
US010572329B2

(12) United States Patent
Harutyunyan et al .

(10) Patent No .: US 10,572,329 B2
(45) Date of Patent : Feb. 25 , 2020

(56) References Cited (54) METHODS AND SYSTEMS TO IDENTIFY
ANOMALOUS BEHAVING COMPONENTS
OF A DISTRIBUTED COMPUTING SYSTEM U.S. PATENT DOCUMENTS

2009/0169020 A1 * 7/2009 Sakthikumar (71) Applicant : VMware , Inc. , Palo Alto , CA (US)
2013/0117676 A1 * 5/2013 De Pauw

(72)
2016/0171380 A1 * 6/2016 Kennel

Inventors : Ashot Nshan Harutyunyan , Yerevan
(AM) ; Nicholas Kushmerick , Seattle ,
WA (US) ; Arnak Poghosyan , Yerevan
(AM) ; Naira Movses Grigoryan ,
Yerevan (AM) ; Vardan Movsisyan ,
Yerevan (AM)

G06F 21/57
380/278

G06F 3/00
715/738

GOON 7/005
706/12

HO4L 67/10
G06F 17/30737
G06F 17/30303

2016/0277268 A1 * 9/2016 Brown
2016/0350395 A1 * 12/2016 Gupta
2017/0277727 A1 * 9/2017 Chen

* cited by examiner
(73) Assignee : VMware , Inc. , Palo Alto , CA (US)

Primary Examiner Jigar P Patel
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 87 days .

(57) ABSTRACT

(21) Appl . No .: 15 / 375,386

(22) Filed : Dec. 12 , 2016

(65) Prior Publication Data

US 2018/0165142 A1 Jun . 14 , 2018

Methods and system described herein are directed to iden
tifying anomalous behaving components of a distributed
computing system . Methods and system collect log mes
sages generated by a set of event log source running in the
distributed computing system within an observation time
window . Frequencies of various types of event messages
generated within the observation time window are deter
mined for each of the log sources . A similarity value is
calculated for each pair of event sources . The similarity
values are used to identify similar clusters of event sources
of the distributed computing system for various management
purposes . Components of the distributed computing system
that are used to host the event source outliers may be
identified as potentially having problems or may be an
indication of future problems .

(51)

(52)

Int . Cl .
GOOF 11/07 (2006.01)
U.S. CI .
CPC G06F 11/079 (2013.01) ; G06F 11/076

(2013.01) ; G06F 11/0709 (2013.01) ; G06F
11/0751 (2013.01) ; GO6F 11/0778 (2013.01)

Field of Classification Search
CPC . G06F 11/0751 ; G06F 11/0787 ; GOOF 11/079
See application file for complete search history .

(58)

24 Claims , 38 Drawing Sheets

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

114
116

118

120
BRIDGE

CONTROLLER CONTROLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

127
122 123 124 125

126 MASS
STORAGE
DEVICE

128

U.S. Patent Feb. 25 , 2020 Sheet 1 of 38 US 10,572,329 B2

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

114
116

118

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

127
122 123 124 125

126 MASS
STORAGE
DEVICE

FIG . 1 128

U.S. Patent Feb. 25 , 2020 Sheet 2 of 38 US 10,572,329 B2

212

210

214

216 FIG . 2 .

I Î I

Di
205 204 203 202

316

U.S. Patent Feb.25.2020

Cloud Services Interface

312

314

Intemet

310

???????

Sheet 3 of 38

Cloud Services Interface

306

302

304

Local Network

308

US 10,572,329 B2

FIG.3

432

433

434

435

436

U.S. Patent

406

Application Programs

Feb. 25 , 2020

430

Operating System

426

428

non - privileged instructions and

System - cal interface

memory addresses and registers
OS intervals

444

446

OS intervals

Scheduler

Device

Memory Management File System

Task Mgmt

Drivers

privileged non - privileged privileged

non - privileged instructions

instructions registers / addresses registers / addresses

418

420 422

424

404 442

448

416

Sheet 4 of 38

Hardware

Memory

Processors

1/0

10

Mass Storage

402

410

408

410

412

414

US 10,572,329 B2

400

FIG . 4

510

U.S. Patent

application
application

application

application

application

514

511

OS

OS

OS

OS

OS

Feb. 25 , 2020

516

Non - privileged instructions

privleged instructions

n07 - privileged privileged
registerladdresses register / addresses

508

520

VM Kemel

VM Kenel

518 504

Virtual Machine Monitor

504

Sheet 5 of 38

Non - privileged instructions

device drivers
privileged instructions

device drivers
non - privileged privieged register / addresses registerladdresses

506 502

502

US 10,572,329 B2

500

FIG . 5A

556

557

558

application

application

application

U.S. Patent

Virtual Machines

546 /
548

OS

OS

OS

552

Feb. 25 , 2020

550

Application Programs

Virtualization Layer

Virtualization

non - privileged instructions and memory addresses and registers

system - cal interface

/ 544

Sheet 6 of 38

Operating System 542

101

Hardware

US 10,572,329 B2

FIG .
5B

540

622

Open Virtualization Format

620

U.S. Patent

Digest of package Digest of disk image file Digest of disk image file Digest of resource file

602

:

< Envelope
< References >

626

< / References > < Disk Section >

628

< / Disk Section >
< Network Section >

630

< / Network Section >
< Virtual System Collection > < Virtual Hardware Section >

Digest of resource file

Feb. 25 , 2020

604

OVF Descriptor

636

han

OVF Manifest

634

606

:

632

< / Virtual Hardware Section >

OVF Certificate

608

< Virtual System Collection >

disk image file

610

< / Envelope

Sheet 7 of 38

disk image file

akt

611

623

XML file

certificate that includes digest of manifest

he

without

resource file

612

640

resource file

613

FIG . 6

resource file

US 10,572,329 B2

614

OVF Package

732
731

Virtual Data Center

730

U.S. Patent

736

735

Resource Pool

Feb. 25 , 2020

734

708
706

726

Sheet 8 of 38

724

JIJITOTT
710

702

722

714

715

716

717

JTE

720

718

719
Physical Data Center

712

704

US 10,572,329 B2

FIG . 7

810

812

Host configuration VM configuration VM provisioning Alarms & events
Statistics collection or logging

Task scheduler Resource management

Distributed Resource Scheduler
High Availability Live VM migration Backup

U.S. Patent

Management Interface

814

Distributed Services

816

Core Services Host management

Feb. 25 , 2020

818

824

826

825

810

t

VDC agent

829

VDC agent

830

VDC agent

Virtual Data Center Management Server

Host Agent

Host Agent

Host Agent

Sheet 9 of 38

828

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

808

Virtual Data Center database

Virtualization Layer

Virtualization Layer

Virtualization Layer
Virtualization Layer

806

Hardware

Hardware

Hardware

Hardware

804

US 10,572,329 B2

802

820

821

822

FIG . 8

932

U.S. Patent

W

Management Interface

934

922

912

Cloud Director Services

Virtual Data Center Provisioning Organization Configuration and Organization Virtual Data Center Configuration
Template and Media Catalogs

Network Provisioning from network pool
926

930

ORG1

ORG 2

908

VDC MS interface

936

cloud director

virtual data centers

Feb. 25 , 2020

920

910

921

904

911

919

f

916

918

917 ORG 2 ORG3 / ORG 4

ORG 1

ORG 1 ORG 2 , ORG 3

907

cloud director

cloud director

Sheet 10 of 38

924

925

virtual data centers Puisial

virtual data centers
-

- —

903

2

HLEDE

906

902

US 10,572,329 B2

FIG.9

1005

VCC node

U.S. Patent

1020

3rd party

1004

cloud services

1006

VCC Node

VOCI MS

CO

VCC node

Feb. 25 , 2020

VOC LS

.

virtual data center

1007

1003

1019

1021

VCC node

VCC node

1

VOCE MS

CD

virtual data center

1

VDC MS 3

1002

Sheet 11 of 38

1022

1018

1008

1016

1

VDCI MS

1023

VDC

1

1

1

MS

VCC sener

VCC node

1012

VCC node
1010
1014

US 10,572,329 B2

FIG . 10

1026

1132 , 1133

1134

1144 , 1145

1146

U.S. Patent

cont .

cont .

coni .

cont .

cont .

cont .

1148

1136

OS - level virtualization oskevel virtualization

1142

1130

OS - level virtualization

1122

OS - layer

Feb. 25 , 2020

1140

Guest OS

Hardware layer

1128

1

Sheet 12 of 38

1104

VM

VM

VM

1126

VM VM 1124

Virtualization layer

1108
VEHIDO

1102

1106

US 10,572,329 B2

FIG . 11

1120 Physical Data Center

1113

1115
1114

1117

1118

11111

1112

1110

1116

1208

1209

1210
wwww

U.S. Patent

1205

Feb. 25 , 2020

1206 1202

1204

container

container

container

428

426

OS - level Virtualization

430

system - call interface

non - privileged instructions
and memory addresses and registers

OS interface

Sheet 13 of 38

OS interface

404

Operating System
layer

Scheduler Task Mgmt

Memory Management

non - privileged instructions

privileged instructions
File

Device

System

Drivers

non - privileged

privileged
registers / addresses registers / addresses

V

402

Memory

Processors

10

I / O

Mass Storage

Hardware layer

US 10,572,329 B2

FIG . 12

1306

1307

1308
A

U.S. Patent

1300

Feb. 25 , 2020

container

container

container

1304 1302

OS - level Virtualization
Guest OS

Non - privileged instructions

privileged instructions

non - privileged privileged
register / addresses Tregister / addresses .

520

Sheet 14 of 38

508 518

VM Kemel

VM Kemel

Virtual Machine Monitor

504

504

device drivers
privileged instructions

Non - privileged instructions

device drivers
non - privileged privileged

register / addresses register / addresses

506

502

Memory

Processors

1/0

I / O

Mass Storage

Hardware layer

US 10,572,329 B2

FIG . 13

U.S. Patent Feb. 25 , 2020 Sheet 15 of 38 US 10,572,329 B2

1402 1403 1404 1405 1406

1416 NI ELE 1410

M1408 1414

1428
Detect anomalous event

sources 010
1420 1421 1412

1422 1

1 1418
-

3

' 1426 1423 1424
-

3

}
1

FIG . 14

1502

Application program or OS

U.S. Patent

1504

1508

1506

1514

tog.write (event message 1)

event message 1

1516

Feb. 25 , 2020

event message 1

event message 1

Sheet 16 of 38

1512

1510

log.write (event message 2)

event message 2

US 10,572,329 B2

FIG . 15

1602

U.S. Patent

1604

1605

1606

1610

log.write ([$ Time_date] [Thread- $ X / $ IP / INFO]

[com.vnware.loginsight.commons.executor . ProcessExecutor] [[[/ usr / lib / loginsight / application /

lib / apache - cassandra - 2.0.10 / bin / nodetool , -h , montools-prod-loginsight.vmware.com , repair)]

($ Time_date] Repair session SRS for range $ range finished)

Feb. 25 , 2020

1608

FIG . 16

1702

Sheet 17 of 38

1704

1705

1706

170

[2015-03-10 23 : 43 : 36.859 + 0000] Thread - 1822496 / 127.0.0.1 INFO]

[com.vmware.loginsight.commons.executor.ProcessExecutor] [[[/ usr / lib / loginsight / application /

lib / apache - cassandra - 2.0.10 / bin / nodetool , -h , montools-prod-loginsight.vmware.com , repair]] (2015-03-10 23:43:36 , 716) Repair session 51312720 - c77e - 11e4 - ad72-4769d614a3f2 for range

(-6899937477723537626 , -6896547230076663429) finished)

FIG . 17

US 10,572,329 B2

U.S. Patent Feb. 25 , 2020 Sheet 18 of 38 US 10,572,329 B2

1802

1808 1810

1804 2013-12-02T10 : 44 : 24.095Z li-qe-esx5.vmware.com Rhttpproxy :
(28959B90 verbose ' Proxy Req 46691 '] Connected to
localhost : 8307_1812 -1806
2013-12-02T10 : 44 : 24.0942 li-qe-esx5.vmware.com Rhttpproxy :
(FFFC2B90 verbose Proxy Req 46691 '] new proxy client
TCP (local - 127.0.0.1 : 80 , peer = 127.0.0.1 : 50155)

2013-12-02T10 : 44 : 24,0932 li-qe-esx5.vmware.com Rhttpproxy :
[2889B90 verbose ' Proxy Reg 46685 '] The client closed the
stream , not unexpectedly .

