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METHODS AND SYSTEMS TO IDENTIFY computing system based on event logs . Event logs generated 
ANOMALOUS BEHAVING COMPONENTS by a set of event sources running in the distributed comput 
OF A DISTRIBUTED COMPUTING SYSTEM ing system within an observation time window are collected . 

Frequencies of various types of event messages generated 
TECHNICAL FIELD 5 within the observation time window are determined for each 

of the event logs . A similarity value is calculated between The present disclosure is directed to event messages and each pair of event sources . Clustering analysis may be log files and , in particular , to methods and systems that applied to the similarity values in order to generate clusters identify components that exhibit abnormal behavior in a 
distributed computing system . of event sources and identify any event source outliers 

10 within each cluster . Components of a distributed computing 
BACKGROUND system that are used to host the event source outliers may be 

identified for various management purposes , including , but 
During the past seven decades , electronic computing has not limited to , as having problems , issues , future problems 

evolved from primitive , vacuum - tube - based computer sys or identified for monitoring or troubleshooting . 
tems , initially developed during the 1940s , to modern elec- 15 
tronic computing systems in which large numbers of multi DESCRIPTION OF THE DRAWINGS 
processor server computers , work stations , and other 
individual computing systems are networked together with FIG . 1 shows a general architectural diagram for various 
large - capacity data - storage devices and other electronic types of computers . 
devices to produce geographically distributed computing 20 FIG . 2 shows an Internet connected distributed computer 
systems with hundreds of thousands , millions , or more system . 
components that provide enormous computational band FIG . 3 shows cloud computing . 
widths and data - storage capacities . These large , distributed FIG . 4 shows generalized hardware and software compo 
computing systems are made possible by advances in com nents of a general - purpose computer system . 
puter networking , distributed operating systems and appli- 25 FIGS . 5A - 5B show two types of virtual machine and 
cations , data - storage appliances , computer hardware , and virtual - machine execution environments . 
software technologies . Despite all of these advances , how FIG . 6 shows an example of an open virtualization format 
ever , the rapid increase in the size and complexity of package . 
computing systems has been accompanied by numerous FIG . 7 shows virtual data centers provided as an abstrac 
scaling issues and technical challenges , including technical 30 tion of underlying physical - data - center hardware compo 
challenges associated with communications overheads nents . 
encountered in parallelizing computational tasks among FIG . 8 shows virtual machine components of a virtual 
multiple processors , component failures , and distributed data - center management server and physical servers of a 
system management . As new distributed - computing tech physical data center . 
nologies are developed and as general hardware and soft- 35 FIG . 9 shows a cloud - director level of abstraction . 
ware technologies continue to advance , the current trend FIG . 10 shows virtual - cloud - connector nodes . 
towards ever - larger and more complex distributed comput FIG . 11 shows two ways in which operating - system - level 
ing systems appears likely to continue well into the future . virtualization may be implemented in a physical data center . 

In modern computing systems , individual computers , FIG . 12 shows an example server computer used to host 
subsystems , and components generally output large volumes 40 three containers . 
of status , informational , and error messages that are collec FIG . 13 shows an approach to implementing containers 
tively referred to , in the current document , as " event mes on a virtual machine . 
sages . ” In large , distributed computing systems , terabytes of FIG . 14 shows an example of logging event messages in 
event messages may be generated each day . The event event logs . 
messages are often collected into event logs stored as files in 45 FIG . 15 shows an example of a source code with log write 
data - storage appliances and are often analyzed both in real instructions . 
time , as they are generated and received , as well as retro FIG . 16 shows an example of a log write instruction . 
spectively , after the event messages have been initially FIG . 17 shows an example of an event message generated 
processed and stored in event logs . Event logs that are by the log write instruction of FIG . 16 . 
generated by similar event sources over a period of time are 50 FIG . 18 shows a small , eight - entry portion of an event log . 
expected to be similar . The similar event sources may be FIGS . 19A - 19B show an example set of similar event 
copies of the same operating system , application program , sources corresponding to server computers and event logs 
virtual machine , or machine code running on a number of generated by the similar event sources . 
different server computers . An event log that is different FIG . 20 shows an example of a method to determine an 
from the event logs of other event sources may be an 55 event - type log from an event log . 
indication of a problem or management issues with compo FIG . 21 shows an example of event - type analysis per 
nents of a distributed computer system , such as a server formed on an event message . 
computer used to host an event source . However , because FIG . 22 shows an example of event sources and associ 
the log files of the event sources may each have many ated event - type logs . 
thousands or even millions of event messages generated 60 FIG . 23 shows a plot of three examples of event - type 
over the observation time window , determining which event frequency vectors . 
sources are outliers is an enormous task . FIG . 24 shows an example of a method to determine an 

event - type log from an event log that includes event - type 
SUMMARY probabilities . 

FIG . 25 shows an example of event sources and plots of 
Methods and system described herein are directed to associated probability distributions . 

identifying anomalous behaving components of a distributed FIG . 26A shows an example similarity matrix . 

65 
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FIG . 26B shows an example dendrogram constructed computer instructions sequentially stored in a file on an 
from similarities of pairs of event sources . optical disk or within an electromechanical mass - storage 
FIGS . 27A - 27L show an example of hierarchical cluster device . Software alone can do nothing . It is only when 

ing applied to a set of seven event sources using maximum encoded computer instructions are loaded into an electronic 
linkage criterion . 5 memory within a computer system and executed on a 

FIG . 28 shows a control - flow diagram of a method to physical processor that so - called “ software implemented ” 
identify anomalous behaving components of a distributed functionality is provided . The digitally encoded computer 
computing system . instructions are an essential and physical control component 

FIG . 29 shows a control - flow diagram of the routine of processor - controlled machines and devices , no less essen 
" determine frequencies of event types within the observation 10 tial and physical than a cam - shaft control system in an 
window ” called in FIG . 28 . internal - combustion engine . Multi - cloud aggregations , 

FIG . 30 shows a control - flow diagram of the routine cloud - computing services , virtual - machine containers and 
" calculate a similarity for each pair of event sources ” called virtual machines , communications interfaces , and many of 
in FIG . 28 . the other topics discussed below are tangible , physical 

FIG . 31 shows a control - flow diagram of the routine 15 components of physical , electro - optical - mechanical com 
“ determine event source clusters ” called in FIG . 28 . puter systems . 

