US010491454B2

a2 United States Patent

Grigoryan et al.

US 10,491,454 B2
Nov. 26,2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHODS AND SYSTEMS TO DIAGNOSE
ANOMALIES IN CLOUD
INFRASTRUCTURES

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Naira Movses Grigoryan, Yerevan
(AM); Arnak Poghosyan, Yerevan
(AM); Ashot Nshan Harutyunyan,
Yerevan (AM); Mazda A. Marvasti,
Coto de Caza, CA (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 362 days.

Appl. No.: 15/172,616

Filed: Jun. 3, 2016

Prior Publication Data

US 2017/0353345 Al Dec. 7, 2017

Int. CL.

GO6F 13/00 (2006.01)

HO4L 12/24 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 41/064 (2013.01); HO4L 410677

(2013.01); HO4L 41/142 (2013.01); HO4L
67/10 (2013.01)

Field of Classification Search
CPC ... HO4L 29/08072; HO4L 29/06; HO4L 43/00;
HO4L 12/2602; HO4L 41/22; HO4L

406
| M

408 "

DS VM WM

D3 VM VM

DS VM ik VM

DS VM M VM

122

105 108 107

\108

104

.
—y
=

;

41/064; HO4L 41/142; HO4L 41/0677,

HO04L 67/10; GO6F 13/00

USPC 709/224
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,233,843 B2* 6/2007 Budhraja H02J 3/008
700/291
8,060,259 B2* 11/2011 Budhraja H02J 3/008
700/291
8,401,710 B2* 3/2013 Budhraja H02J 3/008
700/291

8,751,867 B2 6/2014 Marvasti et al.
2010/0100768 Al* 4/2010 Yamamoto HO4L 41/044
714/32
2015/0229661 Al* 82015 Balabine HO4L 63/1425
726/22
2015/0304346 Al* 10/2015 Kimcooeenne. HO4L 63/1408
726/23

* cited by examiner
Primary Examiner — Robert B Harrell

57 ABSTRACT

A problem in a cloud infrastructure may be identified when
a server computer deviates from a normal level of operation
based on anomaly scores, which generates an alert and an
alert time that indicates when the alert is generated. Methods
then determine which virtual machine (“VM”) and other IT
objects/resources or their pools contribute to the problem
within a time window surrounding the estimated problem
start time and calculate which objects show similar, related
anomalous behavior. Methods also generate ranked reme-
diation recommendations on an object level and server
computer-to-object level. The methods generate results that
enable a system administrator to identify the start time of the
problem and identify the objects that are responsible for the
problem.

27 Claims, 28 Drawing Sheets

402
T

wi - [wm wi |)—| wm

-~ virtual interface
plane

_ ~
M VM M VM S
7410
VM VM VM

Vi VM v 4
M UM 7

vid m

switch

A
110

\ switch
109

124
router

switch
Internet

112

U.S. Patent Nov. 26,2019 Sheet 1 of 28 US 10,491,454 B2

100

—
o~
—
<
~N
-~
o>
=
—
\ -
__..:'r:
o [0 b LL.
= ' S
=
\ o0
L)
=
/
| Y v
| (]
e
ot
\
$ N7
L
[
o
od \
o
—
\ 3
&

<t

-~

US 10,491,454 B2

Sheet 2 of 28

Nov. 26, 2019

U.S. Patent

2IEMpIEH

8¥C —

WajsAg
Bunesadp

swesboid
uoneo|ddy

| { / /[/
/ N ,,, _m_ \ L \
, _,] !] \ coe
abelo)g
ssey Ol O/l $I085800)4) Alowspy
R 7 K
¥ed — ¢ee— 0¢C 8LE
\memﬁcn&amﬁm_ce SOSSaIPPE/SIaSIDal | SUOHONISU] - \\\\l 9le
pakiaiaud pabajiaud-uou pabayaud SUDHORISU! PADBALIC-ou
S1BALQ whpsse, L+ ore
. waysAg a4 Walwabeurpy Aiowapy Y07
o0 £ £ o 1T
: 97 — e — :
ooepoN B SIBSIBal ccm_wmmmm%um wowew] | — 0€C
. pue suogonnsur pabajinud-uou
82¢ 9¢¢ —
e
gt¢ — 194 —/ vee —/ £ee -~/ ¢ee _/

US 10,491,454 B2

Sheet 3 of 28

Nov. 26, 2019

U.S. Patent

Ve Old

P NE
abeiojs " ¢0E
SEl ol oil $10S58201d Aiowapy
K £
[SaSSAIPPE/ISISHaI] SessaIppe/IoEIbal SUCTONASI o 90¢
paliapaud _ pebayiaud-ucy paBajaud suopanasul peBajad-uo 1]
1GNP B0INDP SIBAID B0HBP
Jopuop L y0e
| eweywa UL BUIBY WA auyoep enyip | | —— 8|€
\\\:\l\l\\\l\l\|\\\ -1
B e s SUONON & L 80¢
pabajiaud pafsjiaud-uou pabiapaud suoganisul pafiayauid-uoy i
\\\\\ll 9 _‘m
SO S0 SO 18] SO
—rie
uofeaidde uonpeaydde uojeoydde uopeoydde uojeoydde

ovml\

US 10,491,454 B2

Sheet 4 of 28

Nov. 26, 2019

U.S. Patent

0ve /

-

g¢ old

€ N
afeioss
mwm%x 9 wmmsw ol lon $105S8001d Alowsapy
ove
. g A
.
1AL by yse s
i wayshg o B f
weisAg Bugessdy < s0meg S ol JUBLBELEN Mousep RInpeyog
e \ SleAIBIUE SO 1| siesei so
¥ Si5ISIbal pUE SoseaIppe Kowatl
L SoBal jleo-wajshs pLUE SuolnIsUl pabapaud-uou
p
._whm.._ uciezienisA
wopezienup 3
Omm \ \ — _ _
\\
eS¢
S0 SO S0
ave ove
ssuyoeyy <
[enlip
uojeaydde voneoydde uoneodde
A\
85¢ / 1687 0g¢ /

swelfoiy
(uoneanddy

US 10,491,454 B2

Sheet 5 of 28

Nov. 26, 2019

U.S. Patent

¥ Ol

|

1
-~
-

0,7 o~ _con /-0l \
S — R =
wa Il (] wa WA WA sq cch
WA s_ygx_ WA | WA Pl sa
/
A WA WA sd
Sjiay
WA __ WA | sd
/ WA _\ WA WA WA _ _’\ sQ
h WA
aued \ A SV 7 el _ m\ 80y
SOBUSIUT BNLIA P WA _l. WA I —7 | WA _ WA — WA * 5Q /
4 /7
o0 \ 90y
A

U.S. Patent Nov. 26,2019 Sheet 6 of 28 US 10,491,454 B2

Parent
2 A
[+]
b3
R e R U /S
[1]
£
2
=4
Child,
D A
o
a
>
[\v]
=
2
>
Time
Childz

Anomaly score
w
—_—
?\A

Child;

Anomaly score
>
3
..
L

2

2
Time

Childs
513

Anomaly score

Time

FIG. 5

US 10,491,454 B2

Sheet 7 of 28

Nov. 26, 2019

U.S. Patent

A

owny Y

Rty

A

Y

o/

~_
pr

81095 AjeWouy \
o
o
o0

i/

US 10,491,454 B2

Sheet 8 of 28

Nov. 26, 2019

U.S. Patent

A

g9 9ld

¢l9
=7 / Iyxew

swyy 7

t .\ t t t } } + F f "nn“
¢09

81008 Ajpwicuy \
<
(]
<]

i

U.S. Patent Nov. 26,2019 Sheet 9 of 28 US 10,491,454 B2

Anomaly score

. 602
t 88‘ t / et
T t, Time
L 616
le A / N
< Yoo
6804 =t~ 818 te
5 A+ S ,
€ » o
l{;’_‘te“(A['i"@ l':e
620
M+ IS / ;
“* ;? 1
f;ztem(Arf'i@ I

FIG. 6C

U.S. Patent Nov. 26,2019 Sheet 10 of 28 US 10,491,454 B2

A
fos]
S
&
=
(423
£
2
=L]
. i_,/624
602
::::::::::::88:::::::::::/:->
t-A T f t, Time
f, I
’ 626 ’
I e A / |
604 £ 28 H =Lt
o M+ 3 |
mo| *
s Lb=tL+MT S5
630
e / M+ 7B
nlj I
I L= A+ S

FIG. 6D

U.S. Patent Nov. 26, 2019 Sheet 11 of 28 US 10,491,454 B2

/f
/ 640

Y
-~ D
. Y £
S
-
-
TN
- = :E
ENEEN
—s L -
‘__‘Q
S

F 3

e

81028 A[BWOUE pa[RISay

L
(o]
© L
w
(&)
%3]
L
&
o~ [
e 1o
o~ .
[ap]
o
~ g
. I _g
[+ 0]
- (9]
— w
I e e
|+
S’
2100s AjeLiouy

636

U.S. Patent Nov. 26, 2019 Sheet 12 of 28 US 10,491,454 B2

Y1) p
706 Ky(zr) _
(21, y1) Ai+4{
t f t t ¢ ; Pt
Jo \ 702 8es{ 704
FIG. 7A

A.v'+4{;x” F[G. 7B
<N
/ e Aps

.
,O
A 7 Ai+2
] i
.
o Apy
.
:’l
t’ -
.
L
-
»

tr L =1tp

FIG. 7C

U.S. Patent

Nov. 26, 2019

~
~
~
~
~
~
- -
. t
-
S
~
N
N
~
N
~

Sheet 13 of 28 US 10,491,454 B2

1l

MWt +b

-
804
N
~
~
. . /
<
~
~

TJ Ir=y

FIG. 8A

812
/

.
.
“
.
A e
o
.
.
" Ay

810 /o

\ 802

806

:
\\.
.
J Ay
J
.

e
.
. }AHQ
Q\
8
.
\\.