1
Dec 2 18:48:29 strata - vc 2013-12-02T18 : 48 : 30.2732
(7FA39448B700 info commonvpxlro ' opID = 1947d6f9] [VpXLRO]
FINISH task - internal - 2163522 vim.SessionManager.logout
2013-12-02T18 : 48 : 51.3962 strata-esxl.eng.vmware.com Vpxa :
(65B5AB 90 verbose ' VpxaHalCnxiostagent ' OPID = WFU - ed393333]
[Wait ForUpdates Donel Completed callback

T
2013-12-02T18 : 48 : 51.395Z strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' Vpxa HalCnxHostagent ' opID = WFU - ed393333]
(WaitForUpdates Done] Starting next Wait ForUpdates () call to
hosta

2013-12-02T18 : 48 : 51,3952 strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' vpxavpxa InvtVm ' opID = WFU - ed393333)
[VpxaInvtvmchangelistener) Guest DiskInfo Changed
2013-12-02T18 : 48 : 51.3952 strata-esxl.eng.vmware.com Vpxa
[65B5AB90 verbose ' vpxavpxa InvtVm ' OPID = WFU - ed393333]
(Vpxa Invt VmChangelistener) Guest DiskInfo Changed

FIG . 18

U.S. Patent

1901

1902

1903

1904
Event

Event Source

Event source 2

Event Source 3

source

1

1918

Feb. 25 , 2020

DCS component

DCS component 2

DCS component 3

DCS component M

Sheet 19 of 38

1

1916

1911

1912

1913

1914

FIG . 19A

US 10,572,329 B2

1926

Log file event message 5 event message 2 event message 1

1927

Log file event message 3 event message 2 event message 4

U.S. Patent

1928

1921

1923

Feb. 25 , 2020

Event

Event

Event

Source

Source 2

Event Source 3

Source M

1

1901

1902

1903

1904

Sheet 20 of 38

Log file event message 5 event message 6 event message 1

Log file event message 4 event message 2 event message 1

US 10,572,329 B2

FIG . 19B

1922

1924

U.S. Patent

1921

2006

2008

2010

Feb. 25 , 2020

Log file

1926 1927

event message 5 event message 2 event message 1

freq 5

Event

1928

7

SO Lice

Determine event type of each event message

Determine frequency of each event type

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

1

3 21 9 18

Sheet 21 of 38

1901

2002

2004

FIG . 20

US 10,572,329 B2

U.S. Patent Feb. 25 , 2020 Sheet 22 of 38 US 10,572,329 B2

2102 2108 2104

(2015-03-10 23 : 43 : 36.859 + 0000] [Thread - 1822 496 / 127.0.0.1 INFO)
[com.vmware . loginsight.commons.executor . Process Executor] [[[/ usr / lib /
loginsight / application / lib / apache - cassandra - 2.0.10 / bin / nodetool , wh ,
montools-prod-loginsight.vmware.com , repair]] [2015-03-10 23:43:36 , 716]
Repair session 51312720 - c77e - 11e4 - ad72-4769d614a3f2 for range
(-6899937477723537626 , -6896547230076663429) finished]

1702
Identify tokens separated by white spaces

2108 2106 2107

[2015-03-10 23 : 43 : 36.859 + 0000) (Thread - 1822496 / 127.0.0.1 INFO)
[com.vmware.loginsight.commons.executor . Process Executor] [0 / usr / lib /
loginsight / application / lib / apache - cassandra - 2.0.10 / bin / nodetool , -h ,
montools - prod - loginsight , vmware.com , repairl] [2015-03-10 23 : 43 : 36.716)
Repair session 51312720 - c77e - 11e4 - ad72-4769d614a3f2 for range
(-6899937477723537626 , -6896547230076663429) finished

Identify parameter values
2110 2112

7075463410 27743636/2007 Thread - 16220 BA INFO]
(com.vmware.loginsight.commons.executor . Process Executor] [[[/ usr / lib /
loginsight / application / lib / apache - cassandra - 2.0.10 / bin / nodetool , -h ,
montools-prod-loginsight.vmware.com , repairll (264374048 / 2O ,
Repair session 573020721e - 114ad VZ6769d67e342 for range

ENA , 2676662583006) finished]

Discard parameter values
2116

[] Thread
INFO] Icom.vmware.loginsight.commons.executor . Process Executor)
usr / lib / loginsight / application / lib / apache - cassandra - 2.0.10 / bin /
nodetool , -h , montools-prod-loginsight.vmware.com , repairl) L Repair
session for range) finished]

2118 2120 Discard punctuation ,
parentheses , and brackets

Thread INFO com.vmware.loginsight.commons.executor.Process Executor
/usr/lib/loginsight/application/lib/apache-cassandra-2.0.10
/ bin / nodetool h montools-prod-loginsight.vmware.com repair Repair
session for range finished

FIG . 21

freq 5 7

freq 15

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

U.S. Patent

3 21

2 19

9 18

11 10

2006

2202

Feb. 25 , 2020

Event

Event

Event

Source 1

Source 2

Source 3

Event Source M

1901

1902

1903

1904

Sheet 23 of 38

treg 5 7

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

treg 8 2 5 19 11 15

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

8 20 10 17

US 10,572,329 B2

2201

FIG . 22

2203

U.S. Patent Feb. 25 , 2020 Sheet 24 of 38 US 10,572,329 B2

2302

2303
VK

Similarity , Similarityk
2301

2304

FIG . 23

U.S. Patent

1921

2402

2008

2010

2504

Feb. 25 , 2020

Log file

1926

1928

1927

event message 5 event message 2 event message 1

Event ?ource

Determine event type of each event message

Determine frequency of each event type

Determine probability of each event type

event type event type 1 event type 2 event type 3 event type 4 event type 5 event type 6

freq prob 5 .08 7 .11 3 .05 21 .33 9 , 14 18 .29

1

Sheet 25 of 38

1901

2002

2004

2406
FIG . 24

US 10,572,329 B2

2501

2503

2508

2510

U.S. Patent

ET1

ETS

ET6

ET1
ET2

ETS
ETS

ET2 ET3 ET4
Event types

ET3 ET4 Event types

2506

Event

Event

Event

Event

Source

Source 2

source 3

source M

1

1901

1902

1903

1904

ET1
ET2

ETS
ET6

ET1

ET2 ET3 ET4 ETS

ET6

ET3 ET4 Event types

Event types

FIG . 25

2502

2504

U.S. Patent Feb. 25 , 2020 Sheet 27 of 38 US 10,572,329 B2

2600

ES ES2 ES ESM - 1 ESM

ES
ES

Sim (1,1) Sim (1,2) Sim (1,3)
Sim (2,2) Sim (2,3)

Sim (3,3)
2602

Sim (1 , M - 1) Sim (1 , M)
Sim (2 , M - 1) Sim (2 , M)
Sim (3 , M - 1) Sim (3 , M) ES :

ESM - 1
ESM

Sim (M - 1 , M - 1)
Sim (MM)

FIG . 26A

2604

0

2606
2628 2626

Dissimilarity
threshold

Similarity 0.5
2620

2616
2618 2612
2614

1.0

2608 C2 ??
2609 2622 2624

2610
FIG . 26B

U.S. Patent Feb. 25 , 2020 Sheet 28 of 38 US 10,572,329 B2

ESA ES ESC ESD ESE ESF ESG

1 .5 .58 0 .75 .375 .625
1 .296 .166 333 .8 .223

1 .571 .333 .667

ESA
ES8
ESC
ESP
ESE
ESF
ESG

1 0 2 .143
1 233 .625

1 .25
1

FIG . 27A

Similarity 0.5
0.8

1.0
ES ESF

FIG . 27B

U.S. Patent Feb. 25 , 2020 Sheet 29 of 38 US 10,572,329 B2

ESA (ESB , ESp) ESC ESD ESE ESG

ESA 1 5 , 58 0 .75 .625
1 .333 .25 333 .25 2702 (ESB , ESP)

ESC 1 0 .571 .667

ESD 2704 1 0 .143
.625 ESE

ESC 1

FIG . 270

0

-

T

3

Similarity 1 0.5
0.75
0.8

1.0
ESB ES : ESA ESE

FIG . 27D

U.S. Patent Feb. 25 , 2020 Sheet 30 of 38 US 10,572,329 B2

(ES ES) (ESB , ES) ESC ESD ESO

5 58 0 .625 2706
1 .333 , 25 .25

(ESA , ESE)
(ES3 , ESF)

ESC
ESD

2708 1 0 .667
1 143

ESG 1

FIG . 27E

0

EL

Similarity 0.5 -

0.667
0.75
0.8 01 1.0

ES : ESF ESA ESE ESC ESG

FIG . 27F

U.S. Patent Feb. 25 , 2020 Sheet 31 of 38 US 10,572,329 B2

(ESA , ESE) (ESB , ESF) (ESC , ES) ESD

1 .5 .625 0

1 .333 25
(ESA , ESE)
(ES) , ES)
(ESC , ES)

ESD
1 .143

?????

FIG . 276

0

Similarity 0.5

0.625 .
0.667

0.75
0.8

1.0
ES : ESF ESA ESE ESC ESG

FIG . 27H

U.S. Patent Feb. 25 , 2020 Sheet 32 of 38 US 10,572,329 B2

(ESA , ES , ES , ES) (ES , ESF) ES

1 .5 .143 (ESA , ESE , ESC , ESG)
(ESB , ESP) 1 .25

ESD

FIG . 271

0

Similarity 0.5

0.625
0.667

0.75
0.8

1.0
ESB ESF ESA ESE ESC ESC

FIG . 273

U.S. Patent Feb. 25 , 2020 Sheet 33 of 38 US 10,572,329 B2

(ESA , ES , ES , ES , ES , ESP) ESD

1 .25 (ESA , ESE , ESC , ESG , ES : ESF)
ESD ????

FIG . 27K

0

0.25

Similarity 0.5 2710

0.625
0.6677

0.75
0.8

1.0
ES : ESF ESA ESE ESC ESG ESD

C C2 C }

FIG . 27L

U.S. Patent Feb. 25 , 2020 Sheet 34 of 38 US 10,572,329 B2

Method to identify anomalous
behaving components of a

distributed computing system

2801 Collect event - og fles of a set of
event sources that run on a set of

components

2802 Determining frequencies of
event types within observation

time window

2803 Calculating a similarity for each
pair of event sources

2804
Determine event source clusters

2805 Determine event source outliers

2806 Identify components associated with
event source outliers

Stop

FIG . 28

U.S. Patent Feb. 25 , 2020 Sheet 35 of 38 US 10,572,329 B2

Determining frequencies of
event types within observation

time window

2901 For each event log file

2902 For each event message

2903
Perform event - type analysis to

identify event type of event message

2904
Increment count of

the event type

2905
Y Another

event message
?

N

2906 Add event type and associated
frequency to event - type log

2907
Y Another

event - log file
?

N

Return

FIG . 29

U.S. Patent Feb. 25 , 2020 Sheet 36 of 38 US 10,572,329 B2

Calculating a similarity for each
pair of event sources

3001
For each event source m = 1 , ... , M

3002 For each event source k = 2 , ... , M ;
k > m

3003 Calculate a similarity Sim (mk)
between m - th and k - th event sources

3004
Another

event source k
?

N
3005

Y Another
event source m

?

N

Return

FIG . 30

U.S. Patent Feb. 25 , 2020 Sheet 37 of 38 US 10,572,329 B2

Determine event source clusters

3101 Identify largest similarity Sim (m , k) in
similarity matrix

3102 Create a corresponding branch in a
dendrogram

3103 Reduce similarity matrix by removing
m - th row and K - th column

3104 Calculate similarities of linked event
sources according to linkage criterion

3105
More similarities Y

?

N

3106 Apply dissimilarity threshold to
dendrogram

3107 Form event source clusters for event
sources connected by similarities
greater than dissimilarity threshold

Retum

FIG . 31

U.S. Patent Feb. 25 , 2020 Sheet 38 of 38 US 10,572,329 B2

Determine event source outliers

3201
For each event source cluster

3202 Calculate distance between event
Sources

3203 Calculate k - th nearest neighbor
distance for each event source

3204 Determine K - distance neighborhood
each event source

3205 Calculate local reachability density
for each event source

3206 Calculate local outlier factor (LOF)
for each event source

3207 for each event source

3208
N LOF > ThLOF

?

Y 3209
Identify event source as an outlier

3210
Another cluster Y

?

N

FIG . 32
Return

1
US 10,572,329 B2

2
METHODS AND SYSTEMS TO IDENTIFY computing system based on event logs . Event logs generated
ANOMALOUS BEHAVING COMPONENTS by a set of event sources running in the distributed comput
OF A DISTRIBUTED COMPUTING SYSTEM ing system within an observation time window are collected .

Frequencies of various types of event messages generated
TECHNICAL FIELD 5 within the observation time window are determined for each

of the event logs . A similarity value is calculated between The present disclosure is directed to event messages and each pair of event sources . Clustering analysis may be log files and , in particular , to methods and systems that applied to the similarity values in order to generate clusters identify components that exhibit abnormal behavior in a
distributed computing system . of event sources and identify any event source outliers

10 within each cluster . Components of a distributed computing
BACKGROUND system that are used to host the event source outliers may be

identified for various management purposes , including , but
During the past seven decades , electronic computing has not limited to , as having problems , issues , future problems

evolved from primitive , vacuum - tube - based computer sys or identified for monitoring or troubleshooting .
tems , initially developed during the 1940s , to modern elec- 15
tronic computing systems in which large numbers of multi DESCRIPTION OF THE DRAWINGS
processor server computers , work stations , and other
individual computing systems are networked together with FIG . 1 shows a general architectural diagram for various
large - capacity data - storage devices and other electronic types of computers .
devices to produce geographically distributed computing 20 FIG . 2 shows an Internet connected distributed computer
systems with hundreds of thousands , millions , or more system .
components that provide enormous computational band FIG . 3 shows cloud computing .
widths and data - storage capacities . These large , distributed FIG . 4 shows generalized hardware and software compo
computing systems are made possible by advances in com nents of a general - purpose computer system .
puter networking , distributed operating systems and appli- 25 FIGS . 5A - 5B show two types of virtual machine and
cations , data - storage appliances , computer hardware , and virtual - machine execution environments .
software technologies . Despite all of these advances , how FIG . 6 shows an example of an open virtualization format
ever , the rapid increase in the size and complexity of package .
computing systems has been accompanied by numerous FIG . 7 shows virtual data centers provided as an abstrac
scaling issues and technical challenges , including technical 30 tion of underlying physical - data - center hardware compo
challenges associated with communications overheads nents .
encountered in parallelizing computational tasks among FIG . 8 shows virtual machine components of a virtual
multiple processors , component failures , and distributed data - center management server and physical servers of a
system management . As new distributed - computing tech physical data center .
nologies are developed and as general hardware and soft- 35 FIG . 9 shows a cloud - director level of abstraction .
ware technologies continue to advance , the current trend FIG . 10 shows virtual - cloud - connector nodes .
towards ever - larger and more complex distributed comput FIG . 11 shows two ways in which operating - system - level
ing systems appears likely to continue well into the future . virtualization may be implemented in a physical data center .

In modern computing systems , individual computers , FIG . 12 shows an example server computer used to host
subsystems , and components generally output large volumes 40 three containers .
of status , informational , and error messages that are collec FIG . 13 shows an approach to implementing containers
tively referred to , in the current document , as " event mes on a virtual machine .
sages . ” In large , distributed computing systems , terabytes of FIG . 14 shows an example of logging event messages in
event messages may be generated each day . The event event logs .
messages are often collected into event logs stored as files in 45 FIG . 15 shows an example of a source code with log write
data - storage appliances and are often analyzed both in real instructions .
time , as they are generated and received , as well as retro FIG . 16 shows an example of a log write instruction .
spectively , after the event messages have been initially FIG . 17 shows an example of an event message generated
processed and stored in event logs . Event logs that are by the log write instruction of FIG . 16 .
generated by similar event sources over a period of time are 50 FIG . 18 shows a small , eight - entry portion of an event log .
expected to be similar . The similar event sources may be FIGS . 19A - 19B show an example set of similar event
copies of the same operating system , application program , sources corresponding to server computers and event logs
virtual machine , or machine code running on a number of generated by the similar event sources .
different server computers . An event log that is different FIG . 20 shows an example of a method to determine an
from the event logs of other event sources may be an 55 event - type log from an event log .
indication of a problem or management issues with compo FIG . 21 shows an example of event - type analysis per
nents of a distributed computer system , such as a server formed on an event message .
computer used to host an event source . However , because FIG . 22 shows an example of event sources and associ
the log files of the event sources may each have many ated event - type logs .
thousands or even millions of event messages generated 60 FIG . 23 shows a plot of three examples of event - type
over the observation time window , determining which event frequency vectors .
sources are outliers is an enormous task . FIG . 24 shows an example of a method to determine an

event - type log from an event log that includes event - type
SUMMARY probabilities .