FIG . 32 shows a control flow diagram of the routine FIG . 1 shows a general architectural diagram for various 
“ determine event source outliers ” called in FIG . 28 . types of computers . Computers that receive , process , and 

store event messages may be described by the general 
DETAILED DESCRIPTION 20 architectural diagram shown in FIG . 1 , for example . The 

computer system contains one or multiple central processing 
This disclosure presents computational methods and sys units ( “ CPUs ” ) 102-105 , one or more electronic memories 

tems to identify anomalous behaving server computers of a 108 interconnected with the CPUs by a CPU / memory 
distributed computing system . In a first subsection , com subsystem bus 110 or multiple busses , a first bridge 112 that 
puter hardware , complex computational systems , and virtu- 25 interconnects the CPU / memory - subsystem bus 110 with 
alization are described . Containers and containers supported additional busses 114 and 116 , or other types of high - speed 
by virtualization layers are described in a section subsection . interconnection media , including multiple , high - speed serial 
Methods and systems to identify anomalous behaving com interconnects . These busses or serial interconnections , in 
ponents of a distributed computing system are described turn , connect the CPUs and memory with specialized pro 
below in a third subsection . 30 cessors , such as a graphics processor 118 , and with one or 

more additional bridges 120 , which are interconnected with 
Computer Hardware , Complex Computational high - speed serial links or with multiple controllers 122-127 , 

Systems , and Virtualization such as controller 127 , that provide access to various dif 
ferent types of mass - storage devices 128 , electronic dis 

The term “ abstraction ” is not , in any way , intended to 35 plays , input devices , and other such components , subcom 
mean or suggest an abstract idea or concept . Computational ponents , and computational devices . It should be noted that 
abstractions are tangible , physical interfaces that are imple computer - readable data - storage devices include optical and 
mented , ultimately , using physical computer hardware , data electromagnetic disks , electronic memories , and other 
storage devices , and communications systems . Instead , the physical data - storage devices . Those familiar with modern 
term “ abstraction ” refers , in the current discussion , to a 40 science and technology appreciate that electromagnetic 
logical level of functionality encapsulated within one or radiation and propagating signals do not store data for 
more concrete , tangible , physically - implemented computer subsequent retrieval , and can transiently “ store ” only a byte 
systems with defined interfaces through which electroni or less of information per mile , far less information than 
cally - encoded data is exchanged , process execution needed to encode even the simplest of routines . 
launched , and electronic services are provided . Interfaces 45 Of course , there are many different types of computer 
may include graphical and textual data displayed on physical system architectures that differ from one another in the 
display devices as well as computer programs and routines number of different memories , including different types of 
that control physical computer processors to carry out vari hierarchical cache memories , the number of processors and 
ous tasks and operations and that are invoked through the connectivity of the processors with other system com 
electronically implemented application programming inter- 50 ponents , the number of internal communications busses and 
faces ( “ APIs ” ) and other electronically implemented inter serial links , and in many other ways . However , computer 
faces . There is a tendency among those unfamiliar with systems generally execute stored programs by fetching 
modern technology and science to misinterpret the terms instructions from memory and executing the instructions in 
" abstract " and " abstraction , ” when used to describe certain one or more processors . Computer systems include general 
aspects of modern computing . For example , one frequently 55 purpose computer systems , such as personal computers 
encounters assertions that , because a computational system ( “ PCs ” ) , various types of servers and workstations , and 
is described in terms of abstractions , functional layers , and higher - end mainframe computers , but may also include a 
interfaces , the computational system is somehow different plethora of various types of special - purpose computing 
from a physical machine or device . Such allegations are devices , including data - storage systems , communications 
unfounded . One only needs to disconnect a computer system 60 routers , network nodes , tablet computers , and mobile tele 
or group of computer systems from their respective power phones . 
supplies to appreciate the physical , machine nature of com FIG . 2 shows an Internet - connected distributed computer 
plex computer technologies . One also frequently encounters system . As communications and networking technologies 
statements that characterize a computational technology as have evolved in capability and accessibility , and as the 
being " only software , and thus not a machine or device . 65 computational bandwidths , data - storage capacities , and 
Software is essentially a sequence of encoded symbols , such other capabilities and capacities of various types of com 
as a printout of a computer program or digitally encoded puter systems have steadily and rapidly increased , much of 
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modern computing now generally involves large distributed ists and continuously paying for operating - system and data 
systems and computers interconnected by local networks , base - management - system upgrades . Furthermore , cloud 
wide - area networks , wireless communications , and the computing interfaces allow for easy and straightforward 
Internet . FIG . 2 shows a typical distributed system in which configuration of virtual computing facilities , flexibility in 
a large number of PCs 202-205 , a high - end distributed 5 the types of applications and operating systems that can be 
mainframe system 210 with a large data - storage system 212 , configured , and other functionalities that are useful even for 
and a large computer center 214 with large numbers of owners and administrators of private cloud - computing 
rack - mounted servers or blade servers all interconnected facilities used by a single organization . 
through various communications and networking systems FIG . 4 shows generalized hardware and software compo 
that together comprise the Internet 216. Such distributed 10 nents of a general - purpose computer system , such as a 
computing systems provide diverse arrays of functionalities . general - purpose computer system having an architecture 
For example , a PC user may access hundreds of millions of similar to that shown in FIG . 1. The computer system 400 is 
different web sites provided by hundreds of thousands of often considered to include three fundamental layers : ( 1 ) a 
different web servers throughout the world and may access hardware layer or level 402 ; ( 2 ) an operating - system layer or 
high - computational - bandwidth computing services from 15 level 404 ; and ( 3 ) an application - program layer or level 406 . 
remote computer facilities for running complex computa The hardware layer 402 includes one or more processors 
tional tasks . 408 , system memory 410 , various different types of input 
Until recently , computational services were generally output ( “ I / O ” ) devices 410 and 412 , and mass - storage 

provided by computer systems and data centers purchased , devices 414. Of course , the hardware level also includes 
configured , managed , and maintained by service - provider 20 many other components , including power supplies , internal 
organizations . For example , an e - commerce retailer gener communications links and busses , specialized integrated 
ally purchased , configured , managed , and maintained a data circuits , many different types of processor - controlled or 
center including numerous web servers , back - end computer microprocessor - controlled peripheral devices and control 
systems , and data - storage systems for serving web pages to lers , and many other components . The operating system 404 
remote customers , receiving orders through the web - page 25 interfaces to the hardware level 402 through a low - level 
interface , processing the orders , tracking completed orders , operating system and hardware interface 416 generally 
and other myriad different tasks associated with an e - com comprising a set of non - privileged computer instructions 
merce enterprise . 418 , a set of privileged computer instructions 420 , a set of 

FIG . 3 shows cloud computing . In the recently developed non - privileged registers and memory addresses 422 , and a 
cloud - computing paradigm , computing cycles and data- 30 set of privileged registers and memory addresses 424. In 
storage facilities are provided to organizations and individu general , the operating system exposes non - privileged 
als by cloud - computing providers . In addition , larger orga instructions , non - privileged registers , and non - privileged 
nizations may elect to establish private cloud - computing memory addresses 426 and a system - call interface 428 as an 
facilities in addition to , or instead of , subscribing to com operating - system interface 430 to application programs 432 
puting services provided by public cloud - computing service 35 436 that execute within an execution environment provided 
providers . In FIG . 3 , a system administrator for an organi to the application programs by the operating system . The 
zation , using a PC 302 , accesses the organization's private operating system , alone , accesses the privileged instructions , 
cloud 304 through a local network 306 and private - cloud privileged registers , and privileged memory addresses . By 
interface 308 and also accesses , through the Internet 310 , a reserving access to privileged instructions , privileged reg 
public cloud 312 through a public - cloud services interface 40 isters , and privileged memory addresses , the operating sys 
314. The administrator can , in either the case of the private tem can ensure that application programs and other higher 
cloud 304 or public cloud 312 , configure virtual computer level computational entities cannot interfere with one 
systems and even entire virtual data centers and launch another's execution and cannot change the overall state of 
execution of application programs on the virtual computer the computer system in ways that could deleteriously impact 
systems and virtual data centers in order to carry out any of 45 system operation . The operating system includes many 
many different types of computational tasks . As one internal components and modules , including a scheduler 
example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device 
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a 
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous 
public cloud to remote customers of the organization , such 50 levels of abstraction above the hardware level , including 
as a user viewing the organization's e - commerce web pages virtual memory , which provides to each application program 
on a remote user system 316 . and other computational entities a separate , large , linear 