. 804
A {\Q/

-
4
~

- }A,-+4
-~
e
AN
~
~

R W

FIG. 8B

N
\\
N
N
-
‘\
N
.
o 3
N
\\
A . Birg
i+3 ~
\‘\
0\
- \\\
N

ir tjc =Ip

FIG. 8C

U.S. Patent Nov. 26, 2019 Sheet 14 of 28 US 10,491,454 B2

Parent \-&

DA
8
w
=
fan)
=3 i
|
504 Iy fy \ 502Time
I b2
Childs
oA
(ol H
@ :
BN ;
@ i
E i
2 zﬁ t Time
[« \ >
| 902
Child,
o
=
73
=
[1]
£ :
g
flx [3, ty Time
Chils
L A
o
2
>
[1+3
<]
g
I y { - »
3 b ‘ti,, Time
™ \ 1
902
Childs
o
o
3
=
o T
E i
g
Iy IL iy Time

U.S. Patent

Nov. 26,

2019

C

Method to diagnose cloud
infrastruciure issues

N

Receive parent anomaly score data

Calcutate maximum siope
of parent anomalies within a
time range

'

Calculate estimated problem
start ime

v

Calcutate maximur slopes of
child anomalies and estimated
problam start times

Sheet 15 of 28

1003

1004

1005

v

(Generate recommendations fist
of children

h 4

Calculate correlations between
chitdren

FIG. 10

US 10,491,454 B2

U.S. Patent Nov. 26,2019 Sheet 16 of 28 US 10,491,454 B2

Calcuiate maximum slope
of parent anomafies within a
time range

v

Receive alert time t, —_— 1101
Form fimes list - 1102

timestist = data(t - Aty

v

Initralize: - 1103
ts = min(timesList); t = t,

{

et 1104
maxdht = te - 15 /1106
105

1
Y Calculate slope m and b for
[, o]

Calcuiate ts, Mmas, b _— 1107

for backward time windows

!

Caiculate te, Mmax,e, be / 1 1 08

for forward time windows

A

Set 1109

Mmax = Max {mmax,s, mmax,e)

L

-

FIG. 11

U.S. Patent

Nov. 26, 2019

Sheet 17 of 28 US 10,491,454 B2

Calculate &, Mmaxs, bs
for backward time windows

Set o 1201
Ag By Mimaxs =bs = 0;i=0

N

Increment

F 3

1204 ~_ Set

i A
Calculate slope m and b for
[te — (A1 iB) k]

Mmacs = M; bs = b

205
Y

(A{ + |{.JJ} < maxAt
?

Set 1207
b=t (i) -

Retum
ts, Mmaxs, bs

FIG. 12

U.S. Patent Nov. 26,2019 Sheet 18 of 28 US 10,491,454 B2

Calculate ts, Mmaxe, be
for forward time windows

Set | 1301

§= 0; Mmaxe = Mmaxs; be = Ds
i

¥
Calculate slope mand b for L 1302
[ts ts ¥ Ac+ jB]
1306
/ 1 3033\)!
increment
i
Fy Y
1304 —__| Set
Mmaxe =M be = b
¥ 1305

Calculate 1307
to=te+ At

Return
te, Mmaxe, b.

FIG. 13

U.S. Patent Nov. 26,2019 Sheet 19 of 28 US 10,491,454 B2

Calcutate estimated problem
startiime

Receive 1401
ts, m, b

v

Forti>ts

Calculate o 1403
y{t)=mti+b

Increment i - 1406

A

Calculate e 1409
Y(tm) =Myt h

" 1410
w Increment r — 1413

A

FIG. 14A

(FIG. 14B)

U.S. Patent Nov. 26,2019 Sheet 20 of 28 US 10,491,454 B2

(e)

Y Set _—1416
k=t
N
Set 1415
k=t
v
Retum
t
/ Calculaie maximum slopes of
{ child anomalies and estimated
probiem start fimes
Set target time window o 1501
[t"s t)‘}
h 4
For each child;, j= 1, ..., J 1502
\‘1
v
Calculate maximum slope of 1503
anomalies over target —
time window
Calculate estimated problem | | _— 1504
start time
N H 1505

U.S. Patent Nov. 26, 2019 Sheet 21 of 28 US 10,491,454 B2

Celeulate maximum slope of
anomalies over target ime window

Set 1601
max\t = tx—ty

A4

Calculate t, Mmaxx, bx — 1602
for backward time windows

!

Ca|CLI|ate ty, Mimaxy, by / 1603

for forward fime windows

'

ot 1604

Mej = Max (mmax,x, Minaxy)

FIG. 16

U.S. Patent Nov. 26, 2019 Sheet 22 of 28 US 10,491,454 B2

Generate recommendation fists
of children

For each chid mg, =1, ..., J |— 1701

/ 1704
Child; + Ry —
/ 1706
Child; + R; —
/ 1708
Child; + Ry s
/ 1710
Child; + Rs -
/ 1712
increment j
Forj=1,2,34 1713
—
Rank childrer in Ryfrom smallest 1 1714
largest esﬁmgted problem start —
/ 1716 times
N 1715
Increment | 0
Y

@ FIG. 17

U.S. Patent Nov. 26,2019 Sheet 23 of 28 US 10,491,454 B2

1802 1803
e

CPU cPU
MEMORY
1810 — |
CPU FH§ CPU
1804 — 1l \
\ 1808
1805
1812
— SPECIALIZED /_
— PROCESSOR J/ BRIDGE
/ 1814 o
1818
— 1820
BRIDGE

f }

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

| l\\— l _ i _ I\\“ I 1807
1822 1823 1824 1825

1826 STORAGE

DEVICE

FIG. 18 08

US 10,491,454 B2

Sheet 24 of 28

Nov. 26, 2019

U.S. Patent

61 Ol

Wd 00:0% Wd 00:80 Wd 00-90 Wd 0070 Wd 00:Z0 Wd 0021 WY 00-0} Wy 0020 WY D90 : WY 0020 0E¥RO
060 L~ | T uuﬂ_@h
0005 \\/
L6 H &

saljewiouy [elo] ~ jlog|pajeiauan sucyeiadazZIEaMA

d6l Ol

fousisrpayonusy)

€06}

0:01

NV 00:90

WV 0020

DEWO

| _—

peE 1 &

- —t——— i

664 H &

$3ljELIOUY)0, — JloS|peletauan) suoleiadeziEaxA

Jgaliojserp

woo alemwiaBus 79-xsa-Gej-uns

V6l Ol

aoedgyIom laugis

i

US 10,491,454 B2

Sheet 25 of 28

Nov. 26, 2019

U.S. Patent

461 OId

Wid Q0:04 Wd 00:30 Wd 0090 Wd 0040 Nd 00'¢0 Wd 0621 Wy & WY (0:80 AV 00:90 WY 0040 AV 0020 0E190
00¢ e &
W%)\}Illlll‘/llf[/\\./\r\)\f\llj
ot /07)\
£6/ 'H

ssllBWOUY [B]01 ~ Jjog|palelauss) sucelsdOszieayA

oAOY

461 Ol

Wd 000l WdQ096 WdO080 WJg0RD Wd0020 WAQOTF WYODOL WYODBO WYO0O0 WVCORD WYODZ0 0EH0
600 » €211 8%
I\l/ltlr\ll_lll.l)ll.i' e ——] iy e — —
00001 /\T\L
e K @

sajfellouy {e10] - asipalessuas) suoieiad()azIeayA
aoedoxiopm

asl

DIE

Wd 00:01 Wd G080 Wd §0:90 Wd 00-40 Wd 00-20 Wd 00:Z) WY 00:GL NY 00-80 WY 090 WY 0040 WY 00 0E®0
0001 [T -
B A I(.?L\DFP p =] -y
r/kll e \u(kl,l/ \ I N P ey
00°0¢ v
£ H &

SBIBWOUY JE10) — Jiag|pajelausn) suonessdgazeayA
d0puoW-Oi -WA

U.S. Patent Nov. 26,2019 Sheet 26 of 28 US 10,491,454 B2

Table I: Child-to-child correlations for problem interval

0.768732342

ControlierListener

CoatrollerListener

FIG. 19G

U.S. Patent Nov. 26,2019 Sheet 27 of 28 US 10,491,454 B2

§ wonboboay %rm-"

N0 i sioe

Cordrolivrbisterme:

FIG. 19H

Table T- Child-to-child historic correlations.

ittt

platform Platform@ 123 0. 66;3(38 ;4 |

FIG. 191

US 10,491,454 B2

Sheet 28 of 28

Nov. 26, 2019

U.S. Patent

nd

00t

16} Ol

Wd g0'80 Wd 00°80 Wd Q050 Wd 0020 Ay 0080 WY 00:90 WY 0600 WY 0020 0E¥0

060 018
0005 | N A W Y 4 AW

LHS

Apwiouy|sBpeg
JsuisrjIayonu0n

Y61 Ol

6l Old

1id 00°01 Wd 0090 Wd 0090 Wd 00740 Wd 06:20 Wd 003 WY 00:01 WY 00:40 WY 0080 WY 000 WY 0020 08100
000t~ 0 %
/] R]\J/l.\J
0007 K
LVH %
Kewouy|afipeg
JOPUOU-GE-A

Wd WY 090 WY 0360 WY 0020 080
] gL &
R
00°0%
SLUH®

Wa sremun BuS’ J9-X89-08-uns

Keulouylebpeq

US 10,491,454 B2

1
METHODS AND SYSTEMS TO DIAGNOSE
ANOMALIES IN CLOUD
INFRASTRUCTURES

TECHNICAL FIELD

The present disclosure is directed to methods and systems
of detecting anomalies in cloud infrastructures.