FIG . 25 shows an example of event sources and plots of
Methods and system described herein are directed to associated probability distributions .

identifying anomalous behaving components of a distributed FIG . 26A shows an example similarity matrix .

65

US 10,572,329 B2
3 4

FIG . 26B shows an example dendrogram constructed computer instructions sequentially stored in a file on an
from similarities of pairs of event sources . optical disk or within an electromechanical mass - storage
FIGS . 27A - 27L show an example of hierarchical cluster device . Software alone can do nothing . It is only when

ing applied to a set of seven event sources using maximum encoded computer instructions are loaded into an electronic
linkage criterion . 5 memory within a computer system and executed on a

FIG . 28 shows a control - flow diagram of a method to physical processor that so - called “ software implemented ”
identify anomalous behaving components of a distributed functionality is provided . The digitally encoded computer
computing system . instructions are an essential and physical control component

FIG . 29 shows a control - flow diagram of the routine of processor - controlled machines and devices , no less essen
" determine frequencies of event types within the observation 10 tial and physical than a cam - shaft control system in an
window ” called in FIG . 28 . internal - combustion engine . Multi - cloud aggregations ,

FIG . 30 shows a control - flow diagram of the routine cloud - computing services , virtual - machine containers and
" calculate a similarity for each pair of event sources ” called virtual machines , communications interfaces , and many of
in FIG . 28 . the other topics discussed below are tangible , physical

FIG . 31 shows a control - flow diagram of the routine 15 components of physical , electro - optical - mechanical com
“ determine event source clusters ” called in FIG . 28 . puter systems .

FIG . 32 shows a control flow diagram of the routine FIG . 1 shows a general architectural diagram for various
“ determine event source outliers ” called in FIG . 28 . types of computers . Computers that receive , process , and

store event messages may be described by the general
DETAILED DESCRIPTION 20 architectural diagram shown in FIG . 1 , for example . The

computer system contains one or multiple central processing
This disclosure presents computational methods and sys units (“ CPUs ”) 102-105 , one or more electronic memories

tems to identify anomalous behaving server computers of a 108 interconnected with the CPUs by a CPU / memory
distributed computing system . In a first subsection , com subsystem bus 110 or multiple busses , a first bridge 112 that
puter hardware , complex computational systems , and virtu- 25 interconnects the CPU / memory - subsystem bus 110 with
alization are described . Containers and containers supported additional busses 114 and 116 , or other types of high - speed
by virtualization layers are described in a section subsection . interconnection media , including multiple , high - speed serial
Methods and systems to identify anomalous behaving com interconnects . These busses or serial interconnections , in
ponents of a distributed computing system are described turn , connect the CPUs and memory with specialized pro
below in a third subsection . 30 cessors , such as a graphics processor 118 , and with one or

more additional bridges 120 , which are interconnected with
Computer Hardware , Complex Computational high - speed serial links or with multiple controllers 122-127 ,

Systems , and Virtualization such as controller 127 , that provide access to various dif
ferent types of mass - storage devices 128 , electronic dis

The term “ abstraction ” is not , in any way , intended to 35 plays , input devices , and other such components , subcom
mean or suggest an abstract idea or concept . Computational ponents , and computational devices . It should be noted that
abstractions are tangible , physical interfaces that are imple computer - readable data - storage devices include optical and
mented , ultimately , using physical computer hardware , data electromagnetic disks , electronic memories , and other
storage devices , and communications systems . Instead , the physical data - storage devices . Those familiar with modern
term “ abstraction ” refers , in the current discussion , to a 40 science and technology appreciate that electromagnetic
logical level of functionality encapsulated within one or radiation and propagating signals do not store data for
more concrete , tangible , physically - implemented computer subsequent retrieval , and can transiently “ store ” only a byte
systems with defined interfaces through which electroni or less of information per mile , far less information than
cally - encoded data is exchanged , process execution needed to encode even the simplest of routines .
launched , and electronic services are provided . Interfaces 45 Of course , there are many different types of computer
may include graphical and textual data displayed on physical system architectures that differ from one another in the
display devices as well as computer programs and routines number of different memories , including different types of
that control physical computer processors to carry out vari hierarchical cache memories , the number of processors and
ous tasks and operations and that are invoked through the connectivity of the processors with other system com
electronically implemented application programming inter- 50 ponents , the number of internal communications busses and
faces (“ APIs ”) and other electronically implemented inter serial links , and in many other ways . However , computer
faces . There is a tendency among those unfamiliar with systems generally execute stored programs by fetching
modern technology and science to misinterpret the terms instructions from memory and executing the instructions in
" abstract " and " abstraction , ” when used to describe certain one or more processors . Computer systems include general
aspects of modern computing . For example , one frequently 55 purpose computer systems , such as personal computers
encounters assertions that , because a computational system (“ PCs ”) , various types of servers and workstations , and
is described in terms of abstractions , functional layers , and higher - end mainframe computers , but may also include a
interfaces , the computational system is somehow different plethora of various types of special - purpose computing
from a physical machine or device . Such allegations are devices , including data - storage systems , communications
unfounded . One only needs to disconnect a computer system 60 routers , network nodes , tablet computers , and mobile tele
or group of computer systems from their respective power phones .
supplies to appreciate the physical , machine nature of com FIG . 2 shows an Internet - connected distributed computer
plex computer technologies . One also frequently encounters system . As communications and networking technologies
statements that characterize a computational technology as have evolved in capability and accessibility , and as the
being " only software , and thus not a machine or device . 65 computational bandwidths , data - storage capacities , and
Software is essentially a sequence of encoded symbols , such other capabilities and capacities of various types of com
as a printout of a computer program or digitally encoded puter systems have steadily and rapidly increased , much of

US 10,572,329 B2
5 6

modern computing now generally involves large distributed ists and continuously paying for operating - system and data
systems and computers interconnected by local networks , base - management - system upgrades . Furthermore , cloud
wide - area networks , wireless communications , and the computing interfaces allow for easy and straightforward
Internet . FIG . 2 shows a typical distributed system in which configuration of virtual computing facilities , flexibility in
a large number of PCs 202-205 , a high - end distributed 5 the types of applications and operating systems that can be
mainframe system 210 with a large data - storage system 212 , configured , and other functionalities that are useful even for
and a large computer center 214 with large numbers of owners and administrators of private cloud - computing
rack - mounted servers or blade servers all interconnected facilities used by a single organization .
through various communications and networking systems FIG . 4 shows generalized hardware and software compo
that together comprise the Internet 216. Such distributed 10 nents of a general - purpose computer system , such as a
computing systems provide diverse arrays of functionalities . general - purpose computer system having an architecture
For example , a PC user may access hundreds of millions of similar to that shown in FIG . 1. The computer system 400 is
different web sites provided by hundreds of thousands of often considered to include three fundamental layers : (1) a
different web servers throughout the world and may access hardware layer or level 402 ; (2) an operating - system layer or
high - computational - bandwidth computing services from 15 level 404 ; and (3) an application - program layer or level 406 .
remote computer facilities for running complex computa The hardware layer 402 includes one or more processors
tional tasks . 408 , system memory 410 , various different types of input
Until recently , computational services were generally output (“ I / O ”) devices 410 and 412 , and mass - storage

provided by computer systems and data centers purchased , devices 414. Of course , the hardware level also includes
configured , managed , and maintained by service - provider 20 many other components , including power supplies , internal
organizations . For example , an e - commerce retailer gener communications links and busses , specialized integrated
ally purchased , configured , managed , and maintained a data circuits , many different types of processor - controlled or
center including numerous web servers , back - end computer microprocessor - controlled peripheral devices and control
systems , and data - storage systems for serving web pages to lers , and many other components . The operating system 404
remote customers , receiving orders through the web - page 25 interfaces to the hardware level 402 through a low - level
interface , processing the orders , tracking completed orders , operating system and hardware interface 416 generally
and other myriad different tasks associated with an e - com comprising a set of non - privileged computer instructions
merce enterprise . 418 , a set of privileged computer instructions 420 , a set of

FIG . 3 shows cloud computing . In the recently developed non - privileged registers and memory addresses 422 , and a
cloud - computing paradigm , computing cycles and data- 30 set of privileged registers and memory addresses 424. In
storage facilities are provided to organizations and individu general , the operating system exposes non - privileged
als by cloud - computing providers . In addition , larger orga instructions , non - privileged registers , and non - privileged
nizations may elect to establish private cloud - computing memory addresses 426 and a system - call interface 428 as an
facilities in addition to , or instead of , subscribing to com operating - system interface 430 to application programs 432
puting services provided by public cloud - computing service 35 436 that execute within an execution environment provided
providers . In FIG . 3 , a system administrator for an organi to the application programs by the operating system . The
zation , using a PC 302 , accesses the organization's private operating system , alone , accesses the privileged instructions ,
cloud 304 through a local network 306 and private - cloud privileged registers , and privileged memory addresses . By
interface 308 and also accesses , through the Internet 310 , a reserving access to privileged instructions , privileged reg
public cloud 312 through a public - cloud services interface 40 isters , and privileged memory addresses , the operating sys
314. The administrator can , in either the case of the private tem can ensure that application programs and other higher
cloud 304 or public cloud 312 , configure virtual computer level computational entities cannot interfere with one
systems and even entire virtual data centers and launch another's execution and cannot change the overall state of
execution of application programs on the virtual computer the computer system in ways that could deleteriously impact
systems and virtual data centers in order to carry out any of 45 system operation . The operating system includes many
many different types of computational tasks . As one internal components and modules , including a scheduler
example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous
public cloud to remote customers of the organization , such 50 levels of abstraction above the hardware level , including
as a user viewing the organization's e - commerce web pages virtual memory , which provides to each application program
on a remote user system 316 . and other computational entities a separate , large , linear

Cloud - computing facilities are intended to provide com memory - address space that is mapped by the operating
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage
utility companies provide electrical power and water to 55 devices . The scheduler orchestrates interleaved execution of
consumers . Cloud computing provides enormous advan various different application programs and higher - level
tages to small organizations without the devices to purchase , computational entities , providing to each application pro
manage , and maintain in - house data centers . Such organi gram a virtual , stand - alone system devoted entirely to the
zations can dynamically add and delete virtual computer application program . From the application program’s stand
systems from their virtual data centers within public clouds 60 point , the application program executes continuously with
in order to track computational - bandwidth and data - storage out concern for the need to share processor devices and other
needs , rather than purchasing sufficient computer systems system devices with other application programs and higher
within a physical data center to handle peak computational level computational entities . The device drivers abstract
bandwidth and data - storage demands . Moreover , small orga details of hardware - component operation , allowing applica
nizations can completely avoid the overhead of maintaining 65 tion programs to employ the system - call interface for trans
and managing physical computer systems , including hiring mitting and receiving data to and from communications
and periodically retraining information - technology special networks , mass - storage devices , and other I / O devices and

US 10,572,329 B2
7 8

subsystems . The file system 446 facilitates abstraction of 514 and guest operating system 516 packaged together
mass - storage - device and memory devices as a high - level , within VM 510. Each VM is thus equivalent to the operat
easy - to - access , file - system interface . Thus , the development ing - system layer 404 and application - program layer 406 in
and evolution of the operating system has resulted in the the general - purpose computer system shown in FIG . 4. Each
generation of a type of multi - faceted virtual execution 5 guest operating system within a VM interfaces to the virtu
environment for application programs and other higher - level alization layer interface 504 rather than to the actual hard
computational entities . ware interface 506. The virtualization layer 504 partitions
While the execution environments provided by operating hardware devices into abstract virtual - hardware layers to

systems have proved to be an enormously successful level of which each guest operating system within a VM interfaces .
abstraction within computer systems , the operating - system- 10 The guest operating systems within the VMs , in general , are
provided level of abstraction is nonetheless associated with unaware of the virtualization layer and operate as if they
difficulties and challenges for developers and users of appli were directly accessing a true hardware interface . The
cation programs and other higher - level computational enti virtualization layer 504 ensures that each of the VMs cur
ties . One difficulty arises from the fact that there are many rently executing within the virtual environment receive a fair
different operating systems that run within various different 15 allocation of underlying hardware devices and that all VMs
types of computer hardware . In many cases , popular appli receive sufficient devices to progress in execution . The
cation programs and computational systems are developed virtualization layer 504 may differ for different guest oper
to run on only a subset of the available operating systems , ating systems . For example , the virtualization layer is gen
and can therefore be executed within only a subset of the erally able to provide virtual hardware interfaces for a
various different types of computer systems on which the 20 variety of different types of computer hardware . This allows ,
operating systems are designed to run . Often , even when an as one example , a VM that includes a guest operating system
application program or other computational system is ported designed for a particular computer architecture to run on
to additional operating systems , the application program or hardware of a different architecture . The number of VMs
other computational system can nonetheless run more effi need not be equal to the number of physical processors or
ciently on the operating systems for which the application 25 even a multiple of the number of processors .
program or other computational system was originally tar The virtualization layer 504 includes a virtual - machine
geted . Another difficulty arises from the increasingly dis monitor module 518 (“ VMM ”) that virtualizes physical
tributed nature of computer systems . Although distributed processors in the hardware layer to create virtual processors
operating systems are the subject of considerable research on which each of the VMs executes . For execution effi
and development efforts , many of the popular operating 30 ciency , the virtualization layer attempts to allow VMs to
systems are designed primarily for execution on a single directly execute non - privileged instructions and to directly
computer system . In many cases , it is difficult to move access non - privileged registers and memory . However ,
application programs , in real time , between the different when the guest operating system within a VM accesses
computer systems of a distributed computer system for virtual privileged instructions , virtual privileged registers ,
high - availability , fault - tolerance , and load balancing pur- 35 and virtual privileged memory through the virtualization
poses . The problems are even greater in heterogeneous layer 504 , the accesses result in execution of virtualization
distributed computer systems which include different types layer code to simulate or emulate the privileged devices . The
of hardware and devices running different types of operating virtualization layer additionally includes a kernel module
systems . Operating systems continue to evolve , as a result of 520 that manages memory , communications , and data - stor
which certain older application programs and other compu- 40 age machine devices on behalf of executing VMs (“ VM
tational entities may be incompatible with more recent kernel ”) . The VM kernel , for example , maintains shadow
versions of operating systems for which they are targeted , page tables on each VM so that hardware - level virtual
creating compatibility issues that are particularly difficult to memory facilities can be used to process memory accesses .
manage in large distributed systems . The VM kernel additionally includes routines that imple

