 1 wherein determining the nor-
malcy domain and outlier data points comprises:

for each data point in the time series data,

identifying the data point as belong to the normalcy
domain of the time series data when a value of the
data point is within a normalcy range, and

US 10,452,665 B2

27

identifying the data point as an outlier data point, when
a value of the data point is not located within any of
the domain ranges.

4. The method of claim 1 wherein quantizing the time
series data comprises:

for each data point of the time series data in the normalcy

domain,

determining a closest centroid of the centroids to the
data point; and

assigning a value of the closest centroid to the data
point to a corresponding quantized data point in the
quantized time series data.

5. The method of claim 1 wherein compressing the
quantized time series data comprises:

computing a loss of information between the quantized

time series data and the normalcy domain of the time
series data; and

for each data point in the normalcy domain of the time

series data,

determining each sequence of repeated quantized data
points, and

deleting repeated quantized data points in each
sequence of repeated quantized data points, leaving
one quantized data point from each sequence.

6. The method of claim 5 wherein computing the loss of
information between the quantized time series data and the
normalcy domain of the time series data comprises comput-
ing a distance between the quantized time series data and the
normalcy domain of the time series data.

7. The method of claim 1 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises over-
writing the time series data with the compressed time series
data and the outlier data points.

8. The method of claim 1 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises:

deleting the time series data from the data-storage device;

and

writing the compressed time series data and the outlier

data points to the data-storage device.

9. The method of claim 1 further comprising:

analyzing the compressed time series data and the outlier

data points stored in the data-storage device to deter-
mine an anomaly or problem with the object that
generated the time series data; and

generating an alert when an anomaly or problem is

determined.

10. A system to reduce time series data generated by an
object of a distributed computing system, the system com-
prising:

one or more processors;

one or more data-storage devices; and

machine-readable instructions stored in the one or more

data-storage devices that when executed using the one

or more processors controls the system to carry out

determining clusters of data points of the time series
data recorded in a data storage device;

determining a normalcy domain and outlier data points
of the time series data, the normalcy domain com-
prising a union of one or more normalcy ranges, each
normalcy range containing data points of one of the
clusters with data values in an associated interval,
and the outlier data points located outside the one or
more normalcy ranges;

20

25

30

35

40

45

60

28

quantizing time series data in the normalcy domain of
the time series data to generate quantized time series
data;
compressing the quantized time series data to obtain
compressed time series data when loss of informa-
tion due to quantization is less than or equal to a loss
of information limit; and
replacing the time series data in the data-storage device
with the compressed time series data and outlier data
points to reduce an amount of data stored in the
data-storage device.
11. The system of claim 10 wherein determining clusters
of data points of the time series data comprises:
determining quantiles that partition the time series data
into groups of data points, each quantile representing
an initial centroid of one cluster of the time series data;

computing distances between each data point and the
centroids;
for each data point in the time series data, assigning each
data point to the cluster with a minimum distance
between the data point and the centroid of the cluster;

computing a centroid for each of the clusters based on the
data points assigned to the cluster; and

repeating the computing distances between each data

point and the centroids, assigning each data points to
the cluster with a minimum distance, and computing a
centroid for each cluster until assignment of data points
to the clusters does not change.

12. The system of claim 10 wherein determining the
normalcy domain and outlier data points comprises:

for each data point in the time series data,

identifying the data point as belong to the normalcy
domain of the time series data when a value of the
data point is within a normalcy range, and

identifying the data point as an outlier data point, when
a value of the data point is not located within any of
the domain ranges.

13. The system of claim 10 wherein quantizing the time
series data comprises:

for each data point of the time series data in the normalcy

domain,

determining a closest centroid of the centroids to the
data point; and

assigning a value of the closest centroid to the data
point to a corresponding quantized data point in the
quantized time series data.

14. The system of claim 10 wherein compressing the
quantized time series data comprises:

computing a loss of information between the quantized

time series data and the normalcy domain of the time
series data; and

for each data point in the normalcy domain of the time

series data,

determining each sequence of repeated quantized data
points, and

deleting repeated quantized data points in each
sequence of repeated quantized data points, leaving
one quantized data point from each sequence.