Cloud - computing facilities are intended to provide com memory - address space that is mapped by the operating 
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage 
utility companies provide electrical power and water to 55 devices . The scheduler orchestrates interleaved execution of 
consumers . Cloud computing provides enormous advan various different application programs and higher - level 
tages to small organizations without the devices to purchase , computational entities , providing to each application pro 
manage , and maintain in - house data centers . Such organi gram a virtual , stand - alone system devoted entirely to the 
zations can dynamically add and delete virtual computer application program . From the application program’s stand 
systems from their virtual data centers within public clouds 60 point , the application program executes continuously with 
in order to track computational - bandwidth and data - storage out concern for the need to share processor devices and other 
needs , rather than purchasing sufficient computer systems system devices with other application programs and higher 
within a physical data center to handle peak computational level computational entities . The device drivers abstract 
bandwidth and data - storage demands . Moreover , small orga details of hardware - component operation , allowing applica 
nizations can completely avoid the overhead of maintaining 65 tion programs to employ the system - call interface for trans 
and managing physical computer systems , including hiring mitting and receiving data to and from communications 
and periodically retraining information - technology special networks , mass - storage devices , and other I / O devices and 
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subsystems . The file system 446 facilitates abstraction of 514 and guest operating system 516 packaged together 
mass - storage - device and memory devices as a high - level , within VM 510. Each VM is thus equivalent to the operat 
easy - to - access , file - system interface . Thus , the development ing - system layer 404 and application - program layer 406 in 
and evolution of the operating system has resulted in the the general - purpose computer system shown in FIG . 4. Each 
generation of a type of multi - faceted virtual execution 5 guest operating system within a VM interfaces to the virtu 
environment for application programs and other higher - level alization layer interface 504 rather than to the actual hard 
computational entities . ware interface 506. The virtualization layer 504 partitions 
While the execution environments provided by operating hardware devices into abstract virtual - hardware layers to 

systems have proved to be an enormously successful level of which each guest operating system within a VM interfaces . 
abstraction within computer systems , the operating - system- 10 The guest operating systems within the VMs , in general , are 
provided level of abstraction is nonetheless associated with unaware of the virtualization layer and operate as if they 
difficulties and challenges for developers and users of appli were directly accessing a true hardware interface . The 
cation programs and other higher - level computational enti virtualization layer 504 ensures that each of the VMs cur 
ties . One difficulty arises from the fact that there are many rently executing within the virtual environment receive a fair 
different operating systems that run within various different 15 allocation of underlying hardware devices and that all VMs 
types of computer hardware . In many cases , popular appli receive sufficient devices to progress in execution . The 
cation programs and computational systems are developed virtualization layer 504 may differ for different guest oper 
to run on only a subset of the available operating systems , ating systems . For example , the virtualization layer is gen 
and can therefore be executed within only a subset of the erally able to provide virtual hardware interfaces for a 
various different types of computer systems on which the 20 variety of different types of computer hardware . This allows , 
operating systems are designed to run . Often , even when an as one example , a VM that includes a guest operating system 
application program or other computational system is ported designed for a particular computer architecture to run on 
to additional operating systems , the application program or hardware of a different architecture . The number of VMs 
other computational system can nonetheless run more effi need not be equal to the number of physical processors or 
ciently on the operating systems for which the application 25 even a multiple of the number of processors . 
program or other computational system was originally tar The virtualization layer 504 includes a virtual - machine 
geted . Another difficulty arises from the increasingly dis monitor module 518 ( “ VMM ” ) that virtualizes physical 
tributed nature of computer systems . Although distributed processors in the hardware layer to create virtual processors 
operating systems are the subject of considerable research on which each of the VMs executes . For execution effi 
and development efforts , many of the popular operating 30 ciency , the virtualization layer attempts to allow VMs to 
systems are designed primarily for execution on a single directly execute non - privileged instructions and to directly 
computer system . In many cases , it is difficult to move access non - privileged registers and memory . However , 
application programs , in real time , between the different when the guest operating system within a VM accesses 
computer systems of a distributed computer system for virtual privileged instructions , virtual privileged registers , 
high - availability , fault - tolerance , and load balancing pur- 35 and virtual privileged memory through the virtualization 
poses . The problems are even greater in heterogeneous layer 504 , the accesses result in execution of virtualization 
distributed computer systems which include different types layer code to simulate or emulate the privileged devices . The 
of hardware and devices running different types of operating virtualization layer additionally includes a kernel module 
systems . Operating systems continue to evolve , as a result of 520 that manages memory , communications , and data - stor 
which certain older application programs and other compu- 40 age machine devices on behalf of executing VMs ( “ VM 
tational entities may be incompatible with more recent kernel ” ) . The VM kernel , for example , maintains shadow 
versions of operating systems for which they are targeted , page tables on each VM so that hardware - level virtual 
creating compatibility issues that are particularly difficult to memory facilities can be used to process memory accesses . 
manage in large distributed systems . The VM kernel additionally includes routines that imple 

For all of these reasons , a higher level of abstraction , 45 ment virtual communications and data - storage devices as 
referred to as the “ virtual machine , ” ( “ VM ” ) has been well as device drivers that directly control the operation of 
developed and evolved to further abstract computer hard underlying hardware communications and data - storage 
ware in order to address many difficulties and challenges devices . Similarly , the VM kernel virtualizes various other 
associated with traditional computing systems , including the types of I / O devices , including keyboards , optical - disk 
compatibility issues discussed above . FIGS . 5A - B show two 50 drives , and other such devices . The virtualization layer 504 
types of VM and virtual - machine execution environments . essentially schedules execution of VMs much like an oper 
FIGS . 5A - B use the same illustration conventions as used in ating system schedules execution of application programs , 
FIG . 4. FIG . 5A shows a first type of virtualization . The so that the VMs each execute within a complete and fully 
computer system 500 in FIG . 5A includes the same hardware functional virtual hardware layer . 
layer 502 as the hardware layer 402 shown in FIG . 4. 55 FIG . 5B shows a second type of virtualization . In FIG . 5B , 
However , rather than providing an operating system layer the computer system 540 includes the same hardware layer 
directly above the hardware layer , as in FIG . 4 , the virtual 542 and operating system layer 544 as the hardware layer 
ized computing environment shown in FIG . 5A features a 402 and the operating system layer 404 shown in FIG . 4 . 
virtualization layer 504 that interfaces through a virtualiza Several application programs 546 and 548 are shown run 
tion - layer / hardware - layer interface 506 , equivalent to inter- 60 ning in the execution environment provided by the operating 
face 416 in FIG . 4 , to the hardware . The virtualization layer system 544. In addition , a virtualization layer 550 is also 
504 provides a hardware - like interface to a number of VMs , provided , in computer 540 , but , unlike the virtualization 
such as VM 510 , in a virtual - machine layer 511 executing layer 504 discussed with reference to FIG . 5A , virtualization 
above the virtualization layer 504. Each VM includes one or layer 550 is layered above the operating system 544 , referred 
more application programs or other higher - level computa- 65 to as the " host OS , ” and uses the operating system interface 
tional entities packaged together with an operating system , to access operating - system - provided functionality as well as 
referred as a “ guest operating system , ” such as application the hardware . The virtualization layer 550 comprises pri 
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marily a VMM and a hardware - like interface 552 , similar to application can thus be digitally encoded as one or more files 
hardware - like interface 508 in FIG . 5A . The hardware - layer within an OVF package that can be transmitted , distributed , 
interface 552 , equivalent to interface 416 in FIG . 4 , provides and loaded using well - known tools for transmitting , distrib 
an execution environment for a number of VMs 556-558 , uting , and loading files . A virtual appliance is a software 
each including one or more application programs or other 5 service that is delivered as a complete software stack 
higher - level computational entities packaged together with a installed within one or more VMs that is encoded within an 
guest operating system . OVF package . 