For all of these reasons , a higher level of abstraction , 45 ment virtual communications and data - storage devices as
referred to as the “ virtual machine , ” (“ VM ”) has been well as device drivers that directly control the operation of
developed and evolved to further abstract computer hard underlying hardware communications and data - storage
ware in order to address many difficulties and challenges devices . Similarly , the VM kernel virtualizes various other
associated with traditional computing systems , including the types of I / O devices , including keyboards , optical - disk
compatibility issues discussed above . FIGS . 5A - B show two 50 drives , and other such devices . The virtualization layer 504
types of VM and virtual - machine execution environments . essentially schedules execution of VMs much like an oper
FIGS . 5A - B use the same illustration conventions as used in ating system schedules execution of application programs ,
FIG . 4. FIG . 5A shows a first type of virtualization . The so that the VMs each execute within a complete and fully
computer system 500 in FIG . 5A includes the same hardware functional virtual hardware layer .
layer 502 as the hardware layer 402 shown in FIG . 4. 55 FIG . 5B shows a second type of virtualization . In FIG . 5B ,
However , rather than providing an operating system layer the computer system 540 includes the same hardware layer
directly above the hardware layer , as in FIG . 4 , the virtual 542 and operating system layer 544 as the hardware layer
ized computing environment shown in FIG . 5A features a 402 and the operating system layer 404 shown in FIG . 4 .
virtualization layer 504 that interfaces through a virtualiza Several application programs 546 and 548 are shown run
tion - layer / hardware - layer interface 506 , equivalent to inter- 60 ning in the execution environment provided by the operating
face 416 in FIG . 4 , to the hardware . The virtualization layer system 544. In addition , a virtualization layer 550 is also
504 provides a hardware - like interface to a number of VMs , provided , in computer 540 , but , unlike the virtualization
such as VM 510 , in a virtual - machine layer 511 executing layer 504 discussed with reference to FIG . 5A , virtualization
above the virtualization layer 504. Each VM includes one or layer 550 is layered above the operating system 544 , referred
more application programs or other higher - level computa- 65 to as the " host OS , ” and uses the operating system interface
tional entities packaged together with an operating system , to access operating - system - provided functionality as well as
referred as a “ guest operating system , ” such as application the hardware . The virtualization layer 550 comprises pri

US 10,572,329 B2
9 10

marily a VMM and a hardware - like interface 552 , similar to application can thus be digitally encoded as one or more files
hardware - like interface 508 in FIG . 5A . The hardware - layer within an OVF package that can be transmitted , distributed ,
interface 552 , equivalent to interface 416 in FIG . 4 , provides and loaded using well - known tools for transmitting , distrib
an execution environment for a number of VMs 556-558 , uting , and loading files . A virtual appliance is a software
each including one or more application programs or other 5 service that is delivered as a complete software stack
higher - level computational entities packaged together with a installed within one or more VMs that is encoded within an
guest operating system . OVF package .

In FIGS . 5A - 5B , the layers are somewhat simplified for The advent of VMs and virtual environments has allevi
clarity of illustration . For example , portions of the virtual ated many of the difficulties and challenges associated with
ization layer 550 may reside within the host - operating- 10 traditional general - purpose computing . Machine and oper
system kernel , such as a specialized driver incorporated into ating - system dependencies can be significantly reduced or
the host operating system to facilitate hardware access by entirely eliminated by packaging applications and operating
the virtualization layer . systems together as VMs and virtual appliances that execute

It should be noted that virtual hardware layers , virtual within virtual environments provided by virtualization lay
ization layers , and guest operating systems are all physical 15 ers running on many different types of computer hardware .
entities that are implemented by computer instructions A next level of abstraction , referred to as virtual data centers
stored in physical data - storage devices , including electronic or virtual infrastructure , provide a data - center interface to
memories , mass - storage devices , optical disks , magnetic virtual data centers computationally constructed within
disks , and other such devices . The term “ virtual ” does not , physical data centers .
in any way , imply that virtual hardware layers , virtualization 20 FIG . 7 shows virtual data centers provided as an abstrac
layers , and guest operating systems are abstract or intan tion of underlying physical - data - center hardware compo
gible . Virtual hardware layers , virtualization layers , and nents . In FIG . 7 , a physical data center 702 is shown below
guest operating systems execute on physical processors of a virtual - interface plane 704. The physical data center con
physical computer systems and control operation of the sists of a virtual - data - center management server 706 and any
physical computer systems , including operations that alter 25 of various different computers , such as PCs 708 , on which
the physical states of physical devices , including electronic a virtual - data - center management interface may be dis
memories and mass - storage devices . They are as physical played to system administrators and other users . The physi
and tangible as any other component of a computer since , cal data center additionally includes generally large numbers
such as power supplies , controllers , processors , busses , and of server computers , such as server computer 710 , that are
data - storage devices . 30 coupled together by local area networks , such as local area

A VM or virtual application , described below , is encap network 712 that directly interconnects server computer 710
sulated within a data package for transmission , distribution , and 714-720 and a mass - storage array 722. The physical
and loading into a virtual - execution environment . One pub data center shown in FIG . 7 includes three local area
lic standard for virtual - machine encapsulation is referred to networks 712 , 724 , and 726 that each directly interconnects
as the “ open virtualization format " (" OVF ”) . The OVF 35 a bank of eight servers and a mass - storage array . The
standard specifies a format for digitally encoding a VM individual server computers , such as server computer 710 ,
within one or more data files . FIG . 6 shows an OVF package . each includes a virtualization layer and runs multiple VMs .
An OVF package 602 includes an OVF descriptor 604 , an Different physical data centers may include many different
OVF manifest 606 , an OVF certificate 608 , one or more types of computers , networks , data - storage systems and
disk - image files 610-611 , and one or more device files 40 devices connected according to many different types of
612-614 . The OVF package can be encoded and stored as a connection topologies . The virtual - interface plane 704 , a
single file or as a set of files . The OVF descriptor 604 is an logical abstraction layer shown by a plane in FIG . 7 ,
XML document 620 that includes a hierarchical set of abstracts the physical data center to a virtual data center
elements , each demarcated by a beginning tag and an ending comprising one or more device pools , such as device pools
tag . The outermost , or highest - level , element is the envelope 45 730-732 , one or more virtual data stores , such as virtual data
element , demarcated by tags 622 and 623. The next - level stores 734-736 , and one or more virtual networks . In certain
element includes a reference element 626 that includes implementations , the device pools abstract banks of physical
references to all files that are part of the OVF package , a disk servers directly interconnected by a local area network .
section 628 that contains meta information about all of the The virtual - data - center management interface allows pro
virtual disks included in the OVF package , a networks 50 visioning and launching of VMs with respect to device
section 630 that includes meta information about all of the pools , virtual data stores , and virtual networks , so that
logical networks included in the OVF package , and a virtual - data - center administrators need not be concerned
collection of virtual - machine configurations 632 which fur with the identities of physical - data - center components used
ther includes hardware descriptions of each VM 634. There to execute particular VMs . Furthermore , the virtual - data
are many additional hierarchical levels and elements within 55 center management server 706 includes functionality to
a typical OVF descriptor . The OVF descriptor is thus a migrate running VMs from one physical server to another in
self - describing , XML file that describes the contents of an order to optimally or near optimally manage device alloca
OVF package . The OVF manifest 606 is a list of crypto tion , provides fault tolerance , and high availability by
graphic - hash - function - generated digests 636 of the entire migrating VMs to most effectively utilize underlying physi
OVF package and of the various components of the OVF 60 cal hardware devices , to replace VMs disabled by physical
package . The OVF certificate 608 is an authentication cer hardware problems and failures , and to ensure that multiple
tificate 640 that includes a digest of the manifest and that is VMs supporting a high - availability virtual appliance are
cryptographically signed . Disk image files , such as disk executing on multiple physical computer systems so that the
image file 610 , are digital encodings of the contents of services provided by the virtual appliance are continuously
virtual disks and device files 612 are digitally encoded 65 accessible , even when one of the multiple virtual appliances
content , such as operating - system images . A VM or a becomes compute bound , data - access bound , suspends
collection of VMs encapsulated together within a virtual execution , or fails . Thus , the virtual data center layer of

US 10,572,329 B2
11 12

abstraction provides a virtual - data - center abstraction of agents are primarily responsible for offloading certain of the
physical data centers to simplify provisioning , launching , virtual - data - center management - server functions specific to
and maintenance of VMs and virtual appliances as well as to a particular physical server to that physical server . The
provide high - level , distributed functionalities that involve virtual - data - center agents relay and enforce device alloca
pooling the devices of individual physical servers and 5 tions made by the VDC management server VM 810 , relay
migrating VMs among physical servers to achieve load virtual - machine provisioning and configuration - change balancing , fault tolerance , and high availability . commands to host agents , monitor and collect performance FIG . 8 shows virtual - machine components of a virtual statistics , alarms , and events communicated to the virtual data - center management server and physical servers of a data - center agents by the local host agents through the physical data center above which a virtual - data - center inter- 10 interface API , and to carry out other , similar virtual - data face is provided by the virtual - data - center management
server . The virtual - data - center management server 802 and management tasks .
a virtual - data - center database 804 comprise the physical The virtual - data - center abstraction provides a convenient

and efficient level of abstraction for exposing the computa components of the management component of the virtual
data center . The virtual - data - center management server 802 15 tional devices of a cloud - computing facility to cloud - com
includes a hardware layer 806 and virtualization layer 808 , puting - infrastructure users . A cloud - director management
and runs a virtual - data - center management - server VM 810 server exposes virtual devices of a cloud - computing facility
above the virtualization layer . Although shown as a single to cloud - computing - infrastructure users . In addition , the
server in FIG . 8 , the virtual - data - center management server cloud director introduces a multi - tenancy layer of abstrac
(“ VDC management server ”) may include two or more 20 tion , which partitions VDCs into tenant - associated VDCs
physical server computers that support multiple VDC - man that can each be allocated to a particular individual tenant or
agement - server virtual appliances . The virtual - data - center tenant organization , both referred to as a “ tenant . ” A given
management - server VM 810 includes a management - inter tenant be provided one or more tenant - associated VDCs
face component 812 , distributed services 814 , core services by a cloud director managing the multi - tenancy layer of
816 , and a host - management interface 818. The host - man- 25 abstraction within a cloud - computing facility . The cloud
agement interface 818 is accessed from any of various services interface (308 in FIG . 3) exposes a virtual - data
computers , such as the PC 708 shown in FIG . 7. The center management interface that abstracts the physical data host - management interface 818 allows the virtual - data - cen center .
ter administrator to configure a virtual data center , provision FIG . 9 shows a cloud - director level of abstraction . In FIG .
VMs , collect statistics and view log files for the virtual data 30 9 , three different physical data centers 902-904 are shown center , and to carry out other , similar management tasks . The below planes representing the cloud - director layer of host - management interface 818 interfaces to virtual - data abstraction 906-908 . Above the planes representing the center agents 824 , 825 , and 826 that execute as VMs within
each of the physical servers of the physical data center that cloud - director level of abstraction , multi - tenant virtual data
is abstracted to a virtual data center by the VDC manage- 35 centers 910-912 are shown . The devices of these multi
ment server . tenant virtual data centers are securely partitioned in order to

The distributed services 814 include a distributed - device provide secure virtual data centers to multiple tenants , or
scheduler that assigns VMs to execute within particular cloud - services - accessing organizations . For example , a
physical servers and that migrates VMs in order to most cloud - services - provider virtual data center 910 is partitioned
effectively make use of computational bandwidths , data- 40 into four different tenant - associated virtual - data centers
storage capacities , and network capacities of the physical within a multi - tenant virtual data center for four different
data center . The distributed services 814 further include a tenants 916-919 . Each multi - tenant virtual data center is
high - availability service that replicates and migrates VMs in managed by a cloud director comprising one or more
order to ensure that VMs continue to execute despite prob cloud - director servers 920-922 and associated cloud - direc
lems and failures experienced by physical hardware com- 45 tor databases 924-926 . Each cloud - director server or servers
ponents . The distributed services 814 also include a live runs a cloud - director virtual appliance 930 that includes a
virtual - machine migration service that temporarily halts cloud - director management interface 932 , a set of cloud
execution of a VM , encapsulates the VM in an OVF pack director services 934 , and a virtual - data - center management
age , transmits the OVF package to a different physical server interface 936. The cloud - director services include an
server , and restarts the VM on the different physical server 50 interface and tools for provisioning multi - tenant virtual data
from a virtual - machine state recorded when execution of the center virtual data centers on behalf of tenants , tools and
VM was halted . The distributed services 814 also include a interfaces for configuring and managing tenant organiza
distributed backup service that provides centralized virtual tions , tools and services for organization of virtual data
machine backup and restore . centers and tenant - associated virtual data centers within the

The core services 816 provided by the VDC management 55 multi - tenant virtual data center , services associated with
server VM 810 include host configuration , virtual - machine template and media catalogs , and provisioning of virtual
configuration , virtual - machine provisioning , generation of ization networks from a network pool . Templates are VMs
virtual - data - center alarms and events , ongoing event logging that each contains an OS and / or one or more VMs containing
and statistics collection , a task scheduler , and a device applications . A template may include much of the detailed
management module . Each physical server 820-822 also 60 contents of VMs and virtual appliances that are encoded
includes a host - agent VM 828-830 through which the vir within OVF packages , so that the task of configuring a VM
tualization layer can be accessed via a virtual - infrastructure or virtual appliance is significantly simplified , requiring only
application programming interface (" API ") . This interface deployment of one OVF package . These templates are stored
allows a remote administrator or user to manage an indi in catalogs within a tenant's virtual - data center . These
vidual server through the infrastructure API . The virtual- 65 catalogs are used for developing and staging new virtual
data - center agents 824-826 access virtualization - layer server appliances and published catalogs are used for sharing
information through the host agents . The virtual - data - center templates in virtual appliances across organizations . Cata

US 10,572,329 B2
13 14

logs may include OS images and other information relevant OSL virtualization may be implemented in a physical data
to construction , distribution , and provisioning of virtual center 1102. In FIG . 11 , the physical data center 1102 is
appliances . shown below a virtual - interface plane 1104. The physical