15. The system of claim 14 wherein computing the loss of
information between the quantized time series data and the
normalcy domain of the time series data comprises comput-
ing a distance between the quantized time series data and the
normalcy domain of the time series data.

16. The system of claim 10 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises over-

US 10,452,665 B2

29

writing the time series data with the compressed time series
data and the outlier data points.

17. The system of claim 10 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises:

deleting the time series data from the data-storage device;

and

writing the compressed time series data and the outlier

data points to the data-storage device.

18. The system of claim 10 further comprising:

analyzing the compressed time series data and the outlier

data points stored in the data-storage device to deter-
mine an anomaly or problem with the object that
generated the time series data; and

generating an alert when an anomaly or problem is

determined.

19. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of computer system to
perform the operations of

determining clusters of data points of the time series data

recorded in a data-storage device;
determining a normalcy domain and outlier data points of
the time series data, the normalcy domain comprising
aunion of one or more normalcy ranges, each normalcy
range containing data points of one of the clusters with
data values in an associated interval, and the outlier
data points located outside the one or more normalcy
ranges;
quantizing time series data in the normalcy domain of the
time series data to generate quantized time series data;

compressing the quantized time series data to obtain
compressed time series data when loss of information
due to quantization is less than or equal to a loss of
information limit; and

replacing the time series data in the data-storage device

with the compressed time series data and outlier data
points to reduce an amount of data stored in the
data-storage device.
20. The medium of claim 19 wherein determining clusters
of data points of the time series data comprises:
determining quantiles that partition the time series data
into groups of data points, each quantile representing
an initial centroid of one cluster of the time series data;

computing distances between each data point and the
centroids;
for each data point in the time series data, assigning each
data point to the cluster with a minimum distance
between the data point and the centroid of the cluster;

computing a centroid for each of the clusters based on the
data points assigned to the cluster; and

repeating the computing distances between each data

point and the centroids, assigning each data points to
the cluster with a minimum distance, and computing a
centroid for each cluster until assignment of data points
to the clusters does not change.

30

21. The medium of claim 19 wherein determining the
normalcy domain and outlier data points comprises:

for each data point in the time series data,

identifying the data point as belong to the normalcy
5 domain of the time series data when a value of the

data point is within a normalcy range, and

identifying the data point as an outlier data point, when
a value of the data point is not located within any of
the domain ranges.

22. The medium of claim 19 wherein quantizing the time
series data comprises:

for each data point of the time series data in the normalcy

domain,

determining a closest centroid of the centroids to the
data point; and

assigning a value of the closest centroid to the data
point to a corresponding quantized data point in the
quantized time series data.

23. The medium of claim 19 wherein compressing the
quantized time series data comprises:

computing a loss of information between the quantized

time series data and the normalcy domain of the time
series data; and

for each data point in the normalcy domain of the time

series data,

determining each sequence of repeated quantized data
points, and

deleting repeated quantized data points in each
sequence of repeated quantized data points, leaving
one quantized data point from each sequence.

24. The medium of claim 23 wherein computing the loss
of information between the quantized time series data and
the normalcy domain of the time series data comprises
computing a distance between the quantized time series data
and the normalcy domain of the time series data.

25. The medium of claim 19 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises over-
writing the time series data with the compressed time series
data and the outlier data points.

26. The medium of claim 19 wherein replacing the time
series data in the data-storage device with the compressed
time series data and the outlier data points comprises:

deleting the time series data from the data-storage device;

and

writing the compressed time series data and the outlier

data points to the data-storage device.

27. The medium of claim 19 further comprising:

analyzing the compressed time series data and the outlier

data points stored in the data-storage device to deter-
mine an anomaly or problem with the object that
generated the time series data; and

generating an alert when an anomaly or problem is

determined.

10

15

25

30

35

40

45

50

55