In FIGS . 5A - 5B , the layers are somewhat simplified for The advent of VMs and virtual environments has allevi 
clarity of illustration . For example , portions of the virtual ated many of the difficulties and challenges associated with 
ization layer 550 may reside within the host - operating- 10 traditional general - purpose computing . Machine and oper 
system kernel , such as a specialized driver incorporated into ating - system dependencies can be significantly reduced or 
the host operating system to facilitate hardware access by entirely eliminated by packaging applications and operating 
the virtualization layer . systems together as VMs and virtual appliances that execute 

It should be noted that virtual hardware layers , virtual within virtual environments provided by virtualization lay 
ization layers , and guest operating systems are all physical 15 ers running on many different types of computer hardware . 
entities that are implemented by computer instructions A next level of abstraction , referred to as virtual data centers 
stored in physical data - storage devices , including electronic or virtual infrastructure , provide a data - center interface to 
memories , mass - storage devices , optical disks , magnetic virtual data centers computationally constructed within 
disks , and other such devices . The term “ virtual ” does not , physical data centers . 
in any way , imply that virtual hardware layers , virtualization 20 FIG . 7 shows virtual data centers provided as an abstrac 
layers , and guest operating systems are abstract or intan tion of underlying physical - data - center hardware compo 
gible . Virtual hardware layers , virtualization layers , and nents . In FIG . 7 , a physical data center 702 is shown below 
guest operating systems execute on physical processors of a virtual - interface plane 704. The physical data center con 
physical computer systems and control operation of the sists of a virtual - data - center management server 706 and any 
physical computer systems , including operations that alter 25 of various different computers , such as PCs 708 , on which 
the physical states of physical devices , including electronic a virtual - data - center management interface may be dis 
memories and mass - storage devices . They are as physical played to system administrators and other users . The physi 
and tangible as any other component of a computer since , cal data center additionally includes generally large numbers 
such as power supplies , controllers , processors , busses , and of server computers , such as server computer 710 , that are 
data - storage devices . 30 coupled together by local area networks , such as local area 

A VM or virtual application , described below , is encap network 712 that directly interconnects server computer 710 
sulated within a data package for transmission , distribution , and 714-720 and a mass - storage array 722. The physical 
and loading into a virtual - execution environment . One pub data center shown in FIG . 7 includes three local area 
lic standard for virtual - machine encapsulation is referred to networks 712 , 724 , and 726 that each directly interconnects 
as the “ open virtualization format " ( " OVF ” ) . The OVF 35 a bank of eight servers and a mass - storage array . The 
standard specifies a format for digitally encoding a VM individual server computers , such as server computer 710 , 
within one or more data files . FIG . 6 shows an OVF package . each includes a virtualization layer and runs multiple VMs . 
An OVF package 602 includes an OVF descriptor 604 , an Different physical data centers may include many different 
OVF manifest 606 , an OVF certificate 608 , one or more types of computers , networks , data - storage systems and 
disk - image files 610-611 , and one or more device files 40 devices connected according to many different types of 
612-614 . The OVF package can be encoded and stored as a connection topologies . The virtual - interface plane 704 , a 
single file or as a set of files . The OVF descriptor 604 is an logical abstraction layer shown by a plane in FIG . 7 , 
XML document 620 that includes a hierarchical set of abstracts the physical data center to a virtual data center 
elements , each demarcated by a beginning tag and an ending comprising one or more device pools , such as device pools 
tag . The outermost , or highest - level , element is the envelope 45 730-732 , one or more virtual data stores , such as virtual data 
element , demarcated by tags 622 and 623. The next - level stores 734-736 , and one or more virtual networks . In certain 
element includes a reference element 626 that includes implementations , the device pools abstract banks of physical 
references to all files that are part of the OVF package , a disk servers directly interconnected by a local area network . 
section 628 that contains meta information about all of the The virtual - data - center management interface allows pro 
virtual disks included in the OVF package , a networks 50 visioning and launching of VMs with respect to device 
section 630 that includes meta information about all of the pools , virtual data stores , and virtual networks , so that 
logical networks included in the OVF package , and a virtual - data - center administrators need not be concerned 
collection of virtual - machine configurations 632 which fur with the identities of physical - data - center components used 
ther includes hardware descriptions of each VM 634. There to execute particular VMs . Furthermore , the virtual - data 
are many additional hierarchical levels and elements within 55 center management server 706 includes functionality to 
a typical OVF descriptor . The OVF descriptor is thus a migrate running VMs from one physical server to another in 
self - describing , XML file that describes the contents of an order to optimally or near optimally manage device alloca 
OVF package . The OVF manifest 606 is a list of crypto tion , provides fault tolerance , and high availability by 
graphic - hash - function - generated digests 636 of the entire migrating VMs to most effectively utilize underlying physi 
OVF package and of the various components of the OVF 60 cal hardware devices , to replace VMs disabled by physical 
package . The OVF certificate 608 is an authentication cer hardware problems and failures , and to ensure that multiple 
tificate 640 that includes a digest of the manifest and that is VMs supporting a high - availability virtual appliance are 
cryptographically signed . Disk image files , such as disk executing on multiple physical computer systems so that the 
image file 610 , are digital encodings of the contents of services provided by the virtual appliance are continuously 
virtual disks and device files 612 are digitally encoded 65 accessible , even when one of the multiple virtual appliances 
content , such as operating - system images . A VM or a becomes compute bound , data - access bound , suspends 
collection of VMs encapsulated together within a virtual execution , or fails . Thus , the virtual data center layer of 
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abstraction provides a virtual - data - center abstraction of agents are primarily responsible for offloading certain of the 
physical data centers to simplify provisioning , launching , virtual - data - center management - server functions specific to 
and maintenance of VMs and virtual appliances as well as to a particular physical server to that physical server . The 
provide high - level , distributed functionalities that involve virtual - data - center agents relay and enforce device alloca 
pooling the devices of individual physical servers and 5 tions made by the VDC management server VM 810 , relay 
migrating VMs among physical servers to achieve load virtual - machine provisioning and configuration - change balancing , fault tolerance , and high availability . commands to host agents , monitor and collect performance FIG . 8 shows virtual - machine components of a virtual statistics , alarms , and events communicated to the virtual data - center management server and physical servers of a data - center agents by the local host agents through the physical data center above which a virtual - data - center inter- 10 interface API , and to carry out other , similar virtual - data face is provided by the virtual - data - center management 
server . The virtual - data - center management server 802 and management tasks . 
a virtual - data - center database 804 comprise the physical The virtual - data - center abstraction provides a convenient 