Considering FIGS . 7 and 9 , the VDC - server and cloud data center 1102 consists of a virtual - data - center manage
director layers of abstraction can be seen , as discussed 5 ment server 1106 and any of various different computers ,
above , to facilitate employment of the virtual - data - center such as PCs 1108 , on which a virtual - data - center manage
concept within private and public clouds . However , this ment interface may be displayed to system administrators
level of abstraction does not fully facilitate aggregation of and other users . The physical data center 1100 additionally
single - tenant and multi - tenant virtual data centers into het includes a number of server computers , such as server
erogeneous or homogeneous aggregations of cloud - comput- 10 computers 1110-1117 , that are coupled together by local area
ing facilities . networks , such as local area network 1118 , that directly

FIG . 10 shows virtual - cloud - connector nodes (“ VCC interconnects server computers 1110-1117 and a mass - stor
nodes ”) and a VCC server , components of a distributed age array 1120. The physical data center 1102 includes three
system that provides multi - cloud aggregation and that local area networks that each directly interconnects a bank
includes a cloud - connector server and cloud - connector 15 of eight server computers and a mass - storage array . Certain
nodes that cooperate to provide services that are distributed server computers have a virtualization layer that run mul
across multiple clouds . VMware vCloudTM VCC servers and tiple VMs 1122. For example , server computer 1113 has a
nodes are one example of VCC server and nodes . In FIG . 10 , virtualization layer that is used to run VM 1124. Certain
seven different cloud - computing facilities are shown 1002 VMs and server computers may be used to host a number of
1008. Cloud - computing facility 1002 is a private multi- 20 containers . A server computer 1126 has a hardware layer
tenant cloud with a cloud director 1010 that interfaces to a 1128 and an operating system layer 1130 that is shared by a
VDC management server 1012 to provide a multi - tenant number of containers 1132-1134 via an OSL virtualization
private cloud comprising multiple tenant - associated virtual layer 1136 as described in greater detail below with refer
data centers . The remaining cloud - computing facilities ence to FIG . 12. Alternatively , the VM 1124 has a guest
1003-1008 may be either public or private cloud - computing 25 operating system 1140 and an OSL virtualization layer 1142 .
facilities and may be single - tenant virtual data centers , such The guest operating system 1140 is shared by a number of
as virtual data centers 1003 and 1006 , multi - tenant virtual containers 1144-1146 via the OSL virtualization layer 1142
data centers , such as multi - tenant virtual data centers 1004 as described in greater detail below with reference to FIG .
and 1007-1008 , or any of various different kinds of third 13 .
party cloud - services facilities , such as third - party cloud- 30 While a traditional virtualization layer can simulate the
services facility 1005. An additional component , the VCC hardware interface expected by any of many different oper
server 1014 , acting as a controller is included in the private ating systems , OSL virtualization essentially provides a
cloud - computing facility 1002 and interfaces to a VCC node secure partition of the execution environment provided by a
1016 that runs as a virtual appliance within the cloud particular operating system . As one example , OSL virtual
director 1010. A VCC server may also run as a virtual 35 ization provides a file system to each container , but the file
appliance within a VDC management server that manages a system provided to the container is essentially a view of a
single - tenant private cloud . The VCC server 1014 addition partition of the general file system provided by the under
ally interfaces , through the Internet , to VCC node virtual lying operating system of the host . In essence , OSL virtu
appliances executing within remote VDC management serv alization uses operating - system features , such as namespace
ers , remote cloud directors , or within the third - party cloud 40 isolation , to isolate each container from the other containers
services 1018-1023 . The VCC server provides a VCC server running on the same host . In other words , namespace
interface that can be displayed on a local or remote terminal , isolation ensures that each application is executed within the
PC , or other computer system 1026 to allow a cloud execution environment provided by a container to be iso
aggregation administrator or other user to access VCC lated from applications executing within the execution envi
server - provided aggregate - cloud distributed services . In 45 ronments provided by the other containers . A container
general , the cloud - computing facilities that together form a cannot access files not included the container's namespace
multiple - cloud - computing aggregation through distributed and cannot interact with applications running in other con
services provided by the VCC server and VCC nodes are tainers . As a result , a container can be booted up much faster
geographically and operationally distinct . than a VM , because the container uses operating - system

Containers and Containers Supported by Virtualization 50 kernel features that are already available and functioning
Layers within the host . Furthermore , the containers share compu

As mentioned above , while the virtual - machine - based tational bandwidth , memory , network bandwidth , and other
virtualization layers , described in the previous subsection , computational resources provided by the operating system ,
have received widespread adoption and use in a variety of without the overhead associated with computational
different environments , from personal computers to enor- 55 resources allocated to VMs and virtualization layers . Again ,
mous distributed computing systems , traditional virtualiza however , OSL virtualization does not provide many desir
tion technologies are associated with computational over able features of traditional virtualization . As mentioned
heads . While these computational overheads have steadily above , OSL virtualization does not provide a way to run
decreased , over the years , and often represent ten percent or different types of operating systems for different groups of
less of the total computational bandwidth consumed by an 60 containers within the same host and OSL - virtualization does
application running above a guest operating system in a not provide for live migration of containers between hosts ,
virtualized environment , traditional virtualization technolo high - availability functionality , distributed resource schedul
gies nonetheless involve computational costs in return for ing , and other computational functionality provided by
the power and flexibility that they provide . traditional virtualization technologies .

Another approach to virtualization , as also mentioned 65 FIG . 12 shows an example server computer used to host
above , is referred to as operating - system - level virtualization three containers . As discussed above with reference to FIG .
(“ OSL virtualization ”) . FIG . 11 shows two ways in which 4 , an operating system layer 404 runs above the hardware

US 10,572,329 B2
15 16

402 of the host computer . The operating system provides an Methods and Systems to Identify Anomalous
interface , for higher - level computational entities , that Behaving Server Computers of a Distributed
includes a system - call interface 428 and the non - privileged Computing System
instructions , memory addresses , and registers 426 provided
by the hardware layer 402. However , unlike in FIG . 4 , in 5 FIG . 14 shows an example of logging event messages in
which applications run directly above the operating system event logs . In FIG . 14 , a number of computer systems
layer 404 , OSL virtualization involves an OSL virtualization 1402-1406 within a distributed computing system are linked
layer 1202 that provides operating - system interfaces 1204 together by an electronic communications medium 1408 and
1206 to each of the containers 1208-1210 . The containers , in additionally linked through a communications bridge / router
turn , provide an execution environment for an application 10 1410 to an administration computer system 1412 that

includes an administrative console 1414. As indicated by that runs within the execution environment provided by curved arrows , such as curved arrow 1416 , multiple com container 1308. The container can be thought of as a ponents within each of the discrete computer systems 1402 partition of the resources generally available to higher - level 1406 as well as the communications bridge / router 1410 computational entities through the operating system inter 15 generate event messages that are transmitted to the admin
face 430 . istration computer 1412. Event messages may be generated

FIG . 13 shows an approach to implementing the contain by any event source . Event sources may be , but are not
ers on a VM . FIG . 13 shows a host computer similar to that limited to , application programs , operating systems , VMs ,
shown in FIG . 5A , discussed above . The host computer guest operating systems , containers , network devices ,
includes a hardware layer 502 and a virtualization layer 504 20 machine codes , event channels , and other computer pro
that provides a virtual hardware interface 508 to a guest grams or processes running on the computer systems 1402
operating system 1302. Unlike in FIG . 5A , the guest oper 1406 , the bridge / router 1410 and any other components of
ating system interfaces to an OSL - virtualization layer 1304 the distributed computing system . Event messages may be
that provides container execution environments 1306-1308 relatively directly transmitted from a component within a
to multiple application programs . 25 discrete computer system to the administration computer

Note that , although only a single guest operating system 1412 or may be collected at various hierarchical levels
and OSL virtualization layer are shown in FIG . 13 , a single within a discrete computer system and then forwarded from
virtualized host system can run multiple different guest an event - message - collecting entity within the discrete com
operating systems within multiple VMs , each of which puter system to the administration computer 1412. The
supports one or more OSL - virtualization containers . A vir- 30 administration computer 1412 collects and may store the
tualized , distributed computing system that uses guest oper received event messages in a data - storage device or appli

ance 1418 as event logs 1420-1424 . Rectangles , such as ating systems running within VMs to support OSL - virtual rectangle 1426 , represent individual event messages . For ization layers to provide containers for running applications
is referred to , in the following discussion , as a “ hybrid 35 messages generated within the computer system 1402 . example , event log 1420 may comprise a list of event
virtualized distributed computing system . ” Methods described below enable an administrator , or other Running containers above a guest operating system within user , to detect anomalous event sources 1428 within a a VM provides advantages of traditional virtualization in population of event sources .
addition to the advantages of OSL virtualization . Containers FIG . 15 shows an example of a source code 1502 of an
can be quickly booted in order to provide additional execu- 40 application program , an operating system , a VM , a guest
tion environments and associated resources for additional operating system , or any other computer program or
application instances . The resources available to the guest machine code . The source code 1502 is just one example of
operating system are efficiently partitioned among the con an event source that generates event messages . Rectangles ,
tainers provided by the OSL - virtualization layer 1304 in such as rectangle 1504 , represent a definition , a comment , a
FIG . 13 , because there is almost no additional computational 45 statement , or a computer instruction that expresses some
overhead associated with container - based partitioning of action to be executed by a computer . The source code 1502
computational resources . However , many of the powerful includes log write instructions that generate event messages
and flexible features of the traditional virtualization tech when certain events predetermined by the developer occur
nology can be applied to VMs in which containers run above during execution of the source code 1502. For example ,
guest operating systems , including live migration from one 50 source code 1502 includes an example log write instruction 1506 that when executed generates an “ event message 1 ” host to another , various types of high - availability and dis represented by rectangle 1508 , and a second example log tributed resource scheduling , and other such features . Con write instruction 1510 that when executed generates “ event tainers provide share - based allocation of computational message 2 " represented by rectangle 1512. In the example of resources to groups of applications with guaranteed isolation 55 FIG . 15 , the log write instruction 1508 is embedded within of applications in one container from applications in the a set of computer instructions that are repeatedly executed in remaining containers executing above a guest operating a loop 1514. As shown in FIG . 15 , the same event message system . Moreover , resource allocation can be modified at 1 is repeatedly generated 1516. The same type of log write
run time between containers . The traditional virtualization instructions may also be located in different places through
layer provides for flexible and scaling over large numbers of 60 out the source code , which in turns creates repeats of
hosts within large distributed computing systems and a essentially the same type of event message in the event log .
simple approach to operating - system upgrades and patches . In FIG . 15 , the notation “ log.write () ” is a general
Thus , the use of OSL virtualization above traditional virtu representation of a log write instruction . In practice , the
alization in a hybrid virtualized distributed computing sys form of the log write instruction varies for different pro
tem , as shown in FIG . 13 , provides many of the advantages 65 gramming languages . In general , event messages are rela
of both a traditional virtualization layer and the advantages tively cryptic , including generally only one or two natural
of OSL virtualization . language words and / or phrases as well as various types of

US 10,572,329 B2
17 18

text strings that represent file names , path names , and , types and number of each event type may be recorded in a
perhaps various alphanumeric parameters . In practice , a log meta - data structure referred to in the following description
write instruction may also include the name of the source of as an event - type log .
the event message (e.g. , name of the application program or In a distributed computer system , a set of event sources
operating system and version) and the name of the event log 5 may be running simultaneously on a number of different
to which the event message is written . Log write instructions devices or virtual resources of a distributed computing may be written in a source code by the developer of an system as described above . An event source may be an application program or operating system in order to record operating system , application program , VM , or machine events that occur while an operating system or application code . For example , the event sources may be copies of the program is running . For example , a developer may include 10
log write instructions that are executed when certain events same operating system running on a number of different
occur , such as failures , logins , or errors . server computers , may be copies of the same guest operating

FIG . 16 shows an example of a log write instruction 1602 . system running the same applications on a number of
In the example of FIG . 16 , the log write instruction 1602 different server computers , or may be copies of the same
includes arguments identified with “ $. ” For example , the log 15 application program running on a number of different server
write instruction 1602 includes a time - stamp argument computers . After these event sources have been running over
1604 , a thread number argument 1605 , and an internet an observation time window , AT , it is expected that the log
protocol (" IP ") address argument 1606. The example log files generated by the event sources be approximately the
write instruction 1602 also includes text strings and natural same . In other words , it is expected that a plurality of event
language words and phrases that identify the type of event 20 sources would generate similar event logs . In particular ,
that triggered the log write instruction , such as “ Repair these event logs should have approximately the same fre
session " 1608. The text strings between brackets “ [] ” quency of event types generated over the observation time
represent file - system paths , such as path 1610. When the log window AT . The observation time window AT may be a
write instruction 1602 is executed , parameters are assigned historical window of time or may be a run - time window . An
to the arguments and the text strings and natural - language 25 event log that is different from a plurality of event logs
words and phrases are stored as an event message in an event generated by event sources may be used to identify the event
log . source as an event source outlier . Methods described below

FIG . 17 shows an example of an event message 1702 are directed to identifying which event sources of a set of
generated by the log write instruction 1602. The arguments event sources are outliers . A component of a distributed
of the log write instruction 1602 may be assigned numerical 30 computing system that runs an event source outlier may be
parameters that are recorded in the event message 1702 at identified for management purposes , such as , but not limited
the time the event message is written to the event log . For to , identified for troubleshooting , identified as having prob
example , the time stamp 1604 , thread and IP address lems or issues , or may be identified for monitoring in case
1606 of the log write instruction 1602 are assigned corre of future problems .
sponding numerical parameters 1704-1706 in the event 35 FIG . 19A shows an example set of M event sources and
message 1702. The time stamp 1704 , in particular , repre M corresponding distributed computing system compo
sents the date and time the event message is generated . The nents , where M denotes the number of event sources and
text strings and natural - language words and phrases of the corresponding components of a distributed computing sys
log write instruction 1602 also appear unchanged in the tem . The event sources 1901-1904 are identified as “ event
event message 1702 and may be used to identify the type of 40 source 1 , ” “ event source 2 , ” “ event source 3 , ” and “ event
event that occurred during execution of the application source M. ” The event sources 1 , 2 , 3 , M may represent
program or operating system . M copies of the same application program , same operating
As event messages are received from various event system , VM , or guest operating system running on the

sources , the event messages are stored in the order in which corresponding components 1911-1914 . An ellipsis , such as
the event messages are received . FIG . 18 shows a small , 45 ellipsis 1916 , represents event sources and corresponding
eight - entry portion of an event log 1802. In FIG . 18 , each components between event source 3 and event source M.
rectangular cell , such as rectangular cell 1804 , of the portion FIG . 19B shows M event logs generated by the M event
of the event log 1802 represents a single stored event sources as described above with reference to FIGS . 11-15 . In
message . For example , event message 1802 includes a short FIG . 19B , the event sources 1901-1904 generate corre
natural - language phrase 1806 , date 1808 and time 1810 50 sponding event logs 1921-1924 . The event logs 1921-1924
numerical parameters , as well as , a numerical parameter represent the event messages generated by the correspond
1812 that appears to identify a particular host computer . ing event sources 1901-1904 in an observation time window