BACKGROUND

In recent years, cloud computing has emerged as a pre-
ferred place for organizations to deploy their applications,
store data, and enable remotely located employees and
customers to access applications and data storage via the
Internet. Cloud computing has also enabled independent
cloud computing provides to sell cloud computing services,
which enables organizations that purchase these services to
decrease time to market while eliminating a heavy invest-
ment in information technology (“IT”) resources and oper-
ating expenses. For example, organizations that choose to
run their applications and store data in a cloud computing
infrastructure maintained by a cloud computing provider
may scale resources according to changing computing and
data storage demands and reduce costs by paying only for
the resources and workloads they use.

Physical and virtual cloud computing resources are typi-
cally monitored to determine how certain resources perform
with respect to different operations. The physical resources
include server computers, data-storage devices, networks,
and load balancers, and the virtual resources include virtual
machines (“VMs”), virtual data-storage devices, and virtual
resource pools, such as a specific combination of VMs and
virtual data-storage devices. Each resource generates one or
more metrics that indicate how often, or how much of, the
resource is used over time. For example, typical metrics
collected over time include number of buffer accesses,
physical and virtual CPU usage, physical and virtual
memory usage, physical and virtual data-storage availabil-
ity, and electrical power consumption. After multiple metrics
have been collected, the metrics may be evaluated to assess
and track resource performance. Of particular interest to
system administrator is the ability to identify anomalies that
occur within the cloud infrastructure based on the metrics.
When a metric exceeds or falls below an associated thresh-
old, an alert is typically generated. However, the system
administrator may not be able to identify when the problem
started and identify which resource is, or group of resources
are, responsible for the problem in order to isolate and
terminate the resource or group of resources before cata-
strophic problems occur. For example, a metric associated
with a server computer that violates a threshold may be a
good indicator of server computer failure, slowdown, and
other problems with the server computer. However, the
system administrator does not know if the problem is with
the server computer itself or is a problem created by one or
more of the VMs running on the server computer.

SUMMARY

A problem in a cloud infrastructure may be identified
when a server computer deviates from a normal level of
operation, which generates an alert and an alert time that
indicates when the alert is generated. Based on the alert time,
methods determine a more accurate estimate of a start time
of the problem. Methods then determine which virtual
machine (“VM”) and other IT objects/resources or their

10

20

30

35

40

45

60

2

pools contribute to the problem within a time window
surrounding the estimated problem start time and calculate
which objects show similar, related anomalous behavior.
Method also generate ranked remediation recommendations
on an object level and server computer-to-object level. The
methods generate results that enable a system administrator
to identify the start time of the problem and identify the
objects that are responsible for the problem.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a cloud-computing facility.

FIG. 2 shows generalized hardware and software compo-
nents of a server computer.

FIGS. 3A-3B show two types of virtual machines and
virtual-machine execution environments.

FIG. 4 shows an example set of thirty and datastores
above a virtual interface plane in a cloud-computing facility.

FIG. 5 shows a plot of an anomaly score data for a parent
and children associated with the parent.

FIGS. 6A-6E show calculation of a maximum slope of
anomaly score data.

FIG. 7A shows a plot of anomaly score data with a
positive slope in a time window.

FIG. 7B shows a plot of vertical distances to a least-
squares line calculated for the anomaly score data shown in
FIG. 7A.

FIG. 7C shows a plot of vertical distance to a least-
squares line fit to a set of positively sloped anomaly score
data in a time window.

FIG. 8A shows a plot of anomaly score data with a
negative slope in a time window.

FIG. 8B shows a plot of vertical distances to a least-
squares line calculated for the anomaly score data shown in
FIG. 8A.

FIG. 8C shows a plot of vertical distance to a least-
squares line fit to a set of negatively sloped anomaly score
data in a time window.

FIG. 9 show plots of the anomaly score data for the parent
and children and anomaly score data in target time window.

FIG. 10 shows a control-flow diagram of a method to
diagnose anomalies in a cloud infrastructure.

FIG. 11 shows a control-flow diagram of a method
“calculate maximum slope of parent anomalies within a time
range” called in FIG. 10.

FIG. 12 shows a control-flow diagram of the routine
“calculate t,, m b, for backward time windows” called
in FIG. 11.

FIG. 13 shows a control-flow diagram of the routine
“calculate t,, m b, for forward time windows” called
FIG. 11.

FIG. 14A-B shows a control-flow diagram of the routine
“calculate estimated problem start time” called in FIG. 10.

FIG. 15 shows a control-flow diagram of the routine
“calculate maximum slopes of child anomalies and esti-
mated problem start times” called in FIG. 10.

FIG. 16 shows a control-flow diagram of the routine
“calculate maximum slope of anomalies over the target time
window” called in FIG. 15.

FIG. 17 shows a control-flow diagram of the routine
“generate recommendations list of children” called in FIG.
10.

FIG. 18 shows an architectural diagram for various types
of computers.

Tax,s’

max,e®

US 10,491,454 B2

3

FIGS. 19A-19L show experimental results for a proto-
type.

DETAILED DESCRIPTION

Cloud-computing facilities provide computational band-
width and data-storage services much as utility companies
provide electrical power and water to consumers. Cloud
computing provides enormous advantages to small organi-
zations without the devices to purchase, manage, and main-
tain in-house data centers. Such organizations can dynami-
cally add and delete virtual computer systems from their
virtual data centers within public clouds in order to track
computational-bandwidth and data-storage needs, rather
than purchasing sufficient computer systems within a physi-
cal data center to handle peak computational-bandwidth and
data-storage demands. Moreover, small organizations can
completely avoid the overhead of maintaining and managing
physical computer systems, including hiring and periodi-
cally retraining information-technology specialists and con-
tinuously paying for operating-system and database-man-
agement-system upgrades. Furthermore, cloud-computing
interfaces allow for easy and straightforward configuration
of virtual computing facilities, flexibility in the types of
applications and operating systems that can be configured,
and other functionalities that are useful even for owners and
administrators of private cloud-computing facilities used by
a single organization.

FIG. 1 shows an example of a cloud-computing facility
100. The cloud-computing facility 100 consists of a virtual-
data-center management server 101 and a PC 102 on which
a virtual-data-center management interface may be dis-
played to system administrators and other users. The cloud-
computing facility 100 additionally includes a number of
hosts or server computers, such as server computers 104-
107, that are interconnected to form three local area net-
works 108-110. For example, local area network 108
includes a switch 112 that interconnects the four servers
104-107 and a mass-storage array 114 via Ethernet or optical
cables and local area network 110 includes a switch 116 that
interconnects four servers 118-1121 and a mass-storage
array 122 via Ethernet or optical cables. In this example, the
cloud computing infrastructure 100 also includes a router
124 that interconnects the LANs 108-110 and interconnects
the LANS to the Internet, the virtual-data-center manage-
ment server 101, the PC 102 and to a router 126 that, in turn,
interconnects other LANs composed of server computers
and mass-storage arrays (not shown). In other words, the
routers 124 and 126 are interconnected to form a larger
network of server computers.

FIG. 2 shows generalized hardware and software compo-
nents of a server computer. The server computer 200
includes three fundamental layers: (1) a hardware layer or
level 202; (2) an operating-system layer or level 204; and (3)
an application-program layer or level 206. The hardware
layer 202 includes one or more processors 208, system
memory 210, various different types of input-output (“I/O”)
devices 210 and 212, and mass-storage devices 214. Of
course, the hardware level also includes many other com-
ponents, including power supplies, internal communications
links and busses, specialized integrated circuits, many dif-
ferent types of processor-controlled or microprocessor-con-
trolled peripheral devices and controllers, and many other
components. The operating system 204 interfaces to the
hardware level 202 through a low-level operating system
and hardware interface 216 generally comprising a set of
non-privileged computer instructions 218, a set of privileged

20

25

30

40

45

50

55

4

computer instructions 220, a set of non-privileged registers
and memory addresses 222, and a set of privileged registers
and memory addresses 224. In general, the operating system
exposes non-privileged instructions, non-privileged regis-
ters, and non-privileged memory addresses 226 and a sys-
tem-call interface 228 as an operating-system interface 230
to application programs 232-236 that execute within an
execution environment provided to the application programs
by the operating system. The operating system, alone,
accesses the privileged instructions, privileged registers, and
privileged memory addresses. By reserving access to privi-
leged instructions, privileged registers, and privileged
memory addresses, the operating system can ensure that
application programs and other higher-level computational
entities cannot interfere with one another’s execution and
cannot change the overall state of the computer system in
ways that could deleteriously impact system operation. The
operating system includes many internal components and
modules, including a scheduler 242, memory management
244, a file system 246, device drivers 248, and many other
components and modules. To a certain degree, modern
operating systems provide numerous levels of abstraction
above the hardware level, including virtual memory, which
provides to each application program and other computa-
tional entities a separate, large, linear memory-address space
that is mapped by the operating system to various electronic
memories and mass-storage devices. The scheduler orches-
trates interleaved execution of various different application
programs and higher-level computational entities, providing
to each application program a virtual, stand-alone system
devoted entirely to the application program. From the appli-
cation program’s standpoint, the application program
executes continuously without concern for the need to share
processor devices and other system devices with other
application programs and higher-level computational enti-
ties. The device drivers abstract details of hardware-com-
ponent operation, allowing application programs to employ
the system-call interface for transmitting and receiving data
to and from communications networks, mass-storage
devices, and other /O devices and subsystems. The file
system 246 facilitates abstraction of mass-storage-device
and memory devices as a high-level, easy-to-access, file-
system interface. Thus, the development and evolution of
the operating system has resulted in the generation of a type
of multi-faceted virtual execution environment for applica-
tion programs and other higher-level computational entities.