and efficient level of abstraction for exposing the computa components of the management component of the virtual 
data center . The virtual - data - center management server 802 15 tional devices of a cloud - computing facility to cloud - com 
includes a hardware layer 806 and virtualization layer 808 , puting - infrastructure users . A cloud - director management 
and runs a virtual - data - center management - server VM 810 server exposes virtual devices of a cloud - computing facility 
above the virtualization layer . Although shown as a single to cloud - computing - infrastructure users . In addition , the 
server in FIG . 8 , the virtual - data - center management server cloud director introduces a multi - tenancy layer of abstrac 
( “ VDC management server ” ) may include two or more 20 tion , which partitions VDCs into tenant - associated VDCs 
physical server computers that support multiple VDC - man that can each be allocated to a particular individual tenant or 
agement - server virtual appliances . The virtual - data - center tenant organization , both referred to as a “ tenant . ” A given 
management - server VM 810 includes a management - inter tenant be provided one or more tenant - associated VDCs 
face component 812 , distributed services 814 , core services by a cloud director managing the multi - tenancy layer of 
816 , and a host - management interface 818. The host - man- 25 abstraction within a cloud - computing facility . The cloud 
agement interface 818 is accessed from any of various services interface ( 308 in FIG . 3 ) exposes a virtual - data 
computers , such as the PC 708 shown in FIG . 7. The center management interface that abstracts the physical data host - management interface 818 allows the virtual - data - cen center . 
ter administrator to configure a virtual data center , provision FIG . 9 shows a cloud - director level of abstraction . In FIG . 
VMs , collect statistics and view log files for the virtual data 30 9 , three different physical data centers 902-904 are shown center , and to carry out other , similar management tasks . The below planes representing the cloud - director layer of host - management interface 818 interfaces to virtual - data abstraction 906-908 . Above the planes representing the center agents 824 , 825 , and 826 that execute as VMs within 
each of the physical servers of the physical data center that cloud - director level of abstraction , multi - tenant virtual data 
is abstracted to a virtual data center by the VDC manage- 35 centers 910-912 are shown . The devices of these multi 
ment server . tenant virtual data centers are securely partitioned in order to 

The distributed services 814 include a distributed - device provide secure virtual data centers to multiple tenants , or 
scheduler that assigns VMs to execute within particular cloud - services - accessing organizations . For example , a 
physical servers and that migrates VMs in order to most cloud - services - provider virtual data center 910 is partitioned 
effectively make use of computational bandwidths , data- 40 into four different tenant - associated virtual - data centers 
storage capacities , and network capacities of the physical within a multi - tenant virtual data center for four different 
data center . The distributed services 814 further include a tenants 916-919 . Each multi - tenant virtual data center is 
high - availability service that replicates and migrates VMs in managed by a cloud director comprising one or more 
order to ensure that VMs continue to execute despite prob cloud - director servers 920-922 and associated cloud - direc 
lems and failures experienced by physical hardware com- 45 tor databases 924-926 . Each cloud - director server or servers 
ponents . The distributed services 814 also include a live runs a cloud - director virtual appliance 930 that includes a 
virtual - machine migration service that temporarily halts cloud - director management interface 932 , a set of cloud 
execution of a VM , encapsulates the VM in an OVF pack director services 934 , and a virtual - data - center management 
age , transmits the OVF package to a different physical server interface 936. The cloud - director services include an 
server , and restarts the VM on the different physical server 50 interface and tools for provisioning multi - tenant virtual data 
from a virtual - machine state recorded when execution of the center virtual data centers on behalf of tenants , tools and 
VM was halted . The distributed services 814 also include a interfaces for configuring and managing tenant organiza 
distributed backup service that provides centralized virtual tions , tools and services for organization of virtual data 
machine backup and restore . centers and tenant - associated virtual data centers within the 

The core services 816 provided by the VDC management 55 multi - tenant virtual data center , services associated with 
server VM 810 include host configuration , virtual - machine template and media catalogs , and provisioning of virtual 
configuration , virtual - machine provisioning , generation of ization networks from a network pool . Templates are VMs 
virtual - data - center alarms and events , ongoing event logging that each contains an OS and / or one or more VMs containing 
and statistics collection , a task scheduler , and a device applications . A template may include much of the detailed 
management module . Each physical server 820-822 also 60 contents of VMs and virtual appliances that are encoded 
includes a host - agent VM 828-830 through which the vir within OVF packages , so that the task of configuring a VM 
tualization layer can be accessed via a virtual - infrastructure or virtual appliance is significantly simplified , requiring only 
application programming interface ( " API " ) . This interface deployment of one OVF package . These templates are stored 
allows a remote administrator or user to manage an indi in catalogs within a tenant's virtual - data center . These 
vidual server through the infrastructure API . The virtual- 65 catalogs are used for developing and staging new virtual 
data - center agents 824-826 access virtualization - layer server appliances and published catalogs are used for sharing 
information through the host agents . The virtual - data - center templates in virtual appliances across organizations . Cata 
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logs may include OS images and other information relevant OSL virtualization may be implemented in a physical data 
to construction , distribution , and provisioning of virtual center 1102. In FIG . 11 , the physical data center 1102 is 
appliances . shown below a virtual - interface plane 1104. The physical 

Considering FIGS . 7 and 9 , the VDC - server and cloud data center 1102 consists of a virtual - data - center manage 
director layers of abstraction can be seen , as discussed 5 ment server 1106 and any of various different computers , 
above , to facilitate employment of the virtual - data - center such as PCs 1108 , on which a virtual - data - center manage 
concept within private and public clouds . However , this ment interface may be displayed to system administrators 
level of abstraction does not fully facilitate aggregation of and other users . The physical data center 1100 additionally 
single - tenant and multi - tenant virtual data centers into het includes a number of server computers , such as server 
erogeneous or homogeneous aggregations of cloud - comput- 10 computers 1110-1117 , that are coupled together by local area 
ing facilities . networks , such as local area network 1118 , that directly 