The text strings and natural - language words and phrases AT . For example , rectangles 1926-1928 represent three
of each event message describe a particular type of event different event messages " event message 5 , ” “ event message
called an “ event type . ” For example , the text strings and 55 2 , ” and “ event message 1 ” generated by event source 1 1901
natural language words and phrases , called " non - parametric within the observation time window AT . Because the event
tokens , ” of the event message 1702 shown in FIG . 17 sources 1 , 2 , 3 , ... , Mare similar , the corresponding event
identify the event type . As explained above , each time the logs are expected to generate event messages in which each
log write instruction 1602 of FIG . 16 is executed , only the event type occurs with approximately the same frequency in
parameter values are changed , such as the time and date . The 60 each of the event logs over the observation time window AT .
non - variable text strings and natural - language words and An event log that is different from the other event logs may
phrases (i.e. , non - parametric tokens) are the same for each be identified for management purposes , such as identified as
event message generated by the log write instruction 1602 having a problem at the component used to host the event
and stored in the event log . Event - type analysis may be used source . However , the event logs may each have many
to identify the event type of each event message based on the 65 thousands or even millions of event messages generated
non - parametric tokens , and event messages of the same within the observation time window AT . Attempts to com
event type may be counted . A record of the different event pare event logs in order to identify which of the event logs

US 10,572,329 B2
19 20

may be different from the others event logs would be an repair session event messages . In FIG . 21 , the parametric
extremely costly and time consuming task to carry out valued tokens in the event message following initial token
manually . recognition are indicated by shading . For example , initial

Methods collect the event logs generated by the event token recognition determines that the first token 2106 is a
sources within the observation time window AT . Event - type 5 date and the second token 2107 is a time . The tokens
analysis is performed on each of the event logs in order to identified as parameters are identified by shaded rectangles ,
identify the different event types . The frequency of each such as shaded rectangle 2110 of the date 2106 and shaded event type is determined by counting the number of times rectangle of 2112 of the time 2107. The parametric - valued each event type occurs within the observation time window tokens are discarded leaving the non - parametric text strings , AT . The different event types and associated frequencies for 10
each event source are recorded in an event - type log . natural language words and phrases , punctuation , parenthe

ses , and brackets . FIG . 20 shows examples of an event - type log generated
from the event log 1921 of the event source 1 1901. In block Various types of symbolically encoded values , including
2002 , event - type analysis is used to determine the event type dates , times , machine addresses , network addresses , and
of the event message in the event log 1921. Event type 15 other such parameters can be recognized using regular
analysis determines the non - parametric tokens of each event expressions or programmatically . For example , there are
message . Event messages having the same non - parametric numerous ways to represent dates . A program or a set of
tokens may be regarded as being of the same event type . regular expressions can be used to recognize symbolically
Event message 5 1926 belongs to an event type denoted by encoded dates in any of the common formats . It is possible
“ event type 5 , ” event message 2 1927 belongs to an event 20 that the token - recognition process may incorrectly deter
type denoted by “ event message 2 , " and event message 1 mine that an arbitrary alphanumeric string represents some
1928 belongs to an event type denoted by “ event message type of symbolically encoded parameter when , in fact , the
1. ” In block 2004 , the frequency of each event type is alphanumeric string only coincidentally has a form that can
determined by counting the number of times event messages be interpreted to be a parameter . The currently described
of the same event type occur with the same observation time 25 methods and systems do not depend on absolute precision
window AT . The different event types and associated fre and reliability of the event - message - preparation process .
quencies are recorded in an event - type log 2006. Column Occasional misinterpretations generally do not result in
2008 lists the event types determined in block 2002. Column mistyping of event messages and , in the rare circumstances
2010 list the frequencies of each event type determined in in which event messages may be mistyped , the mistyping is
block 2004. For the sake of simplicity , in this example the 30 most often discovered during subsequent processing .
event messages belong to one of six different event types In the implementation shown in FIG . 21 , the event
with event type 1 generated five times , event type 2 gener message 1702 is subject to textualization in which an
ated 7 times and so on within the observation time window additional token - recognition step of the non - parametric por
AT . tions of the event message is performed in order to remove

Event - type analysis introduced in block 2002 discards 35 punctuation and separation symbols , such as parentheses
punctuation , parentheses , brackets , and numerical param and brackets , commas , and dashes that occur as separate
eters of an event message . In other words , event - type tokens or that occur at the leading and trailing extremities of
analysis is performed to reduce an event message of interest previously recognized non - parametric tokens , as shown by
to text strings and natural - language words and phrases (i.e. , underlining in the retokenized event message 2114 in FIG .
non - parametric tokens) . 40 21. For example , brackets and a coma 2118 are underlined .

FIG . 21 shows an example of event - type analysis per The punctuation , parentheses , and brackets are discarded
formed on the event message 1702 shown in FIG . 17. The leaving a textualized event message of interest 2120 that
event message 1702 is first tokenized by considering the comprises only the non - parametric text strings and natural
event message as comprising tokens separated by non language words and phrases of the original event message
printed characters , referred to as “ white space . ” In FIG . 21 , 45 1702 .
this initial tokenization of the event message 1702 is illus FIG . 22 shows the event sources 1901-1904 and associ
trated by underlining of the printed or visible characters . For ated event - type logs 2006 and 2201-2203 , respectively . In
example , the date 2102 , time 2103 , and thread 2104 at the the example of FIG . 22 , event - type logs 2006 , 2201 , and
beginning of the text contents of the event message 2102 , 2203 have similar frequencies for each of the six event
following initial tokenization , become a first token 2106 , a 50 types . However , the frequencies of the event types of the
second token 2107 , and a third token 2108 , as indicated by event - type log 2202 different from the frequencies of the
underlining event - type logs 2006 , 2201 , and 2203 , which indicates that
Next , a token - recognition pass is made to recognize any there may be a problem or future problem with the compo

of the initial tokens as various types of parameters . Param nent 1913 that host the event source 1903 in FIG . 19 .
eters are tokens or message fields that are likely to be highly 55 Methods described below are directed to determining the
variable over a set of messages of a particular type . Date / degree of similarity between the event sources based on the
time stamps , for example , are nearly unique for each event event - type logs .
message , with two event messages having an identical In one implementation , the degree to which event - type
date / time stamp only in the case that the two event messages logs of a set of event sources are similar , or alternatively
are generated within less than a second of one another . 60 dissimilar , from one another , the sets of frequencies of the
Additional examples of parameters include global unique different event types of each event - type log may be treated
identifiers (“ GUIDs ”) , hypertext transfer protocol status as N - dimensional vectors in an N - dimensional vector space ,
values (“ HTTP statuses ”) , universal resource locators where N is the number of different event types of the
(“ URLs ”) , network addresses , and other types of common event - type logs of the set of event sources . Consider a set of
information entities that identify variable aspects of a type of 65 M event sources . Each event source has an associated
event . By contrast , the phrase “ Repair session ” in event event - type log of N different event types generated over the
message 1702 likely occurs within each of a large number of observation time window AT , as described above with

N.m

EIN , f

US 10,572,329 B2
21 22

reference to FIG . 22. Let an N - dimensional event - type On the other hand , because the event - type frequency vectors
frequency vector of an m - th event source , Esme be repre Vand V , are nearly orthogonal , the similarity Sim (1,1) is
sented by : close to zero .

V = ET , ... , ET ,, ... , ET In other implementations , the similarity between pairs of (1) 5 event sources may be determined by measuring a difference
where between event - type probability distributions of two event
subscript m identifies the m - th event source in the set of sources . Event - type probability distributions may be deter

M event sources m = 1 , . . . , M ; mined as follows . Consider again the m - th event source of ETn.m'is the frequency of the “ event type n ” generated by the set of M event sources described above with reference to
the m - th event source in the observation time window 10 Equation (I) in which each of the N event types occurs with
AT ; and an event - type frequency given by

subscript n is an event type index n = 1 , ... , N.
The sets of frequencies of the event types of the event ET ' , . . . , ETn (3)
sources 1901-1904 described above with reference to FIG . where ETn.m " is the frequency of the “ event type n ” gener
22 may be represented as 6 - dimensional vectors in a 6 - di- 15 ated by the m - th event source in the observation time mensional vector space as follows : V = [5,7,3,21,9,18] , V2 window AT . The probability of each event type may be [8,2,5,19,11,15] , Vz = [4,6,4,22,9,17] , and V [5,7,8,20,10 , calculated based on the frequency of each event type gen 17] . erated within the observation time window AT as follows :

The direction of event - type frequency vectors of event
sources may not be identical because the event sources may 20
be run on different components and may have different (4a)
usages , but the directions of the associated event - type fre
quency vectors are expected to be similar . The degree of
similarity between any two event - type frequency vectors (4b)
may be quantitatively determined using cosine similarity . 25 ????? , ? = ??? ;
The cosine similarity between any two event - type frequency
vectors V , and V of two corresponding event sources ,
and ESk , may be calculated as follows : Consider a second k - th event source in the set of M event

sources with event - type frequencies given by

Pm.nl where
ETTOT , m

N

nm
n = 1

Esm

30

ŽETLET n = 1
-COS

JT N

n = 1 n = 1

where
ETTOT ,

N

n = 1

(2) ETA , ... , ET , ... ETNX (5)

where ETnk is the frequency of the “ event type n ” generated
Simcs (m , k) = 1 - by the k - th event source in the same observation time

(ETÁ , m) (ETK) window AT . The probabilities of each event type generated
35 by the k - th event source may be calculated based on the

frequencies of each event type generated over the observa
tion time window AT as follows :

The similarity , Simcs (m , k) , is calculated for each pair of
event - type frequency vectors Vm and Vk , where m = 1 , ... ,
M , k = 2 , ... , M and k > m . The similarity Sims (m , k) ranges 40 ET (6a)
between 0 and 1 (i.e. , OsSimcs (m , k) sl) . When the similarity Okn
Sim s (m , k) equals 0 the event - type frequency vectors V ,
and Vk are regarded as dissimilar . When the similarity (6b)
Sim (m , k) equals 1 the event - type frequency vectors V m , and ETTOT , * = ETA
Vi are pointing in the same direction and may be regarded 45
as identical . The closer the value of the similarity Simcs (m ,
k) is to 0 the more dissimilar the event - type frequency The probabilities of the N event types of the m - th event
vectors Vm and Vk are to each other . The closer the value of source may be used to form a probability distribution
the similarity Sims (m , k) is to 1 the more similar the denoted by { Pm.n } n = 1 ̂ . The probabilities of the N event
event - type frequency vectors Vm and Vk are to each other . 50 types of the k - th event source may be used to form a

FIG . 23 shows an example of three event - type frequency probability distribution denoted by { Qk , n } n = 1
vectors Vi , Vj , and Vk represented by directional arrows FIG . 24 shows an example of determining an event - type
2301-2303 . The event - type frequency vectors Vi , V ;, and Vk log 2402 of the event source 1 1901 that includes event - type
emanate from an origin 2304 denoted by “ O. ” The event probabilities . The event - type log 2402 list the six event types
type frequency vectors Vi , Vj , and Vk represent sets of 55 2008 and the associated frequencies 2010 determined as
event - type frequencies of three corresponding event sources described above with reference to FIG . 20. In block 2406 ,
ES ;, ES ;, and ESE . In the example of FIG . 23 , the event - type the probabilities of each event type is calculated as described
frequency vectors V , and Vkpoint in approximately the same above with reference to Equations (4) and (6) . The event
general direction while the event - type frequency vector V ; type log 2402 includes column 2404 of probabilities
points in a direction that is nearly orthogonal to the direc- 60 determined for each of the event types . The probabilities
tions of the event - type frequency vectors V , and V Equation listed in column 2404 form the event - type probability dis
(2) may be used to calculate a similarity , Simes (ij) , between tribution of the event source 1 1901 .
the event - type frequency vectors V? and V , and calculate FIG . 25 shows the event sources 1901-1904 and plots of
similarity , Sim (, k) , between the event - type frequency associated probability distributions 2501-2504 . Horizontal
vectors V , and Vk . In the example of FIG . 23 , because the 65 axes , such as horizontal axis 2506 of probability distribution
event - type frequency vectors Vi , and Vk point in the same 2501 , represent the six different event types denoted by ET1 ,
general direction , the similarity Simcs (j , k) is close to one . ET2 , ET3 , ETA , ET5 , and ET .. Vertical axes , such as vertical

N

.

N

2
--COS

n = 1

N. N

n = n =

US 10,572,329 B2
23 24

axis 2508 of the probability distribution 2501 , represent of msM . For example , similarity matrix element Sim (2,3)
a range of probabilities . Bars represent the event - type prob 2602 represents the similarity calculated between event
ability of an event type . For example , bar 2510 represents sources ES , and ES3 . The similarity matrix elements Sim (m ,
the probability of the event type ETG occurring with the k) may be calculated for each pair of event sources using any
event source 1 1901. In the example of FIG . 25 , the 5 one of the similarities described above with reference to
event - type probability distributions 2501 , 2502 , and 2504 Equations (2) , (7) , (8) , and (9) . For example , similarity
appear similar while the event - type probability distribution matrix elements Sim (m , k) may represent cosine similarities
2503 appears dissimilar from the event - type probability Simcs (m , k) , the information divergence similarities Simp
distributions 2501 , 2502 , and 2504. Event - type logs 2006 , (m , k) , or Jenson - Shannon similarities Sim ; s { m , k) . Note that
2301 , and 2303 have similar frequencies for each of the six 10 because Sim (m , k) = Sim (k , m) the similarity matrix 2600 is
event types . However , the frequencies of the event types of a symmetric matrix with only the upper diagonal matrix
the event - type log 2302 differ from the frequencies of the elements represented . The diagonal elements are equal to
event - type logs 2006 , 2301 , and 2303 , which may be indi one because Sim (m , m) = 1 for all in .
cation of a problem or may be an indication of a future Hierarchical clustering analysis may be applied to the
problem with the component 1913 that host the event source 15 similarities in the similarity matrix 2600 using an agglom
1903. For example , the component 1913 may be identified erative approach and maximum or complete linkage crite
for troubling shooting or monitoring . rion in order to create a dendrogram of the event sources . A

In one implementation , the similarity between pairs of dendrogram is a branching tree diagram that represents a
event sources may be measured using the cosine similarity hierarchy of relationships of similarities between event
between the event - type probability distributions of the two 20 sources . The resulting dendrogram may then be used to form
event sources as follows : clusters of event sources .