While the execution environments provided by operating
systems have proved an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed

US 10,491,454 B2

5

operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 3A-3B show
two types of VM and virtual-machine execution environ-
ments. FIGS. 3A-3B use the same illustration conventions as
used in FIG. 2. FIG. 3A shows a first type of virtualization.
The server computer 300 in FIG. 3A includes the same
hardware layer 302 as the hardware layer 202 shown in FIG.
2. However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 2, the virtual-
ized computing environment shown in FIG. 3A features a
virtualization layer 304 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 306, equivalent to inter-
face 216 in FIG. 2, to the hardware. The virtualization layer
304 provides a hardware-like interface 308 to a number of
VMs, such as VM 310, in a virtual-machine layer 311
executing above the virtualization layer 304. Each VM
includes one or more application programs or other higher-
level computational entities packaged together with an oper-
ating system, referred to as a “guest operating system,” such
as application 314 and guest operating system 316 packaged
together within VM 310. Each VM is thus equivalent to the
operating-system layer 204 and application-program layer
206 in the general-purpose computer system shown in FIG.
2. Each guest operating system within a VM interfaces to the
virtualization-layer interface 308 rather than to the actual
hardware interface 306. The virtualization layer 304 parti-
tions hardware devices into abstract virtual-hardware layers
to which each guest operating system within a VM inter-
faces. The guest operating systems within the VMs, in
general, are unaware of the virtualization layer and operate
as if they were directly accessing a true hardware interface.
The virtualization layer 304 ensures that each of the VMs
currently executing within the virtual environment receive a
fair allocation of underlying hardware devices and that all
VMs receive sufficient devices to progress in execution. The
virtualization-layer interface 308 may differ for different
guest operating systems. For example, the virtualization
layer is generally able to provide virtual hardware interfaces
for a variety of different types of computer hardware. This
allows, as one example, a VM that includes a guest operating
system designed for a particular computer architecture to run
on hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.

The virtualization layer 304 includes a virtual-machine-
monitor module 318 that virtualizes physical processors in
the hardware layer to create virtual processors on which

10

15

20

25

30

35

40

45

50

55

60

65

6

each of the VMs executes. For execution efficiency, the
virtualization layer attempts to allow VMs to directly
execute non-privileged instructions and to directly access
non-privileged registers and memory. However, when the
guest operating system within a VM accesses virtual privi-
leged instructions, virtual privileged registers, and virtual
privileged memory through the virtualization-layer interface
308, the accesses result in execution of virtualization-layer
code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
320 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-
memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 304
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

FIG. 3B shows a second type of virtualization. In FIG. 3B,
the server computer 340 includes the same hardware layer
342 and operating system layer 344 as the hardware layer
202 and the operating system layer 204 shown in FIG. 2.
Several application programs 346 and 348 are shown run-
ning in the execution environment provided by the operating
system 344. In addition, a virtualization layer 350 is also
provided, in computer 340, but, unlike the virtualization
layer 304 discussed with reference to FIG. 3 A, virtualization
layer 350 is layered above the operating system 344, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 350 comprises pri-
marily a VMM and a hardware-like interface 352, similar to
hardware-like interface 308 in FIG. 3A. The virtualization-
layer/hardware-layer interface 352, equivalent to interface
216 in FIG. 2, provides an execution environment for a
number of VMs 356-358, each including one or more
application programs or other higher-level computational
entities packaged together with a guest operating system.

In FIGS. 3A-3B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 350 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

FIG. 4 shows an example set of thirty VMs 402, such as
VM 404, and set of datastore (“DS”) 406, such as DS 408,
above a virtual interface plane 410. The virtual interface
plane 410 represents a separation between a physical
resource level that comprises the server computers and
mass-data storage arrays and a virtual resource level that
comprises the VMs and DSs. The set of VMs 404 may be
partitioned to run on different server computers, and the set
of DSs 406 may be partitioned on different mass-storage
arrays. Because the VMs are not bound physical devices, the
VMs may be moved to different server computers in an
attempt to maximize efficient use of the cloud-computing
infrastructure 100 resources. For example, each of the server
computers 104-107 may initially run three VMs. However,
because the VMs have different workloads and storage

US 10,491,454 B2

7

requirements, the VMs may be moved to other server
computers with available data storage and computational
resources. Certain VMs may also be grouped into resource
pools. For example, suppose a host is used to run five VMs
and a first department of an organization uses three of the
VMs and a second department of the same organization uses
two of the VMs. Because the second department needs larger
amounts of CPU and memory, a systems administrator may
create one resource pool that comprises the three VMs used
by the first department and a second resource pool that
comprises the two VMs used by the second department. The
second resource pool may be allocated more CPU and
memory to meet the larger demands.

In the following description, the terms is “parent” and
“child” are used to describe a tiered relationship between
cloud infrastructure resources. The term parent refers to a
server computer or host. The term “child” refers to an
individual virtual resource, such as a VM, DS, or virtual
object that runs in the virtualization layer. The term “chil-
dren” refers to any two or more of the VMs, DSs, or other
virtual objects. The children within the same tier are con-
sidered peers. The term child may also be used to refer to a
resource pool formed from a number of VMs.

Methods now described evaluate parent to child relations
when the performance of the parent has deteriorated. Meth-
ods also evaluate peer-to-peer correlations between the
children. The parent and each child generates an anomaly
score. In certain embodiments, an anomaly score may be
calculated as the sum of the number of metrics. In other
embodiments, the anomaly score may be calculated as a sum
of'key performance indicator (“KPI”) metrics, excluding the
non-KPI metrics. In other embodiments, the anomaly score
may be calculated as a weighted sum of the KPI metrics in
certain KPI metrics are given more weight than other KPI
metrics.

An anomaly-score threshold may be used to evaluate the
performance of the parent and generate an alert when the
behavior of the parent has deteriorated. An anomaly score of
a parent that is below the anomaly-score threshold may be
used as an indication that the parent exhibits normal behav-
ior. An anomaly score of a parent that exceeds the anomaly-
score threshold generates an alert that indicates a problem or
at least a situation that requires attention.

FIG. 5 shows a plot of an anomaly score for a parent.
Horizontal axis 502 represents time. Vertical axis 504 rep-
resents the anomaly score. Curve 506 represents the
anomaly score of the parent over time. Dashed line 508
represents an anomaly score threshold, T,. The anomaly
score of the parent exceeds the threshold T, at an alert time
denoted by t,, which generates an alert indicating that a
problem has occurred with the parent. FIG. 5 also shows
separate plots of anomaly scores of the children running on
the parent. The children are denoted by Child,, Child,,
Child,, and Child,. Each plot includes a time axis and an
anomaly score axis. Curves 510-513 represent the separate
anomaly scores of the children recorded over the same
period of time as the anomaly score 506 of the parent.
However, it is not clear which child alone, or combination
of children, is responsible for the violation of the threshold
T, at the alert time t,,.

As shown in the example of FIG. 5, when an alert is
generated as a result of a parent anomaly score exceeding the
anomaly-score threshold, the following conditions exist: 1)
the parent’s anomaly score has a positive slope while
increasing toward the threshold; and 2) the children may
show either negatively or positively sloped anomaly scores
around the alert time t,,. Methods described below determine

10

15

20

25

30

35

40

45

50

55

60

65

8

which child or children exhibit a change in behavior around
the alert time t, and provide a recommendation list of
children to examine for a root cause of the problem.

Although the alert time t, is an indication of when the
anomaly score violated the threshold T,, the actual start time
of the problem at the parent may have occurred prior to the
alert time t,. Based on the alert time t, and the anomaly
scores of the parent that precede the alert time t,, an
estimated problem start time is determined by first deter-
mining the maximum slope of parent anomaly scores that
precede the alert time t,,. The estimated problem start time is
calculated from the maximum slope.

FIGS. 6A-6E show calculation of a maximum slope of
parent anomaly scores that precede the alert time t,. In FIG.
6A, horizontal axis 602 represents time and vertical axis 604
represents anomaly score values. Dots represent anomaly
score data (t,, y,), where y, represents an anomaly score
recorded at time t,. The times t, are represented by regularly
spaced marks along the time axis 602. FIG. 6A shows an
anomaly score data point 606 that exceeds a threshold T,
represented by dot-dash line 608 at alert time t,, which
triggers an alert Base on the alert time t,, a time range [t,-A,
t,] 610 that extends backward in time from the alert time t,
is created, where A is the duration of the time range 610. The
duration A of the time range 610 may be any duration greater
than or equal to about 60 minutes, such as about 75 minutes,
about 90 minutes, about 120 minutes, about 240 minutes,
about 360 minutes or larger. A list of times in the time range
610, called the “time list,” is generated and represented by:

timeList=data[z,-A,z,]

1
FIG. 6B shows a maximum time window 612 is created
with a duration:

maxAt:le_ls

where

t,=t, is the maximum time of the timeList, and

t, is the minimum time of the timeList,
For example, in FIG. 6B, the minimum time t, is the
minimum time at which an anomaly score 614 is recorded in
the time range 610. The maximum time window 612 in the
time range 610 has minimum time t; and maximum time t,.

The slope and y-intercept of parent anomaly score data
are calculated for each of a number of overlapping time
windows of the maximum time window. The time window
with the maximum slope is identified. The overlapping time
windows are called backward and forward time windows.