FIG . 10 shows virtual - cloud - connector nodes ( “ VCC interconnects server computers 1110-1117 and a mass - stor 
nodes ” ) and a VCC server , components of a distributed age array 1120. The physical data center 1102 includes three 
system that provides multi - cloud aggregation and that local area networks that each directly interconnects a bank 
includes a cloud - connector server and cloud - connector 15 of eight server computers and a mass - storage array . Certain 
nodes that cooperate to provide services that are distributed server computers have a virtualization layer that run mul 
across multiple clouds . VMware vCloudTM VCC servers and tiple VMs 1122. For example , server computer 1113 has a 
nodes are one example of VCC server and nodes . In FIG . 10 , virtualization layer that is used to run VM 1124. Certain 
seven different cloud - computing facilities are shown 1002 VMs and server computers may be used to host a number of 
1008. Cloud - computing facility 1002 is a private multi- 20 containers . A server computer 1126 has a hardware layer 
tenant cloud with a cloud director 1010 that interfaces to a 1128 and an operating system layer 1130 that is shared by a 
VDC management server 1012 to provide a multi - tenant number of containers 1132-1134 via an OSL virtualization 
private cloud comprising multiple tenant - associated virtual layer 1136 as described in greater detail below with refer 
data centers . The remaining cloud - computing facilities ence to FIG . 12. Alternatively , the VM 1124 has a guest 
1003-1008 may be either public or private cloud - computing 25 operating system 1140 and an OSL virtualization layer 1142 . 
facilities and may be single - tenant virtual data centers , such The guest operating system 1140 is shared by a number of 
as virtual data centers 1003 and 1006 , multi - tenant virtual containers 1144-1146 via the OSL virtualization layer 1142 
data centers , such as multi - tenant virtual data centers 1004 as described in greater detail below with reference to FIG . 
and 1007-1008 , or any of various different kinds of third 13 . 
party cloud - services facilities , such as third - party cloud- 30 While a traditional virtualization layer can simulate the 
services facility 1005. An additional component , the VCC hardware interface expected by any of many different oper 
server 1014 , acting as a controller is included in the private ating systems , OSL virtualization essentially provides a 
cloud - computing facility 1002 and interfaces to a VCC node secure partition of the execution environment provided by a 
1016 that runs as a virtual appliance within the cloud particular operating system . As one example , OSL virtual 
director 1010. A VCC server may also run as a virtual 35 ization provides a file system to each container , but the file 
appliance within a VDC management server that manages a system provided to the container is essentially a view of a 
single - tenant private cloud . The VCC server 1014 addition partition of the general file system provided by the under 
ally interfaces , through the Internet , to VCC node virtual lying operating system of the host . In essence , OSL virtu 
appliances executing within remote VDC management serv alization uses operating - system features , such as namespace 
ers , remote cloud directors , or within the third - party cloud 40 isolation , to isolate each container from the other containers 
services 1018-1023 . The VCC server provides a VCC server running on the same host . In other words , namespace 
interface that can be displayed on a local or remote terminal , isolation ensures that each application is executed within the 
PC , or other computer system 1026 to allow a cloud execution environment provided by a container to be iso 
aggregation administrator or other user to access VCC lated from applications executing within the execution envi 
server - provided aggregate - cloud distributed services . In 45 ronments provided by the other containers . A container 
general , the cloud - computing facilities that together form a cannot access files not included the container's namespace 
multiple - cloud - computing aggregation through distributed and cannot interact with applications running in other con 
services provided by the VCC server and VCC nodes are tainers . As a result , a container can be booted up much faster 
geographically and operationally distinct . than a VM , because the container uses operating - system 

Containers and Containers Supported by Virtualization 50 kernel features that are already available and functioning 
Layers within the host . Furthermore , the containers share compu 

As mentioned above , while the virtual - machine - based tational bandwidth , memory , network bandwidth , and other 
virtualization layers , described in the previous subsection , computational resources provided by the operating system , 
have received widespread adoption and use in a variety of without the overhead associated with computational 
different environments , from personal computers to enor- 55 resources allocated to VMs and virtualization layers . Again , 
mous distributed computing systems , traditional virtualiza however , OSL virtualization does not provide many desir 
tion technologies are associated with computational over able features of traditional virtualization . As mentioned 
heads . While these computational overheads have steadily above , OSL virtualization does not provide a way to run 
decreased , over the years , and often represent ten percent or different types of operating systems for different groups of 
less of the total computational bandwidth consumed by an 60 containers within the same host and OSL - virtualization does 
application running above a guest operating system in a not provide for live migration of containers between hosts , 
virtualized environment , traditional virtualization technolo high - availability functionality , distributed resource schedul 
gies nonetheless involve computational costs in return for ing , and other computational functionality provided by 
the power and flexibility that they provide . traditional virtualization technologies . 

Another approach to virtualization , as also mentioned 65 FIG . 12 shows an example server computer used to host 
above , is referred to as operating - system - level virtualization three containers . As discussed above with reference to FIG . 
( “ OSL virtualization ” ) . FIG . 11 shows two ways in which 4 , an operating system layer 404 runs above the hardware 
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402 of the host computer . The operating system provides an Methods and Systems to Identify Anomalous 
interface , for higher - level computational entities , that Behaving Server Computers of a Distributed 
includes a system - call interface 428 and the non - privileged Computing System 
instructions , memory addresses , and registers 426 provided 
by the hardware layer 402. However , unlike in FIG . 4 , in 5 FIG . 14 shows an example of logging event messages in 
which applications run directly above the operating system event logs . In FIG . 14 , a number of computer systems 
layer 404 , OSL virtualization involves an OSL virtualization 1402-1406 within a distributed computing system are linked 
layer 1202 that provides operating - system interfaces 1204 together by an electronic communications medium 1408 and 
1206 to each of the containers 1208-1210 . The containers , in additionally linked through a communications bridge / router 
turn , provide an execution environment for an application 10 1410 to an administration computer system 1412 that 

includes an administrative console 1414. As indicated by that runs within the execution environment provided by curved arrows , such as curved arrow 1416 , multiple com container 1308. The container can be thought of as a ponents within each of the discrete computer systems 1402 partition of the resources generally available to higher - level 1406 as well as the communications bridge / router 1410 computational entities through the operating system inter 15 generate event messages that are transmitted to the admin 
face 430 . istration computer 1412. Event messages may be generated 

FIG . 13 shows an approach to implementing the contain by any event source . Event sources may be , but are not 
ers on a VM . FIG . 13 shows a host computer similar to that limited to , application programs , operating systems , VMs , 
shown in FIG . 5A , discussed above . The host computer guest operating systems , containers , network devices , 
includes a hardware layer 502 and a virtualization layer 504 20 machine codes , event channels , and other computer pro 
that provides a virtual hardware interface 508 to a guest grams or processes running on the computer systems 1402 
operating system 1302. Unlike in FIG . 5A , the guest oper 1406 , the bridge / router 1410 and any other components of 
ating system interfaces to an OSL - virtualization layer 1304 the distributed computing system . Event messages may be 
that provides container execution environments 1306-1308 relatively directly transmitted from a component within a 
to multiple application programs . 25 discrete computer system to the administration computer 