FIG . 26B shows an example dendrogram 2604 con
structed from similarities of pairs of event sources . Vertical

(7) axis 1606 represents the range of similarity values between
Prmlenke 25 0 and 1 , where a similarity value of 1 represents identical

Simcs (m , k) = 1 event sources and a similarity value of 0 represents com
(Pn , m) 2 (On , k) pletely different or dissimilar event sources . The dendro

gram 2604 is a branching tree diagram in which the ends of
the dendrogram , called “ leaves , ” represent the source ele

In another implementation , the similarity between pairs of 30 ments . For example , leaves 2608-2610 represent three dif ferent event sources . The branches represent the similarities event sources may be measured by calculating an informa
tion divergence , or relative entropy , between the event - type between the event sources . For example , the branch 2612
probability distributions of the two event sources as follows : represents the similarity between the event sources 2608 and

2609 , which corresponds to a similarity value 2614 on the
35 similarity axis 2606. Branch 2616 represents the similarity

(8) between the event pair of event sources 2608 and 2609 and
Simp (m , k) = Prmlog the event source 2610 , which corresponds to the similarity

value 2618 on the similarity axis 2606. The height or value
of the branches represents a degree of similarity between

In Equation (8) when Qn = 0 implies Pn , m = 0 and 0 log 40 event sources . In the example of FIG . 26B , the smaller the
value of the branch point , the less similar (or more dissimi (0/0) = 0 . The similarity Simp (m , k) is calculated for each

pair of event sources , where m = 1 , lar) are the event sources at the ends of the branches . For M , k = 1 , .. M and
k > m . example , because the similarity value 2614 is closer to one

In still another implementation , the similarity between than the similarity value of the branch 2620 , the event
45 sources 2608 and 2609 have greater similarity to one another pairs of event sources may be measured by calculating a than the event sources 2622 and 2624 . Jensen - Shannon divergence between the event - type prob

ability distributions of two event sources as follows : A dissimilarity threshold may be used to separate or cut
event sources into clusters . The dissimilarity threshold may
be selected to obtain a desired clustering such that each of

50 the resultant clusters satisfies a minimum similarity . Event Simjs (m , k) sources connected by branch points that are less than the
dissimilarity threshold are separated or cut into clusters . For -M , log Mn + Pnym log Pn ; m + Onik log Qnk example , in FIG . 26B , dashed line 2626 represents a dis
similarity threshold that corresponds to a minimum similar

55 ity . Event sources connected by branch point 2628 are less
than the dissimilarity threshold 2626 (i.e. , minimum simi On , m + Qn , x) / 2 . larity) are separated into event source clusters C , and C2 . In

The similarity Sim ; s (m , k) is calculated for each pair of other words , event sources that are connected by branch
event sources , where m = 1 , ... , M , k = 1 , ... , M and k > m . points (i.e. , similarities) that are greater than the dissimilar

After a similarity has been calculated for each pair of 60 ity threshold 2626 (i.e. , minimum similarity) form event
event types using one of Equations (2) , (7) , (8) , and (9) , source clusters .
hierarchical clustering analysis may be used to identify FIGS . 27A - 27L show an example of hierarchical cluster
clusters of event sources within the observation time win ing applied to a set of seven event sources using maximum
dow AT as follows . FIG . 26A shows an example similarity linkage criterion . The event sources are denoted by ESA ,
matrix 2600 of similarities calculated for each pair of M 65 ESB , ESC , ESD , ESE , ESF , and ESG . FIG . 27A shows an
event sources denoted by ES1 , ES2 , ... , ESM . The similarity example similarity matrix of similarities calculated for each
matrix elements are denoted by Sim (m , k) , where 1sk , pair of the seven event sources . An initial step in hierarchical

ŠPomoelement n = 1

9

=

N N N

n = 1 n = 1 n = 1

where Mn = (Pn , m

C = { ES1 , ...

US 10,572,329 B2
25 26

clustering is identifying the pair of event sources that are the revealed by the corresponding matrix elements in FIG . 27A .
most similar . In the example of FIG . 27A , event sources ESB The average of these two similarities is 0.315 . Therefore the
and ESF have the largest similarity value of 0.8 . In FIG . 27B , similarity between the linked event sources (ESB , ESF) and
the two event sources ESB and ESF are the first two leaves the event source EScis 0.315 . The remaining elements in the
of a dendrogram and are joined at the similarity level 0.8 . 5 row 2702 are determined in the same manner . The similarity
After the pair of event sources have been linked , a reduced at each element of the row 2702 may be calculated as the similarity matrix is formed in FIG . 27C . The two event minimum of the events source in the linked event sources sources ESB and ESF are removed from the similarity matrix (ESB , ESP) with each of the remaining event sources . In in FIG . 27C and the linked event sources (ES) , ESp) is
introduced . The maximum linkage criterion may be used to 10 the similarity between ES , and ESC is 0.333 as revealed by

particular , the similarity between ESB and ESC is 0.296 and
determine the similarities between the linked event sources
(ESB , ESF) and the other event sources that appear as the corresponding matrix elements in FIG . 27A . The mini

mum of these two similarities is 0.296 . Therefore the simi elements along the row 2702. The similarity at each element
of the row 2702 is the maximum of the events source in the larity between the linked event sources (ESB , ESP) and the
linked event sources with each of the remaining event 15 event source ESC is 0.296 . The remaining elements in the
sources . For example , the similarity between ESB and ESC row 2702 are determined in the same manner .
is 0.296 and the similarity between ESF and ESc is 0.333 as After the clusters of event sources have been determined ,
revealed by the corresponding matrix elements in FIG . 27A . a local outlier factor (“ LOF ”) is calculated for each event
The maximum of the two similarities is 0.333 . Therefore the source in each event source cluster . The LOF assigned to
similarity between the linked event sources (ESE , ESP) and 20 each event source in an event source cluster is a degree or
the event source ES is 0.333 as represented by the matrix measure of each event source being an outlier with respect
element 2704. The remaining elements in the row 2702 are to other event sources in the same cluster . The LOF is local
determined in the same manner . The largest similarity in the in that the degree (i.e. , value of the LOF) depends on how
similarity matrix of FIG . 27C is 0.75 . In FIG . 27D , the two isolated an event source is with respect to a surrounding
event sources ESA and Ese are two more leaves in the 25 neighborhood of event sources . In other words , only a dendrogram and are joined at the similarity level 0.75 . The restricted neighborhood of each event source is taken into
rows associated with the event sources ESA and ESE are account to calculate the LOF of each event source .
removed from the similarity matrix shown in FIG . 27E and Consider an event source cluster represented by the maximum linkage criterion is repeated for the linked
event sources (ES? , ESE) in order to obtain the similarities 30 , ESp } (10) in the row 2706 in FIG . 27E . For example , the similarity
between (ESB , ESP) and ES is 0.5 and the similarity The event source cluster may have been generated using
between (ESE , ESE) and ESE is 0.333 as revealed by the hierarchical clustering analysis as described above . In order
corresponding matrix elements in FIG . 27C . The maximum to calculate a LOF for each event source in the event source
of the two similarities is 0.5 as represented by the matrix 35 cluster C , the distance is calculated between each pair of
element 2708. The remaining elements in the row 2706 are event sources in the cluster C. The distance may calculated
determined in the same manner . The largest similarity in the using
similarity matrix of FIG . 27E is 0.667 . In FIG . 27F , the two
event sources ESc and ESG are two more leaves of the
dendrogram and are joined at the similarity level 0.667 . 40 (11)

FIGS . 277-27L show similarity matrices and corresponding ET.ETC
dendrograms constructed using the maximum linkage crite dist (ESp , ES)
rion at each step . FIG . 27L shows the final dendrogram . (EThp) (ETK) FIG . 27L also shows dashed line 2701 that represents a
dissimilarity threshold at 0.60 . In other words , the dissimi- 45
larity threshold of 0.60 is a minimum similarity . Event
sources with similarities greater than the minimum similar where
ity of 0.60 form a cluster . For example , the events sources ES , and Es , are event sources in the event source cluster
Ese and ESF have a similarity of 0.8 , and the event sources C ;
ESA , ESE , ESC , and ESC have similarities that are greater 50 is the set of event - type frequencies of the
than 0.6 . But the events sources ESE and ESF have a event source Esp ;
similarity of 0.5 with the event sources ESA , ESE , ESC , and is the set of event - types frequencies of the
ESc , which is less than the minimum similarity of 0.60 . event source ES ,
Therefore , the event sources Ese and ESF form an event In other implementations , event - type probability distribu
source cluster C , and the event sources ESA , ESE , ESc , and 55 tions { Pmn } n = 1 ̂ and { Qkn } n = 1 calculated in corresponding
ES form a different event source cluster C2 . Because the Equations (4) and (6) above may be used in Equation (11)
event source ES , has a similarity of 0.25 with the event in place of the event - type frequencies { ET - 1 " and
sources in the event source clusters C? and C2 , event source { ET } = 1 \ , respectively . In still other implementations ,
is in single element cluster Cz . the distance may be calculated using dist (ES ,, ES ,) = 1

In other implementations , average linkage criterion or 60 Simp (m , k) or using dist (ESP , ESQ) = 1 - Sim ; s { m , k) .
minimum linkage criterion may be used in place of the For each event source ES , in the event source cluster C ,
maximum linkage criterion . For example , returning to FIG . the distances are rank ordered and the k - th nearest neighbor
27C , the similarity at each element of the row 2702 may be distance , also called the k - distance , is determined and
calculated as the average of the events source in the linked denoted by dist? (ESP) , where k is natural number . For
event sources (ESB , ESP) with each of the remaining event 65 example , consider the following distances in increasing
sources . In particular , the similarity between ESB and EScis order dist (ESA , ESB) , dist (ES 4 , ESC) , dist (ES4 , ESD) , and
0.296 and the similarity between ESF and ESc is 0.333 as dist (ES? , ESE) , where ESA , ESB , ES , Esp , and ESE rep

N

ng
n = 1 -1

= - COS
N N

n = 1 n = 1

N { ETn.p } n = 1
{ ET ,, q } n = 1

; and
N

N

1

10

15

??

US 10,572,329 B2
27 28

resent event sources in the same cluster . The second (i.e. , FIG . 28 shows a control - flow diagram of a method to
k = 2) nearest neighbor distance of the event source ESA is identify anomalous behaving components of a distributed
dist? (ESA) = dist (ESA , ESC) . computing system . In block 2801 , event logs generated by a

Given the k - distance of each event source ES , in the set of event sources that are run on a set of components are
cluster C , a k - distance neighborhood of the event source ES , 5 collected within an observation time window AT . The set of
is a set of event sources of the cluster C with a distance from event sources may be copies of the same application pro
the event source ES , that is less than or equal to the gram , operating system , VM , or machine code running on
k - distance of the event source ES : the set of components . In block 2802 , a routine “ determine

frequencies of event types within the observation window " N (ESP) = { ES , ECI { ESp } \ dist (ES , ES ,) sdistz (ESP) } (12) is called to determine the frequencies of each of event types In the example above , the 2 - distance neighborhood of the of the event logs . In block 2803 , a routine “ calculate a event source ESA is the set N2 (ESA) = { ESB , ESc } similarity for each pair of event sources ” is called . In block A local reachability density is calculated for each event 2804 , a routine “ determine event source clusters ” is called to
source ES , in C as follows : determine clusters of event sources using hierarchy analysis .

In block 2805 , a routine " determine event source outliers ” is
called to determine event source outliers in each event || N (ESP) || (13) Irdk (ESP) = ? reach - distk (ESp , ES) source cluster as described above with reference to Equa

ESGEN (ESP) tions (10) - (16) . In block 2806 , components that run the
20 event sources outliers may be identified for management

purposes , such as , but not limited to , identified for trouble where shooting , identified as having problems or issues , or may be || N , (ESP) || is the number of event sources in the k - distance identified for monitoring in case of future problems . An neighborhood N (ES) ; and example of a future problem is corruption to a data - storage reach - dist (ES , ES) is the reachability distance of the 25 device , such hard disk drives or solid state drives . event source ES , to the event source ES , FIG . 29 shows a control - flow diagram of the routine The reachability distance is given by “ determine frequencies of event types within the observation
reach - dist , (ES , ES ,) = max { dist , (ESP) , dist (ES , ES ,) } window ” called in block 2802 of FIG . 28. A loop beginning (14) with block 2901 repeats the operations represented by

An LOF is calculated for each event source ES , in C as 30 blocks 2902-2907 for each event log . A loop beginning with
follows : block 2902 repeats the operations represented by block

2903-2904 for each event message of an event log . In block
03 , event - type analysis is performed on event message in

Ird : (ES) (15) ? order to determines the non - parametric tokens of the event Irdk (ESP) ES EN (ESp) 35 message the non - parametric tokens identify the event type of
LOF (ESP) || N (ESP) || the event message , as described above with reference to

FIG . 20. In block 2904 , the count associated with the event
type determined in block 2903 is incremented . In decision

An LOF of the event source ES , calculated according to block 2905 , the operations represented by blocks 2903 and
Equation (15) is an average local reachability density of the 40 2904 are repeated for each event message of the event log .
neighboring event sources divided by the event sources local In block 2906 , the event types and associated frequencies of reachability density . An LOF of about 1 indicates that the the event types are added to an event - type log or other
event source is comparable to the neighboring event sources meta - data structure , as described above with reference to
and is not an outlier . An LOF value less the 1 indicates that FIG . 20. In decision block 2907 , the operations represented
the event source is part of a dense event source region (i.e. , 45 by blocks 2902-2906 are repeated for another event log .
event sources are close together) . An LOF value of an event FIG . 30 shows a control - flow diagram of the routine
source that significantly larger than 1 is an outlier . For " calculate a similarity for each pair of event sources ” called
example , an event source ES , in C is identified as an outlier in block 2803 of FIG . 28. A loop beginning with block 3001 when the corresponding LOf satisfies the following condi repeats the operations represented by blocks 3002-3005 for
tion : 50 each event source indexed m = 1 , ... , M. A loop beginning

with block 3002 repeats the operations represented by block LOF (ES) > Thor1 (15) 3003-3004 for each event message of an event log k = 1 , . .
where Theof is a LOF threshold . . , M with the restriction that k > m in order to avoid repeats .