FIG. 6C shows a series of backward time windows 616,
618, and 620 denoted by [t,, t,]. Each of the backward time
windows has the same upper time limit given by the maxi-
mum time t, and a different lower time limit calculated
according to

@

=t~ (A+ip)

where

A, is an initial time window duration;

P is a time window adjustment parameter, and

i=0, 1, 2, . . . is a backward time window index.
The slope, m,, and y-intercept, b,, of the set of anomaly score
data in each of the backward time windows are calculated
separately, for i=0, 1, 2, For example, m, is the slope
and by, is the y-intercept of the anomaly score data 622 in the
time window 616. Calculation stops when (A+ip)>,,..A,
The minimum time t, is set equal to the lower time limit t,
of the backward time window with the largest slope (i.e.,
lm,l). For example, if m, is the largest slope of the backward

(3a)

US 10,491,454 B2

9

time windows 616, 618, and 620 in FIG. 6C, the minimum
time t, is set equal to the lower time limit t, of the backward
time window 620.

FIG. 6D shows a series of forward time windows 624,
626, and 628 denoted by [t t,], where t, is the reset
minimum time described above with reference to FIG. 6C.
Each of the forward time windows has the same lower time
limit t, and an upper time limit calculated according to

t,=tAAAP (3b)

where j=0, 1, 2, . . . is a time window index.
The slope, m';, and y-intercept, b';, of the set of anomaly
score data in each of the forward time windows are calcu-
lated, for j=0, 1, 2, For example, m', is the slope and
b', is the y-intercept of the set of anomaly score data 624 in
the forward time window 626. Calculation of the slope and
y-intercept for each of the forward time windows stops when
t,>t,. The time t, is set equal to the upper time limit t,, of the
forward time window with the largest magnitude slope. For
example, if m', is the largest slope of the forward time
windows 624, 626, and 628, then the time t, is set equal to
the upper time limit t,, of the forward time window 630.

The slope and y-intercept of a set of anomaly score data
in a backward or forward time window is calculated by first
rescaling the anomaly score data to a common reference
frame followed by applying weighted least squares to cal-
culate the slope and y-intercept of the rescaled anomaly
score data. Rescaling to a common reference frame includes
mapping the data from the time windows into the same
coordinate system and normalizing the data between 0 and
1. Let (1, ¥o) be an anomaly score data point in a time
window with the smallest time %,, and let (t, y_) be an
anomaly score data point in the same time window with the
largest time t_. Rescaling the anomaly score data points (i,
y,) in the time window to a common reference frame may be
accomplished by first defining a scaling factor.

max(y;) ¥.=0 (4a)
Yu = {

Y. Yo #0

For each anomaly score y, in the sub-time interval, the
anomaly score is rescaled by

v, 4b
31—‘ I #0 @)
yi=y Ym
Ve Yu =0
The times 1, are rescaled according to
1=CT, (4c)

where C is a constant that changes the time units (e.g., C
may be used to change the units of time to minutes).

FIG. 6E shows an example of rescaling anomaly score
data 632 in a time window [f,, f.]. Horizontal axis 634
represents time. Vertical axis 636 represent anomaly score
values. Dot 638 represents the anomaly score data point (f,
Vo) with the smallest time t,,. Dot 640 represents the anomaly
score data point (t_, y,_) with the largest time _. Rescaling the
anomaly score data 632 according Equations (4a)-(4c) gives
rescaled anomaly score data 642. Because y_ does not equal
zero, the scaling factor is y,/~y_, the anomaly scores are
rescaled according to Equation (4b), and the associated time
coordinates are rescaled according to Equation (4c). The
rescaled time window is [tg, t.].

10

15

20

25

30

35

40

45

50

55

60

65

10

Using the following boundary conditions:
1=t, gives y=y,.
1=t, gives y=0 (5a)

for the linear equation y(t)=mx+b, weighted least squares
gives the slope of a set of N anomaly score data points in a
time window as:

(5b)

and the y-intercept:
b=y -mt,

(¢)

In order to calculate the slope in Equation (5b), the time t,
in the denominator is calculated as:

N (6a)
D (At = Ante)
Lot
97 N
2 (Bulo — Buty)
n=1
where
A=W, (Yol Yute) (6b)
B, =w, (vve) (6¢)
and the weight is given by
w, =" 122 (6d)

After the largest slope m, of the backward time windows
and the largest slope m'; of the forward time window have
been determined, the larger of the two slopes is identified as
the maximum slope:

M

The maximum slope m,,,, and the corresponding y-intercept
b and backward or forward time window are used to
calculate a transition time given by:

My =MAX (11,1 ;)

min(z;) such that y(z;) <y; for mpyg >0 (8)

Ir =
T {min(t;) such that y(z;) > y; for M., <0

where y(t,)=m,, . t;+b is the weighted least-squares line.
The transition is an approximation to the estimated start
time. When the maximum slope m,, . of the anomaly score
data is positive, the transition time t; is the minimum time
t, at which the anomaly score data value y, is less than y(t,).
When the maximum slope m,,,,, of the anomaly score data
is negative, the transition time t is the minimum time t, at
which the anomaly score data value y, is greater than y(t,).

FIG. 7A shows a plot of anomaly score data close to the
reset minimum time t, of either a backward or forward time
window associated with the maximum slope m,,,.. Hori-
zontal axis 702 represents time. Dashed line 704 represents
a weighted least-squares fit line to the anomaly score data
with slope m,, . and y-intercept b. Dot 706 represents an
anomaly score data point (t,_,, y,_;) in which y(t,_,) is
greater than y,_,. Dot 708 represents an anomaly score data
point (t,, y,) in which y(t,) is less than y,. According to
Equation (8), the transition time t; is set equal to the time t,.

US 10,491,454 B2

11

In certain cases, the transition time t, may not actually
correspond to the smallest anomaly data point. In such cases,
the transition time t, may be adjusted to correspond to the
anomaly score data point with the largest vertical distance
from the weighted least-squares line given by:

A, =max|y(t;)-y,| for i=zT ()]

where A=ly(t)-y,| is the vertical distance between
anomaly score data point (t;, y,) and the weighted least-
squares value y(t,).
The estimated problem start time t, is selected based on the
following conditions:

8

The parameter 9 is a user selected transition-time threshold.
For example, 8=0.15. In other words, when A,<d the esti-
mated problem start time t,, is set equal to the transition time
T,. Otherwise, when A,=0 the estimated problem start time
t; is set equal to an adjusted-transition time t,,.

FIG. 7B show a plot of vertical distances the anomaly
score data from the weighted least-squares line 704 shown
in FIG. 7A. The vertical distances for i=T are represented by
A,. In this example, all of the vertical distances are less then
0.15. Thus, according to Equation (10), the estimated prob-
lem start time t,, is set equal to the transition time t,. FIG. 7C
shows a plot of vertical distances for a different set of
anomaly score data from a weighted least-squares line 710.
Dot 712 represents an anomaly score data point (t;, y,) in
which y(t,) is less than y, . In this example, A=A, =
[y (t;42)-Y:2120.15. According to Equation (10), rather than
setting the estimated problem start time t, equal to the
transition time t,, the estimated problem start time t, is set
equal to the adjusted-transition time t, associated with the
largest vertical distance between the anomaly data score
points and the weighted least-squares line (i.e., t;=t,).

Equations (8)-(10) may also be used to calculate the
estimated problem start time for negatively sloped anomaly
score data. FIG. 8 A shows a plot of anomaly score data close
to the reset minimum t; of either a backward or forward time
window with the maximum slope m,, .. Horizontal axis 802
represents time. Dashed line 804 represents a weighted
least-squares fit line to the anomaly score data with slope
m,, . and y-intercept b. Dot 806 represents an anomaly score
data point (t,, y,) in which y(t,) is greater than y, for a
minimum time t,. According to Equation (8), the transition
time t; is set equal to the time t;,. FIG. 8B show plots of
vertical distances calculated for the anomaly score data
shown in FIG. 8A. In FIG. 8B, the vertical distances A, for
izT are indicated. In this example, all of the vertical dis-
tances are less then 0.15. Thus, according to Equation (10),
the estimated problem start time t, is set equal to the
transition time t,. FIG. 8C shows a plot of vertical distances
calculated for a different set of anomaly score data from a
weighted least-squares line 810. Dot 812 represents an
anomaly score data point (t,, y,) in which y(t,) is less than y,.
In this example, A=A, ,=Iy(t;,,)-y;.,/=0. According to
Equation (10), the estimated problem start time t, is set equal
to the adjusted-transition time t,.

The estimated problem start time t, of the parent is used
to create a target time window that, in turn, may be used to
calculate maximum slopes and estimate problem start time
for the children running on the parent. FIG. 9 show plots of
the anomaly scores for the parent and four children

T when Ap <&
P when Ap =4

10

10

15

20

25

30

35

40

45

50

55

60

65

12

described above with reference to FIG. 5. An estimated
problem start time t, of the parent is identified on time axis
502. A target time window that includes the estimated
problem start time is given by:

an

A large target time window time range is used to capture
estimated problem start time for the children. The time t,,, is
typically much larger than the time t,, in order to try and
determine if the estimated problem start time for problems
associated with the children that start much earlier than the
estimated problem start time t, for the parent. For example,
the time t;,; may be about 3 hours and the time t,, may be
about 0.5 hours in order to create a target time window with
a three and half hour time range that captures estimated
problem start times for the children.

Using the target time window given by Equation (11), a
maximum slope and estimated problem start time i are
calculated for each set of anomaly score data of the children
that lie within the target time window as described above.
The anomaly scores that lie within the target time window
for each child are used to calculate an associated maximum
slope, denoted by m,, and estimated child start time,
denoted by t_,, where the subscript i is the child index.