Note that , although only a single guest operating system 1412 or may be collected at various hierarchical levels 
and OSL virtualization layer are shown in FIG . 13 , a single within a discrete computer system and then forwarded from 
virtualized host system can run multiple different guest an event - message - collecting entity within the discrete com 
operating systems within multiple VMs , each of which puter system to the administration computer 1412. The 
supports one or more OSL - virtualization containers . A vir- 30 administration computer 1412 collects and may store the 
tualized , distributed computing system that uses guest oper received event messages in a data - storage device or appli 

ance 1418 as event logs 1420-1424 . Rectangles , such as ating systems running within VMs to support OSL - virtual rectangle 1426 , represent individual event messages . For ization layers to provide containers for running applications 
is referred to , in the following discussion , as a “ hybrid 35 messages generated within the computer system 1402 . example , event log 1420 may comprise a list of event 
virtualized distributed computing system . ” Methods described below enable an administrator , or other Running containers above a guest operating system within user , to detect anomalous event sources 1428 within a a VM provides advantages of traditional virtualization in population of event sources . 
addition to the advantages of OSL virtualization . Containers FIG . 15 shows an example of a source code 1502 of an 
can be quickly booted in order to provide additional execu- 40 application program , an operating system , a VM , a guest 
tion environments and associated resources for additional operating system , or any other computer program or 
application instances . The resources available to the guest machine code . The source code 1502 is just one example of 
operating system are efficiently partitioned among the con an event source that generates event messages . Rectangles , 
tainers provided by the OSL - virtualization layer 1304 in such as rectangle 1504 , represent a definition , a comment , a 
FIG . 13 , because there is almost no additional computational 45 statement , or a computer instruction that expresses some 
overhead associated with container - based partitioning of action to be executed by a computer . The source code 1502 
computational resources . However , many of the powerful includes log write instructions that generate event messages 
and flexible features of the traditional virtualization tech when certain events predetermined by the developer occur 
nology can be applied to VMs in which containers run above during execution of the source code 1502. For example , 
guest operating systems , including live migration from one 50 source code 1502 includes an example log write instruction 1506 that when executed generates an “ event message 1 ” host to another , various types of high - availability and dis represented by rectangle 1508 , and a second example log tributed resource scheduling , and other such features . Con write instruction 1510 that when executed generates “ event tainers provide share - based allocation of computational message 2 " represented by rectangle 1512. In the example of resources to groups of applications with guaranteed isolation 55 FIG . 15 , the log write instruction 1508 is embedded within of applications in one container from applications in the a set of computer instructions that are repeatedly executed in remaining containers executing above a guest operating a loop 1514. As shown in FIG . 15 , the same event message system . Moreover , resource allocation can be modified at 1 is repeatedly generated 1516. The same type of log write 
run time between containers . The traditional virtualization instructions may also be located in different places through 
layer provides for flexible and scaling over large numbers of 60 out the source code , which in turns creates repeats of 
hosts within large distributed computing systems and a essentially the same type of event message in the event log . 
simple approach to operating - system upgrades and patches . In FIG . 15 , the notation “ log.write ( ) ” is a general 
Thus , the use of OSL virtualization above traditional virtu representation of a log write instruction . In practice , the 
alization in a hybrid virtualized distributed computing sys form of the log write instruction varies for different pro 
tem , as shown in FIG . 13 , provides many of the advantages 65 gramming languages . In general , event messages are rela 
of both a traditional virtualization layer and the advantages tively cryptic , including generally only one or two natural 
of OSL virtualization . language words and / or phrases as well as various types of 
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text strings that represent file names , path names , and , types and number of each event type may be recorded in a 
perhaps various alphanumeric parameters . In practice , a log meta - data structure referred to in the following description 
write instruction may also include the name of the source of as an event - type log . 
the event message ( e.g. , name of the application program or In a distributed computer system , a set of event sources 
operating system and version ) and the name of the event log 5 may be running simultaneously on a number of different 
to which the event message is written . Log write instructions devices or virtual resources of a distributed computing may be written in a source code by the developer of an system as described above . An event source may be an application program or operating system in order to record operating system , application program , VM , or machine events that occur while an operating system or application code . For example , the event sources may be copies of the program is running . For example , a developer may include 10 
log write instructions that are executed when certain events same operating system running on a number of different 
occur , such as failures , logins , or errors . server computers , may be copies of the same guest operating 

FIG . 16 shows an example of a log write instruction 1602 . system running the same applications on a number of 
In the example of FIG . 16 , the log write instruction 1602 different server computers , or may be copies of the same 
includes arguments identified with “ $ . ” For example , the log 15 application program running on a number of different server 
write instruction 1602 includes a time - stamp argument computers . After these event sources have been running over 
1604 , a thread number argument 1605 , and an internet an observation time window , AT , it is expected that the log 
protocol ( " IP " ) address argument 1606. The example log files generated by the event sources be approximately the 
write instruction 1602 also includes text strings and natural same . In other words , it is expected that a plurality of event 
language words and phrases that identify the type of event 20 sources would generate similar event logs . In particular , 
that triggered the log write instruction , such as “ Repair these event logs should have approximately the same fre 
session " 1608. The text strings between brackets “ [ ] ” quency of event types generated over the observation time 
represent file - system paths , such as path 1610. When the log window AT . The observation time window AT may be a 
write instruction 1602 is executed , parameters are assigned historical window of time or may be a run - time window . An 
to the arguments and the text strings and natural - language 25 event log that is different from a plurality of event logs 
words and phrases are stored as an event message in an event generated by event sources may be used to identify the event 
log . source as an event source outlier . Methods described below 

FIG . 17 shows an example of an event message 1702 are directed to identifying which event sources of a set of 
generated by the log write instruction 1602. The arguments event sources are outliers . A component of a distributed 
of the log write instruction 1602 may be assigned numerical 30 computing system that runs an event source outlier may be 
parameters that are recorded in the event message 1702 at identified for management purposes , such as , but not limited 
the time the event message is written to the event log . For to , identified for troubleshooting , identified as having prob 
example , the time stamp 1604 , thread and IP address lems or issues , or may be identified for monitoring in case 
1606 of the log write instruction 1602 are assigned corre of future problems . 
sponding numerical parameters 1704-1706 in the event 35 FIG . 19A shows an example set of M event sources and 
message 1702. The time stamp 1704 , in particular , repre M corresponding distributed computing system compo 
sents the date and time the event message is generated . The nents , where M denotes the number of event sources and 
text strings and natural - language words and phrases of the corresponding components of a distributed computing sys 
log write instruction 1602 also appear unchanged in the tem . The event sources 1901-1904 are identified as “ event 
event message 1702 and may be used to identify the type of 40 source 1 , ” “ event source 2 , ” “ event source 3 , ” and “ event 
event that occurred during execution of the application source M. ” The event sources 1 , 2 , 3 , M may represent 
program or operating system . M copies of the same application program , same operating 
As event messages are received from various event system , VM , or guest operating system running on the 

sources , the event messages are stored in the order in which corresponding components 1911-1914 . An ellipsis , such as 
the event messages are received . FIG . 18 shows a small , 45 ellipsis 1916 , represents event sources and corresponding 
eight - entry portion of an event log 1802. In FIG . 18 , each components between event source 3 and event source M. 
rectangular cell , such as rectangular cell 1804 , of the portion FIG . 19B shows M event logs generated by the M event 
of the event log 1802 represents a single stored event sources as described above with reference to FIGS . 11-15 . In 
message . For example , event message 1802 includes a short FIG . 19B , the event sources 1901-1904 generate corre 
natural - language phrase 1806 , date 1808 and time 1810 50 sponding event logs 1921-1924 . The event logs 1921-1924 
numerical parameters , as well as , a numerical parameter represent the event messages generated by the correspond 
1812 that appears to identify a particular host computer . ing event sources 1901-1904 in an observation time window 