For example , the LOF threshold Th of may be set equal to In block 3003 , a similarity is calculated for an event source
1.5 , 1.6 , 1.7 , 1.8 , 1.9 , or 2 , or may be set to any suitable 55 In and an event source k . In certain implementations , the
number greater than 2. The component of a distributed similarity may be calculated as described above with refer
computing system used to host an event source with a local ence to Equations (1) and (2) . In other implementations , the
outlier factor greater than the local outlier factor threshold similarity may be calculated as described above with refer
may be identified for management purposes , such as iden ence to Equations (3) - (7) . In other implementations , the
tified as having problems that may be more closely inves- 60 similarity may be calculated as described above with refer
tigated or monitored during troubleshooting . ence to Equations (3) - (6) and (8) . In still other implemen

The method described below with reference to FIGS . tations , the similarity may be calculated as described above
28-31 may be stored in one or more data - storage devices as with reference to Equations (3) - (6) and (9) . In decision block
machine - readable instructions that when executed by one or 3004 , the operation of block 3003 is repeated for another
more processors of the computer system shown in FIG . 1 65 event source k . Otherwise , control flows to decision block
identifies anomalous behaving components of a distributed 3005 in which the operations of blocks 3002-3004 are
computing system . repeated for another event source m .

-

5

US 10,572,329 B2
29 30

FIG . 31 shows a control - flow diagram of the routine system to identify anomalous behaving components of a
“ determine event source clusters ” called in block 2804 of distributed computing system , the method comprising :
FIG . 28. In block 3101 , the largest similarity in a similarity collecting event messages generated by event sources
matrix is identified as described above with reference to within an observation time window , the event sources
FIG . 27A . In block 3102 , a corresponding branch in a hosted by a number of the components of the distrib
dendrogram is created . The branch has the associated simi uted computing system ;
larity in a range of similarities as described above with determining frequencies of event types of the event mes
reference to FIG . 27B . In block 3102 , the similarity matrix sages within the observation time window ;
is reduced by removing the m - th row and k - th column that calculating a similarity for each pair of event sources
correspond to the event sources with the largest similarity in 10 based on the frequencies of the event types ;
the similarity matrix . In block 3104 , similarities a linked determining event source clusters based on the similarities
event source comprising the event source of with largest determined for each pair of event sources ;
similarity are calculated using one of the linkage criterion . determining a local outlier factor for each event source of
For example , the linkage criterion may be the maximum each event source cluster ;
linkage criterion described above with reference to FIG . 15 identifying anomalously behaving components of the set
27C . In other implementations , the linkage criterion may be of components that host the event sources when a
the average linkage criterion described above . In still other corresponding local outlier factor is greater than a local
implementations , the linkage criterion may be the minimum outlier factor threshold ; and
linage criterion describe above . In decision block 3105 , the migrating virtual machines from one or more server
computational operations represented by blocks 3101-3104 20 computers having the anomalously behaving compo
may be repeated the reduced similarity matrix obtained in nents to one or more server computers having normal
block 3103. In block 3106 , a dissimilarity threshold is behaving components .
applied to the dendrogram created from blocks 3101-3105 . 2. The method of claim 1 , wherein the event sources are
In block 3107 , event source clusters are formed for event copies of the same type of event source running on the
sources connected by similarities that are greater than the 25 components .
dissimilarity threshold , as described above with reference to 3. The method of claim 1 , wherein determining frequen
FIGS . 26B and 27L . cies of event types within the observation time window

FIG . 32 shows a control flow diagram of the routine comprises :
" determine event source outliers ” called in block 2805 of determining an event type of each event message recorded
FIG . 28. A loop beginning with block 3201 repeats the 30 within the observation time window using event type
operations represented by blocks 3202-3209 for each of the analysis , and
event source clusters determined in the routine " determine counting a number of times each event type occurs within
event source clusters ” of FIG . 31. In block 3202 , a distance the observation time window , the number of each event
is calculated between each pair of event sources according type being the frequency of the event type .
to Equation (11) . In block 3203 , a k - th nearest neighbor 35 4. The method of claim 1 , wherein calculating the simi
distance is calculated for each event source in the event larity for each pair of event sources comprises :
source cluster as described above . In block 3204 , a k - dis identifying frequencies of event types of a first event
tance neighborhood is determined for each event source source of the pair of event sources as a first event - type
based on the k - th nearest neighbor distance of the event frequency vector ;
source , as described above with reference to Equation (12) . 40 identifying frequencies of event types of a second event
In block 3205 , a local reachability density is calculated for source of the pair of event sources as a second event
each event source in the event source cluster , as described type frequency vector , and
above with reference to Equations (13) and (14) . In block calculating a similarity between the first and second
3206 , an LOF is calculated for each event source in the event event - type frequency vectors , the similarity being a
source cluster as described above with reference to Equation 45 measure of closeness between the pair of event sources .
(15) . In decision block 3208 , when the LOF calculated in 5. The method of claim 1 , where calculating the similarity
block 3206 is greater than an LOF threshold as described for each pair of event sources comprises :
above with reference to Equation (16) control flows to block calculating a first probability distribution of the frequen
3209 where the corresponding event source is identified as cies of event types generated by a first event source of
an event source outlier . In decision block 3210 , the opera- 50 the pair of event sources ;
tions represented by blocks 3202-3209 are repeated for calculating a first probability distribution of frequencies
another event source cluster . of event types generated by a second event source of

It is appreciated that the previous description of the the pair of event sources ; and
disclosed embodiments is provided to enable any person calculating an information divergence between the first
skilled in the art to make or use the present disclosure . 55 probability distribution and the second probability dis
Various modifications to these embodiments will be readily tribution , the information divergence being a measure
apparent to those skilled in the art , and the generic principles of the similarity between the pair of event sources .
defined herein may be applied to other embodiments without 6. The method of claim 1 , where calculating the similarity
departing from the spirit or scope of the disclosure . Thus , the for each pair of event sources comprises :
present disclosure is not intended to be limited to the 60 calculating a first probability distribution of the frequen
embodiments shown herein but is to be accorded the widest cies of event types generated by a first event source of
scope consistent with the principles and novel features the pair of event sources ;
disclosed herein . calculating a first probability distribution of frequencies

of event types generated by a second event source of
The invention claimed is : the pair of event sources ; and
1. A method stored in one or more data - storage devices calculating a Jensen - Shannon divergence between the

and executed using one or more processors of a computer first probability distribution and the second probability

65

5

10

15

25

30

US 10,572,329 B2
31 32

distribution , the Jensen - Shannon divergence being a determining an event type of each event message recorded
measure of the similarity between the pair of event within the observation time window using event type
sources . analysis ; and

7. The method of claim 1 , wherein determining the event counting a number of times each event type occurs within
source clusters comprises : the observation time window , the number of each event

applying hierarchical clustering analysis to the similari type being the frequency of the event type .
ties of event sources in order to generate a dendrogram 12. The system of claim 9 , wherein calculating the simi
of the event source similarities ; and larity for each pair of event sources comprises :

forming the event source clusters for event sources con identifying frequencies of event types of a first event
nected by similarities that are greater than a dissimi source of the pair of event sources as a first event - type
larity threshold . frequency vector ;

8. The method of claim 1 , wherein determining the local identifying frequencies of event types of a second event
outlier factor for each event source of each the event source source of the pair of event sources as a second event
cluster comprises : type frequency vector ; and

calculating a distance between each pair of the event calculating a similarity between the first and second
sources in the event source cluster ; event - type frequency vectors , the similarity being a

calculating a k - th nearest neighbor distance for event measure of closeness between the pair of event sources .
source of the event source cluster ; 13. The system of claim 9 , where calculating the similar

determining a k - distance neighborhood for each event 20 ity for each pair of event sources comprises :
source of the event source cluster based on the k - th calculating a first probability distribution of the frequen
nearest neighbor distance of each event source ; cies of event types generated by a first event source of

calculating local reachability density for each event the pair of event sources ;
source based on the k - distance neighborhood of each calculating a first probability distribution of frequencies
event source ; of event types generated by a second event source of

calculating a local outlier factor for each event source the pair of event sources ; and
based on the local reachability density of event sources calculating an information divergence between the first
within the k - distance neighborhood ; and probability distribution and the second probability dis

identifying an event source in the event source cluster as tribution , the information divergence being a measure
an event source outlier when the local outlier factor of of the similarity between the pair of event sources .
the event source is greater than the local outlier factor 14. The system of claim 9 , where calculating the similar

ity for each pair of event sources comprises : threshold . calculating a first probability distribution of the frequen 9. A system to identify anomalous behaving components cies of event types generated by a first event source of of a distributed computing system , the system comprising : the pair of event sources ; one or more processors ; calculating a first probability distribution of frequencies
one or more data - storage devices ; and of event types generated by a second event source of
machine - readable instructions stored in the one or more the pair of event sources ; and

data - storage devices that when executed using the one calculating a Jensen - Shannon divergence between the
or more processors controls the system to carry out first probability distribution and the second probability
collecting event messages generated by event sources distribution , the Jensen - Shannon divergence being a

within an observation time window , the event measure of the similarity between the pair of event
sources hosted by a number of the components of the
distributed computing system ; 15. The system of claim 9 , wherein determining the event

determining frequencies of event types of the event 45 source clusters comprises :
messages within the observation time window ; applying hierarchical clustering analysis to the similari

calculating a similarity for each pair of event sources ties of event sources in order to generate a dendrogram
based on the frequencies of the event types ; of the event source similarities ; and

determining event source clusters based on the simi forming the event source clusters for event sources con
larities determined for each pair of event sources ; nected by similarities that are greater than a dissimi

determining a local outlier factor for each event source larity threshold .
of each event source cluster ; 16. The system of claim 9 , wherein determining the local

identifying anomalously behaving components of the outlier factor for each event source of each the event source
set of components that host the event sources when cluster comprises :
a corresponding local outlier factor is greater than a 55 calculating a distance between each pair of the event
local outlier factor threshold ; and sources in the event source cluster ;

migrating virtual machines from one or more server calculating a k - th nearest neighbor distance for event
computers having the anomalously behaving com source of the event source cluster ;
ponents to one or more server computers having determining a k - distance neighborhood for each event
normal behaving components . source of the event source cluster based on the k - th

10. The system of claim 9 , wherein the event sources are nearest neighbor distance of each event source ;
copies of the same type of event source running on the calculating a local reachability density for each event
components . source based on the k - distance neighborhood of each

11. The system of claim 9 , wherein determining frequen event source ;
cies of event types within the observation time window 65 calculating a local outlier factor for each event source
comprises for each event log generated by one of the event based on the local reachability density of event sources
sources , within the k - distance neighborhood ; and

35

40

sources .

50

60

10

15

20

sources .
25

US 10,572,329 B2
33 34

identifying an event source in the event source cluster as 21. The medium of claim 17 , where calculating the
an event source outlier when the local outlier factor of similarity for each pair of event sources comprises :
the event source is greater than the local outlier factor calculating a first probability distribution of the frequen
threshold . cies of event types generated by a first event source of

17. A non - transitory computer - readable medium encoded 5 the pair of event sources ;
calculating a first probability distribution of frequencies with machine - readable instructions that implement a method of event types generated by a second event source of carried out by one or more processors of a computer system the pair of event sources ; and to perform the operations of calculating an information divergence between the first

collecting event messages generated by event sources probability distribution and the second probability dis
within an observation time window , the event sources tribution , the information divergence being a measure
hosted by a number of the components of the distrib of the similarity between the pair of event sources .
uted computing system ; 22. The medium of claim 17 , where calculating the

determining frequencies of event types of the event mes similarity for each pair of event sources comprises :
sages within the observation time window ; calculating a first probability distribution of the frequen

calculating a similarity for each pair of event sources cies of event types generated by a first event source of
based on the frequencies of the event types ; the pair of event sources ;

determining event source clusters based on the similarities calculating a first probability distribution of frequencies
determined for each pair of event sources ; of event types generated by a second event source of

determining a local outlier factor for each event source of the pair of event sources , and
each event source cluster ; calculating a Jensen - Shannon divergence between the

identifying anomalously behaving components of the set first probability distribution and the second probability
distribution , the Jensen - Shannon divergence being a of components that host the event sources when a

corresponding local outlier factor is greater than a local measure of the similarity between the pair of event
outlier factor threshold ; and

migrating virtual machines from one or more server 23. The medium of claim 17 , wherein determining the
computers having the anomalously behaving compo event source clusters comprises :
nents to one or more server computers having normal applying hierarchical clustering analysis to the similari
behaving components . ties of event sources in order to generate a dendrogram

18. The medium of claim 17 , wherein the event sources of the event source similarities ; and
are copies of the same type of event source running on the forming the event source clusters for event sources con
components . nected by similarities that are greater than a dissimi

19. The medium of claim 17 , wherein determining fre larity threshold .
quencies of event types within the observation time window 24. The medium of claim 17 , wherein determining the

local outlier factor for each event source of each the event comprises for each event log generated by one of the event source cluster comprises : sources ,
determining an event type of each event message recorded calculating a distance between each pair of the event

within the observation time window using event type sources in the event source cluster ;
analysis ; and calculating a k - th nearest neighbor distance for event

source of the event source cluster ; counting a number of times each event type occurs within
the observation time window , the number of each event determining a k - distance neighborhood for each event

source of the event source cluster based on the k - th type being the frequency of the event type .
20. The medium of claim 17 , wherein calculating the nearest neighbor distance of each event source ;

similarity for each pair of event sources comprises : calculating a local reachability density for each event
source based on the k - distance neighborhood of each identifying frequencies of event types of a first event
event source ; source of the pair of event sources as a first event - type

frequency vector ; calculating a local outlier factor for each event source
identifying frequencies of event types of a second event based on the local reachability density of event sources

source of the pair of event sources as a second event within the k - distance neighborhood ; and
identifying an event source in the event source cluster as an type frequency vector ; and event source outlier when the local outlier factor of the event calculating a similarity between the first and second

event - type frequency vectors , the similarity being a source is greater than the local outlier factor threshold .
measure of closeness between the pair of event sources .

30

35

40

45

50