FIG. 9 shows the target time window 902 along the time
axis of each of the children. For Child,, the anomaly score
data 904 that lies within the target time window 902 is used
to calculate a maximum slope, m,_,, as described above with
reference to FIGS. 6A-6E and Equations (1)-(7). The maxi-
mum slope and associated y-intercept are then used to
calculate an estimated problem start time t_,, as described
above with reference to FIGS. 7 and 8 and Equations
(8)-(10).

Based on the maximum slope for the parent, m,,,, ., and the
maximum slopes associated with children, m,,, recommen-
dation lists of the children are created according to the
following rules. A set of children with estimated problem
start times that are less than the parent start time is created:

[l PR P Y|

B={Child;; for all i:t_;<t,} 12)

The children in the set B are then sorted into data buckets as
follows:

Ri={B: (n’:; = 1.0] or mg; = 0.0083) (13a)
Ry = {B: (n’:n < ~1.0) or mg; = 0.0083) (13b)
Ry ={B: 0.80 < n’fz <10} and {13¢)
Ry = {B: 0.80 = mm > _1.0} (13d)

In certain embodiments, the children in each data bucket
may be sorted from smallest to largest.

The separate data buckets indicate which children are the
strongest contributors to the anomalous behavior exhibited
by the parent. For example, children in the data buckets R,
and R, are larger contributors to the anomalous behavior at
the parent than are children in the data buckets R; and R,.
The children within each data bucket may also be ranked
from largest to smallest based on estimated problem start
times and/or based on the ratio of slopes m_/m,,,, The larger
the magnitude of the ratio of slopes, Im_/m,,,.|, the higher
the probability that the ith child is a root cause of the

US 10,491,454 B2

13

anomalous behavior at the parent. The data buckets may
then be displayed, such on a computer monitor, so that a
systems administrator may examine the children identified
in each data bucket, each child’s estimated problem start
times, and each child ratio of slopes in order to determine
which child is or children are, most likely responsible for the
anomalous behavior at the parent. Thresholds may also be
used to identify which children are most likely responsible
for the anomalous behavior at the parent. For example, when
the ratio Im_/m,, .| is greater than a threshold Ty, where the
threshold is used as an indication that the ith child is most
likely a contributor to, or responsible for, the anomalous
behavior at the parent.

For each pair of children of the parent, a correlation
coeflicient may be calculated from anomaly score data with
times between the estimate problem start time of the parent
t, and the alert time t, as follows:

1 M X, — Y, - 14
pzﬁ;(U—Xﬂx)(U—yﬂy)

where

X,,and Y, are anomaly scores of a first child and a second
child in the time interval [t t,];

i, and ., are the mean values of the anomaly scores of the
first child and the second child in the time interval [t,, t,];
and

o, and o, are the standard deviations of the anomaly
scores of the first child and the second child in the time
interval [t;, t].

FIG. 10 shows a control-flow diagram of a method to
diagnose anomalies in a cloud infrastructure. In block 1001,
parent anomaly score data is received as described above
with reference to FIG. 5. The parent may be a server
computer or a host that runs in the cloud infrastructure. In
decision block 1002, when an anomaly-score threshold is
violated, an alert time t, is recorded and control flows to
block 1003. In block 1003, a routine “calculate maximum
slope of parent anomalies within a time range” is called. The
time range extends backward in time from the alert time as
described above with reference to FIG. 6A. In block 1004,
a routine “calculate estimated problem start time” is called
to calculate an estimated problem start time within the time
range based on the slope. In block 1005, a routine “calculate
maximum slopes of child anomalies and estimated problems
start times” is called to calculate the maximum slopes of
child anomalies and estimated problem start times of the
children associated with the parent based on the estimated
problem start time of the parent. The children may be VMs,
DSs, and resource pools. In block 1006, a routine “generate
recommendations list of children” is called to generate
recommendation lists of the children based on the maximum
slope of the parent and the maximum slopes of the children.
In block 1007, for each pair of children of the parent, a
correlation coefficient is calculated from anomaly score data
of the children recorded between the estimate problem start
time of the parent and the alert time t,, as described above
with reference to Equation (14).

FIG. 11 shows a control-flow diagram of a method
“calculate maximum slope of parent anomalies within a time
range” called in block 1003 of FIG. 10. In block 1101, the
alert time t, is received. In block 1102, the time range is
[t,—A, t,] is created. In block 1103, a time list is formed from
the anomaly scores recorded in the time range, as described

10

15

20

25

30

35

40

45

50

55

60

65

14

above with reference to Equation (1) and FIG. 6B. In block
1103, a minimum time t, is initialized as the minimum time
of the times in the time list and a maximum time t, is set
equal to the alert time t,, as described above with reference
to Equation (2). In block 1104, a maximum time window is
formed as the difference between the minimum time t, and
the maximum time t, of the time list, as described above with
reference to Equation (2). In decision block 1105, when the
duration of the maximum time window, ,,, A,, is less than a
user selected parameter o, control flows to block 1106,
otherwise, control flows to block 1107. For example, in
certain embodiments, the parameter o may be set to about 75
minutes. In block 1106, the maximum slope and y-intercept
for parent anomaly score data in [t t] is calculated as
described above with reference to Equations (4)-(6). In
block 1107, a routine “calculate t, m,, . ., b, for backward
time windows” is called to calculate maximum slope and
y-intercept of the parent anomaly score data in a series of
overlapping backward time windows of the maximum time
window, as described above with reference to FIG. 6C. In
block 1108, a routine “calculate t,, m,,,, ., b, for forward
time windows” is called to calculate maximum slope and
y-intercept of the parent anomaly score data in a series of
overlapping forward time windows of the maximum time
window, as described above with reference to FIG. 6D. In
block 1109, the maximum slope and y-intercept of the parent
anomaly score data is set equal to the larger of the maximum
slopes and y-intercept of the backward and forward time
windows determined in blocks 1107 and 1108, as described
above with reference to Equation (7).

FIG. 12 shows a control-flow diagram of the routine
“calculate t,, m,,,, ., b, for backward time windows” called
in block 1107 of FIG. 11. In block 1201, the parameters A,
and f are initialized. For example, the initial time window
duration A, may be set of about 60 minutes and the time
window adjustment parameter § may be set to about 15
minutes. A maximum slope m,, . . and corresponding y-in-
tercept b, of the backward time window and the index i are
initialized to zero. In block 1202, a slope m and y-intercept
b are calculated according to Equations (4)-(6) for parent
anomaly data in the backward time window [t,, t_], where the
lower time limit t; of the backward time window is calcu-
lated as described above with reference to Equation (3a). In
decision block 1203, if the slope m calculated in block 1202
is greater than the slope m,, . ., control flows block 1204,
otherwise, control flows to decision block 1205. In block
1204, the maximum slope m,,, ., of the backward time
interval is set equal to m and the y-intercept b, is set equal
to the y-intercept b. In decision block 1205, as long as the
parameter (A,+ip) is less than the duration of the maximum
time window, ,,. A, control flows to block 1206 in which the
index 1 is incremented. In block 1207, the minimum time t,
is set equal to the lower time limit t; of the backward time
window with the largest slope.

FIG. 13 shows a control-flow diagram of the routine
“calculate t,, m,, . ., b, for forward time windows” called in
block 1108 of FIG. 11. In block 1301, a maximum slope
m,,,. . and corresponding y-intercept b, of the forward time
window are initially set equal to the maximum slope m, .
and corresponding y-intercept b, of the backward time
windows and the index j is initialized to zero. The param-
eters A, and remain unchanged. In block 1302, a slope m
and y-intercept b are calculated according to Equations
(4)-(6) for parent anomaly data in the forward time window
[t,, t,], where the minimum time t set in block 1207 of FIG.
12 is used and the upper time limit t, of the forward time
window is calculated as described above with reference to

US 10,491,454 B2

15

Equation (3b). In decision block 1303, if the slope m
calculated in block 1302 is greater than the slope m,,, ,
control flows to block 1304, otherwise, control flows to
decision block 1305. In block 1304, the maximum slope
m,,,. . of the forward time windows is set equal to m and the
y-intercept b, is set equal to the y-intercept b. In decision
block 1305, as long as the upper time limit t,, is less than the
alert time t, control flows to block 1306 in which the index
j is incremented. In block 1307, the maximum time t, is set
equal to the upper time limit t,, of the forward time window
with the largest slope.

FIG. 14 shows a control-flow diagram of the routine
“calculate estimated problem start time” called in block
1004 of FIG. 10. In block 1401, the reset minimum time t,
a slope m and y-intercept b for the weighted least-squares
linear equation y(t,)=mt,+b are received. A for-loop begin-
ning with block 1402 repeats the operations represented by
blocks 1403-1406 for anomaly score times t, greater than the
minimum time t_. In block 1403, the anomaly score value is
calculated using the weight least-squares linear equation. In
decision block 1404, when the slope m>0 and y(t)<y,
control flows to block 1407, otherwise control flows to
decision block 1405. In decision block 1405, when the slope
m<0 and y(t;,)>y, control flows to block 1407, otherwise
control flows to decision block 1406 and the next anomaly
score time t; is considered. In block 1407, a transition time
t, is set equal to the time t; and the largest vertical distance
A, between the weighted least-squares line and the anomaly
score data is initialized to zero. A for-loop beginning with
block 1408, repeats the operations represented by blocks
1409-1412 to determine the largest vertical distance between
times greater than the transition time t; and the weighted
least-squares line for R number of anomaly score times. In
block 1409, the anomaly score value is calculated using the
weight least-squares linear equation. In decision block 1410,
when the distance ly(t,)-y,| is greater than A, control flows
to block 1411 in which A, =ly(t;)-y,l. In decision block 1412,
when the index r equals R, control flows to decision block
1414, otherwise control flows to block 1413 and the index
r is incremented. In decision block 1414, when the largest
vertical distance A,,<3, control flows to block 1416 and the
estimated problem start time t,, is set equal to the transition
time t,, as described with reference to FIGS. 7B and 8B.
Otherwise, control flows to block 1415 and estimated prob-
lem start time t, is set equal to the adjusted-transition time
t, associated with the largest vertical distance as described
above with reference to FIGS. 7C and 8C.

FIG. 15 shows a control-flow diagram of the routine
“calculate maximum slopes of child anomalies and esti-
mated problem start times” called in block 1005 of FIG. 10.
In block 1501, a target time windows is created based on the
estimated problem start time t, as described above with
reference to Equation (11). A for-loop beginning with block
1502 repeats the operations represented by blocks 1503 and
1504 for each of the children, where J is the number of
children. In block 1503, a routine “calculate maximum slope
of'anomalies over the target time window” is called. In block
1504, the routine “calculate estimate problem start time”
described above with reference to FIGS. 14A-14B is called
to calculate the estimated problem start time for the jth child.

FIG. 16 shows a control-flow diagram of the routine
“calculate maximum slope of anomalies over the target time
window” called in block 1503 of FIG. 15. In block 1601, the
parameter ,,,. A, is set equal to the length of the target time
window. In block 1602, the routine “calculate t, m,, . ., b,
for backward time windows” is called to calculate maximum
slope and y-intercept of the jth child anomaly score data in

10

15

20

25

30

35

40

45

50

55

60

65

16

a series of overlapping backward time windows as described
above with reference to FIG. 12. In block 1108, the routine
“calculate t,, m,,,,, , b, for forward time windows” is called
to calculate maximum slope and y-intercept of the jth child
anomaly score data in a series of overlapping forward time
windows, as described above with reference to FIG. 13. In
block 1604, the maximum slope m,; of the jth child is
calculated.

FIG. 17 shows a control-flow diagram of the routine
“generate recommendations list of children” called in block
1006. A for-loop beginning with block 1701 repeats the
operations represented by blocks 1702-1712 for each child.
In block 1702, when the estimated problem start time t; of
the jth child is less than the estimated problem start time t,
of the parent, control flows to decision blocks 1703. Deci-
sion blocks 1703, 1705, 1707, and 1709 separate the chil-
dren into the data buckets R,, R,, R;, and R, as described
above with reference to Equations (13a)-(13d), respectively.
In blocks 1704, 1706, 1708, and 1710, the children separated
in decision blocks 1703, 1705, 1707, and 1709 are added to
data buckets R, R,, R, and R, respectively. In block 1711,
when j is less than J, the operations of blocks 1702-1710 are
repeated. Otherwise, control flows to block 1713 in which a
for-loop repeats the operation of sorting children in each of
the data buckets R, R,, R;, and R, from the smallest to
largest estimated problem start times.

FIG. 18 shows a general architectural diagram for various
types of computers used to execute the methods described
above. The computer system contains one or multiple central
processing units (“CPUs”) 1802-1805, one or more elec-
tronic memories 1808 interconnected with the CPUs by a
CPU/memory-subsystem bus 1810 or multiple busses, a first
bridge 1812 that interconnects the CPU/memory-subsystem
bus 1810 with additional busses 1814 and 1816, or other
types of high-speed interconnection media, including mul-
tiple, high-speed serial interconnects. These busses or serial
interconnections, in turn, connect the CPUs and memory
with specialized processors, such as a graphics processor
1818, and with one or more additional bridges 1820, which
are interconnected with high-speed serial links or with
multiple controllers 1822-1827, such as controller 1827, that
provide access to various different types of mass-storage
devices 1828, electronic displays, input devices, and other
such components, subcomponents, and computational
devices. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
electronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval, and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

FIGS. 19A-191, show experimental results. FIG. 19A
shows a diagram of a parent ESX host 1901 and children
1902 (VM’s, datastore, resource pool). FIG. 19B shows a
total anomaly score of the host with an alert generated at
12:09 PM 1903. Executing the above described method at
12:20 PM 1904 identifies the problem start time and a
recommendation list of children in FIGS. 19C-19F, with R
representing object’s rank (not normalized). FIG. 19C shows
that the first child VM (ControllerListener) experienced the
highest rate of anomalies increase during the problem evo-
lution after 12:00 PM. Table I in FIG. 19F shows that for the
same problematic time window, the children metrics are
correlated using to correlation coefficient of Equation (14) to
observe how the impact is propagated over the peers. Table

US 10,491,454 B2

17

1 reveals that the most highly correlated children are in a
resource pool formed from the first three entries, as shown
in FIG. 19G. Table II in FIG. 191 shows the historic
correlations of total metrics of the children. Table II reveals
that VC-10-monitor gives a high correlation with the parent
resource pool “Hovo,” compared to the run-time results
displayed in Table 1. As a result, from a historical perspec-
tive, the anomaly status of the resource pool “Hovo” is
mostly associated with one child, which is the VC-10-
monitor.

In these experiments, positive correlations dominate in
correlation matrices. In other words, in an IT environment,
the problem causes other problems, or at least does not
eliminate existing ones. Similar peer-to-peer correlation
may be performed for hosts within the same cluster. The host
was followed and observed for about 6 hours after the alert
(which was still active). The host’s “Badgel Anomaly” met-
ric was increased, as shown in FIG. 19], which indicates the
host experienced an additional performance problem. FIG.
19J shows the status changed to critical at about 06:00 PM.
The methods described above were then executed for the
total anomaly score and the BadgelAnomaly again, which
identified only one recommended child as contributing to
those metrics in both cases. The problem interval detected
by the method was Oct. 30, 2015 14:02:23 PM-Oct. 30,2015
17:32:23 PM for both anomaly metrics. VC-10-Monitor
represented in FIG. 19K had rank scores of R=37.97 and
R=4.05, respectively. Based on the four recommended chil-
dren for the alert, only the VC-10-Monitor continued to
contributing to the problem. Moreover, the VC-10-Monitor
was responsible for the problem of BadgelAnomaly that
indicated out-of-normal performance of a significant portion
of child metrics. FIG. 191 shows the highest rank object
ControllerListener stabilized.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

It is appreciated that the various implementations
described herein are intended to enable any person skilled in
the art to make or use the present disclosure. Various
modifications to these implementations will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other implementations
without departing from the spirit or scope of the disclosure.
For example, any of a variety of different implementations
can be obtained by varying any of many different design and
development parameters, including programming language,
underlying operating system, modular organization, control
structures, data structures, and other such design and devel-
opment parameters. Thus, the present disclosure is not
intended to be limited to the implementations described
herein but is to be accorded the widest scope consistent with
the principles and novel features disclosed herein.

10

20

30

35

40

45

50

65

18

The invention claimed is:
1. In a process to diagnose anomalies in a cloud infra-
structure in which computers and virtual resources of the
cloud infrastructure generate metric data stored in one or
more data-storage devices, the specific improvement com-
prising:
calculating anomaly score data of a computer running one
or more virtual resource in the cloud infrastructure
based on the metric data generated by the computer;

calculating a maximum slope of anomaly score data of the
computer within a time range that extends backward in
time from an alert time that indicates when an anomaly
score of the computer exceeds a threshold;

calculating an estimated problem start time based on the
maximum slope, the estimated problem start time iden-
tifies an approximate time when anomalous behavior
with the computer began;
calculating a maximum slope of anomaly score data and
estimated problems start times for each of the one or
more virtual resources running on the computer based
on the estimated problem start time of the computer;

generating a recommendation list of virtual resources that
likely cause anomalous behavior at the computer based
on ratios of the maximum slope of anomaly score data
associated with each of the one or more virtual
resources and the maximum slope of anomaly score
data associate with the computer; and

moving one or more virtual resources identified as the

likely cause of anomalous behavior at the computer to
different computers in the cloud infrastructure, thereby
increasing efficient use of the computer.
2. The process of claim 1, wherein calculating the maxi-
mum slope of computer anomaly score data within the time
range further comprises:
calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
backward time windows within the time range;

calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
forward time windows within the time range; and

setting the maximum slope and y-intercept of the com-
puter anomaly score data equal to the larger of the
maximum slopes and y-intercepts of the backward and
forward time windows.

3. The process of claim 2, calculating the maximum slope
and y-intercept of the computer anomaly score data in the
series of backward time windows further comprises:

rescaling the anomaly score data in a backward time

window to a common reference frame;

calculating a slope and a y-intercept for a weighted

least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time

window to generate a backward time window with a
longer duration;
repeating rescaling, calculating, and decreasing until the
duration of the backward time window exceeds a
minimum time limit of the time range; and

identifying a maximum slope of the slopes calculated for
the series of backward time windows.

4. The process of claim 2, calculating the maximum slope
and y-intercept of the computer anomaly score data in the
series of forward time windows further comprises:

rescaling the anomaly score data in a forward time

window to a common reference frame;

US 10,491,454 B2

19

calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
the forward time window;

increasing an upper time limit of the forward time win-

dow to generate a forward time window with a longer
duration;

repeating rescaling, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

5. The process of claim 1, wherein calculating the esti-
mated problem start time based on the maximum slope
further comprises determining a transition time.

6. The process of claim 5, determining the transition time
further comprises:

settting the estimated problem start time equal to the

transition time when vertical distances between
anomaly score data and a least squares line fit to the
anomaly score data is less than a transition-time thresh-
old; and

setting the estimated problem start time equal to an

adjusted-transition time when vertical distances
between anomaly score data and a least squares line fit
to the anomaly score data is greater than a transition-
time threshold.

7. The process of claim 1, where calculating a maximum
slope of anomaly scores and estimated problems start times
for each of one or more virtual resources further comprises:

calculating a target time window from the estimated

problem start time of the computer;

for each of the one or more virtual resources,

resealing the anomaly score data in a backward time
window to a common reference frame;

calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time
window to generate a backward time window with a
longer duration;

repeating resealing, calculating, and decreasing until
the duration of the backward time window exceeds a
minimum time limit of the target time window; and

identifying a maximum slope of the slopes calculated
for the series of backward time windows.

8. The process of claim 7 further comprises:

rescaling the anomaly score data in a forward time

window to a common reference frame;
calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
a forward time window;

increasing an upper time limit of the forward time win-
dow to generate a forward time window with a longer
duration;

repeating rescaling, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

9. The process of claim 1, wherein generating the recom-
mendation lists of virtual resources based on the maximum
slope of anomaly scores associated with each of the one or
more virtual resources further comprises:

sorting the one or more virtual resources into data buckets

based on a ratio of the maximum slope of anomaly

10

15

20

25

30

35

40

45

50

55

o
o

20

scores associated with each virtual resource and the
maximum slope of anomaly scores associated with the
computer; and

within each data bucket, ordering the virtual resources

from smallest to largest estimated problem start time.
10. A system to diagnose anomalies in a cloud infrastruc-
ture, the system comprising:
one Or mMore processors;
one or more data-storage devices; and
machine-readable instructions stored in the one or more
data-storage devices that when executed using the one
or more processors controls the system to carry out
operations comprising:
calculating anomaly score data of a computer running
one or more virtual resource in the cloud infrastruc-
ture based on the metric data generated by the
computer;
calculating a maximum slope of anomaly score data
within a time range that extends backward in time
from an alert time that indicates when an anomaly
score of a computer exceeds a threshold;
calculating an estimated problem start time based on
the maximum slope, the estimated problem start time
identifies an approximate time when anomalous
behavior with the computer began;
calculating a maximum slope of anomaly score data
and estimated problems start times for each of the
one or more virtual resources running on the com-
puter based on the estimated problem start time of
the computer;
generating a recommendation list of virtual resources
that likely cause anomalous behavior at the computer
based on ratios of the maximum slope of anomaly
score data associated with each of the one or more
virtual resources and the maximum slope of anomaly
score data associate with the computer and;
moving one or more virtual resources identified as the
likely cause of anomalous behavior at the computer
to different computers in the cloud infrastructure,
thereby increasing efficient use of the computer.
11. The system of claim 10, wherein calculating the
maximum slope of computer anomaly score data within the
time range further comprises:
calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
backward time windows within the time range;

calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
forward time windows within the time range; and

setting the maximum slope and y-intercept of the com-
puter anomaly score data equal to the larger of the
maximum slopes and y-intercepts of the backward and
forward time windows.

12. The system of claim 11, calculating the maximum
slope and y-intercept of the computer anomaly score data in
the series of backward time windows further comprises:

rescaling the anomaly score data in a backward time

window to a common reference frame;

calculating a slope and a y-intercept for a weighted

least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time

window to generate a backward time window with a
longer duration;

repeating rescaling, calculating, and decreasing until the

duration of the backward time window exceeds a
minimum time limit of the time range; and

US 10,491,454 B2

21

identifying a maximum slope of the slopes calculated for

the series of backward time windows.

13. The system of claim 11, calculating the maximum
slope and y-intercept of the computer anomaly score data in
the series of forward time windows further comprises:

rescaling the anomaly score data in a forward time

window to a common reference frame;

calculating a slope and a y-intercept for a weighted

least-squares fit of a line to the anomaly score data in
the forward time window;

increasing an upper time limit of the forward time win-

dow to generate a forward time window with a longer
duration;

repeating rescaling, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

14. The system of claim 10, wherein calculating the
estimated problem start time based on the maximum slope
further comprises determining a transition time.

15. The system of claim 14, determining the transition
time further comprises:

settting the estimated problem start time equal to the

transition time when vertical distances between
anomaly score data and a least squares line fit to the
anomaly score data is less than a transition-time thresh-
old; and

setting the estimated problem start time equal to an

adjusted-transition time when vertical distances
between anomaly score data and a least squares line fit
to the anomaly score data is greater than a transition-
time threshold.

16. The system of claim 10, where calculating a maximum
slope of anomaly scores and estimated problems start times
for each of one or more virtual resources further comprises:

calculating a target time window from the estimated

problem start time of the computer;

for each of the one or more virtual resources,

resealing the anomaly score data in a backward time
window to a common reference frame;

calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time
window to generate a backward time window with a
longer duration;

repeating resealing, calculating, and decreasing until
the duration of the backward time window exceeds a
minimum time limit of the target time window; and

identifying a maximum slope of the slopes calculated
for the series of backward time windows.

17. The system of claim 16 further comprises:

resealing the anomaly score data in a forward time

window to a common reference frame;
calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
a forward time window;

increasing an upper time limit of the forward time win-
dow to generate a forward time window with a longer
duration;

repeating resealing, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

5

10

20

25

30

35

40

50

55

60

22

18. The system of claim 10, wherein generating the
recommendation lists of virtual resources based on the
maximum slope of anomaly scores associated with each of
the one or more virtual resources further comprises:

sorting the one or more virtual resources into data buckets

based on a ratio of the maximum slope of anomaly
scores associated with each virtual resource and the
maximum slope of anomaly scores associated with the
computer; and

within each data bucket, rank ordering the virtual

resources from smallest to largest estimated problem
start time.
19. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations of comprising:
calculating anomaly score data of a computer running one
or more virtual resource in the cloud infrastructure
based on the metric data generated by the computer;

calculating a maximum slope of anomaly score data
within a time range that extends backward in time from
an alert time that indicates when an anomaly score of
a computer exceeds a threshold;

calculating an estimated problem start time based on the
maximum slope, the estimated problem start time iden-
tifies an approximate time when anomalous behavior
with the computer began;
calculating a maximum slope of anomaly score data and
estimated problems start times for each of the one or
more virtual resources running on the computer based
on the estimated problem start time of the computer;

generating a recommendation list of virtual resources that
likely cause anomalous behavior at the computer based
on ratios of the maximum slope of anomaly score data
associated with each of the one or more virtual
resources and the maximum slope of anomaly score
data associate with the computer; and

moving one or more virtual resources identified as the

likely cause of anomalous behavior at the computer to
different computers in the cloud infrastructure, thereby
increasing efficient use of the computer.
20. The medium of claim 19, wherein calculating the
maximum slope of computer anomaly score data within the
time range further comprises:
calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
backward time windows within the time range;

calculating a maximum slope and y-intercept of the
computer anomaly score data in a series of overlapping
forward time windows within the time range; and

setting the maximum slope and y-intercept of the com-
puter anomaly score data equal to the larger of the
maximum slopes and y-intercepts of the backward and
forward time windows.

21. The medium of claim 20, calculating the maximum
slope and y-intercept of the computer anomaly score data in
the series of backward time windows further comprises:

resealing the anomaly score data in a backward time

window to a common reference frame;

calculating a slope and a y-intercept for a weighted

least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time

window to generate a backward time window with a
longer duration;

US 10,491,454 B2

23

repeating resealing, calculating, and decreasing until the
duration of the backward time window exceeds a
minimum time limit of the time range; and

identifying a maximum slope of the slopes calculated for
the series of backward time windows.

22. The medium of claim 20, calculating the maximum
slope and y-intercept of the computer anomaly score data in
the series of forward time windows further comprises:

resealing the anomaly score data in a forward time

window to a common reference frame;

calculating a slope and a y-intercept for a weighted

least-squares fit of a line to the anomaly score data in
the forward time window;

increasing an upper time limit of the forward time win-

dow to generate a forward time window with a longer
duration;

repeating resealing, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

23. The medium of claim 19, wherein calculating the
estimated problem start time based on the maximum slope
further comprises determining a transition time.

24. The medium of claim 23, determining the transition
time further comprises:

settting the estimated problem start time equal to the

transition time when vertical distances between
anomaly score data and a least squares line fit to the
anomaly score data is less than a transition-time thresh-
old; and

setting the estimated problem start time equal to an

adjusted-transition time when vertical distances
between anomaly score data and a least squares line fit
to the anomaly score data is greater than a transition-
time threshold.

25. The medium of claim 19, where calculating a maxi-
mum slope of anomaly scores and estimated problems start
times for each of one or more virtual resources further
comprises:

calculating a target time window from the estimated

problem start time of the computer;

for each of the one or more virtual resources,

10

15

20

25

30

35

40

24

resealing the anomaly score data in a backward time
window to a common reference frame;

calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
the backward time window;

decreasing a lower time limit of the backward time
window to generate a backward time window with a
longer duration;

repeating resealing, calculating, and decreasing until
the duration of the backward time window exceeds a
minimum time limit of the target time window; and

identifying a maximum slope of the slopes calculated
for the series of backward time windows.

26. The medium of claim 25 further comprises:

resealing the anomaly score data in a forward time

window to a common reference frame;
calculating a slope and a y-intercept for a weighted
least-squares fit of a line to the anomaly score data in
a forward time window;

increasing an upper time limit of the forward time win-
dow to generate a forward time window with a longer
duration;

repeating resealing, calculating, and decreasing until the

duration of the forward time window exceeds a maxi-
mum time limit of the time range; and

identifying a maximum slope of the slopes calculated for

the series of forward time windows.

27. The medium of claim 19, wherein generating the
recommendation lists of virtual resources based on the
maximum slope of anomaly scores associated with each of
the one or more virtual resources further comprises:

sorting the one or more children into data buckets based

on a ratio of the maximum slope of anomaly scores
associated with each virtual resource and the maximum
slope of anomaly scores associated with the computer;
and

within each data bucket, rank ordering the virtual

resources from smallest to largest estimated problem
start time.