The text strings and natural - language words and phrases AT . For example , rectangles 1926-1928 represent three 
of each event message describe a particular type of event different event messages " event message 5 , ” “ event message 
called an “ event type . ” For example , the text strings and 55 2 , ” and “ event message 1 ” generated by event source 1 1901 
natural language words and phrases , called " non - parametric within the observation time window AT . Because the event 
tokens , ” of the event message 1702 shown in FIG . 17 sources 1 , 2 , 3 , ... , Mare similar , the corresponding event 
identify the event type . As explained above , each time the logs are expected to generate event messages in which each 
log write instruction 1602 of FIG . 16 is executed , only the event type occurs with approximately the same frequency in 
parameter values are changed , such as the time and date . The 60 each of the event logs over the observation time window AT . 
non - variable text strings and natural - language words and An event log that is different from the other event logs may 
phrases ( i.e. , non - parametric tokens ) are the same for each be identified for management purposes , such as identified as 
event message generated by the log write instruction 1602 having a problem at the component used to host the event 
and stored in the event log . Event - type analysis may be used source . However , the event logs may each have many 
to identify the event type of each event message based on the 65 thousands or even millions of event messages generated 
non - parametric tokens , and event messages of the same within the observation time window AT . Attempts to com 
event type may be counted . A record of the different event pare event logs in order to identify which of the event logs 



US 10,572,329 B2 
19 20 

may be different from the others event logs would be an repair session event messages . In FIG . 21 , the parametric 
extremely costly and time consuming task to carry out valued tokens in the event message following initial token 
manually . recognition are indicated by shading . For example , initial 

Methods collect the event logs generated by the event token recognition determines that the first token 2106 is a 
sources within the observation time window AT . Event - type 5 date and the second token 2107 is a time . The tokens 
analysis is performed on each of the event logs in order to identified as parameters are identified by shaded rectangles , 
identify the different event types . The frequency of each such as shaded rectangle 2110 of the date 2106 and shaded event type is determined by counting the number of times rectangle of 2112 of the time 2107. The parametric - valued each event type occurs within the observation time window tokens are discarded leaving the non - parametric text strings , AT . The different event types and associated frequencies for 10 
each event source are recorded in an event - type log . natural language words and phrases , punctuation , parenthe 

ses , and brackets . FIG . 20 shows examples of an event - type log generated 
from the event log 1921 of the event source 1 1901. In block Various types of symbolically encoded values , including 
2002 , event - type analysis is used to determine the event type dates , times , machine addresses , network addresses , and 
of the event message in the event log 1921. Event type 15 other such parameters can be recognized using regular 
analysis determines the non - parametric tokens of each event expressions or programmatically . For example , there are 
message . Event messages having the same non - parametric numerous ways to represent dates . A program or a set of 
tokens may be regarded as being of the same event type . regular expressions can be used to recognize symbolically 
Event message 5 1926 belongs to an event type denoted by encoded dates in any of the common formats . It is possible 
“ event type 5 , ” event message 2 1927 belongs to an event 20 that the token - recognition process may incorrectly deter 
type denoted by “ event message 2 , " and event message 1 mine that an arbitrary alphanumeric string represents some 
1928 belongs to an event type denoted by “ event message type of symbolically encoded parameter when , in fact , the 
1. ” In block 2004 , the frequency of each event type is alphanumeric string only coincidentally has a form that can 
determined by counting the number of times event messages be interpreted to be a parameter . The currently described 
of the same event type occur with the same observation time 25 methods and systems do not depend on absolute precision 
window AT . The different event types and associated fre and reliability of the event - message - preparation process . 
quencies are recorded in an event - type log 2006. Column Occasional misinterpretations generally do not result in 
2008 lists the event types determined in block 2002. Column mistyping of event messages and , in the rare circumstances 
2010 list the frequencies of each event type determined in in which event messages may be mistyped , the mistyping is 
block 2004. For the sake of simplicity , in this example the 30 most often discovered during subsequent processing . 
event messages belong to one of six different event types In the implementation shown in FIG . 21 , the event 
with event type 1 generated five times , event type 2 gener message 1702 is subject to textualization in which an 
ated 7 times and so on within the observation time window additional token - recognition step of the non - parametric por 
AT . tions of the event message is performed in order to remove 

Event - type analysis introduced in block 2002 discards 35 punctuation and separation symbols , such as parentheses 
punctuation , parentheses , brackets , and numerical param and brackets , commas , and dashes that occur as separate 
eters of an event message . In other words , event - type tokens or that occur at the leading and trailing extremities of 
analysis is performed to reduce an event message of interest previously recognized non - parametric tokens , as shown by 
to text strings and natural - language words and phrases ( i.e. , underlining in the retokenized event message 2114 in FIG . 
non - parametric tokens ) . 40 21. For example , brackets and a coma 2118 are underlined . 

FIG . 21 shows an example of event - type analysis per The punctuation , parentheses , and brackets are discarded 
formed on the event message 1702 shown in FIG . 17. The leaving a textualized event message of interest 2120 that 
event message 1702 is first tokenized by considering the comprises only the non - parametric text strings and natural 
event message as comprising tokens separated by non language words and phrases of the original event message 
printed characters , referred to as “ white space . ” In FIG . 21 , 45 1702 . 
this initial tokenization of the event message 1702 is illus FIG . 22 shows the event sources 1901-1904 and associ 
trated by underlining of the printed or visible characters . For ated event - type logs 2006 and 2201-2203 , respectively . In 
example , the date 2102 , time 2103 , and thread 2104 at the the example of FIG . 22 , event - type logs 2006 , 2201 , and 
beginning of the text contents of the event message 2102 , 2203 have similar frequencies for each of the six event 
following initial tokenization , become a first token 2106 , a 50 types . However , the frequencies of the event types of the 
second token 2107 , and a third token 2108 , as indicated by event - type log 2202 different from the frequencies of the 
underlining event - type logs 2006 , 2201 , and 2203 , which indicates that 
Next , a token - recognition pass is made to recognize any there may be a problem or future problem with the compo 

of the initial tokens as various types of parameters . Param nent 1913 that host the event source 1903 in FIG . 19 . 
eters are tokens or message fields that are likely to be highly 55 Methods described below are directed to determining the 
variable over a set of messages of a particular type . Date / degree of similarity between the event sources based on the 
time stamps , for example , are nearly unique for each event event - type logs . 
message , with two event messages having an identical In one implementation , the degree to which event - type 
date / time stamp only in the case that the two event messages logs of a set of event sources are similar , or alternatively 
are generated within less than a second of one another . 60 dissimilar , from one another , the sets of frequencies of the 
Additional examples of parameters include global unique different event types of each event - type log may be treated 
identifiers ( “ GUIDs ” ) , hypertext transfer protocol status as N - dimensional vectors in an N - dimensional vector space , 
values ( “ HTTP statuses ” ) , universal resource locators where N is the number of different event types of the 
( “ URLs ” ) , network addresses , and other types of common event - type logs of the set of event sources . Consider a set of 
information entities that identify variable aspects of a type of 65 M event sources . Each event source has an associated 
event . By contrast , the phrase “ Repair session ” in event event - type log of N different event types generated over the 
message 1702 likely occurs within each of a large number of observation time window AT , as described above with 
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reference to FIG . 22. Let an N - dimensional event - type On the other hand , because the event - type frequency vectors 
frequency vector of an m - th event source , Esme be repre Vand V , are nearly orthogonal , the similarity Sim ( 1,1 ) is 
sented by : close to zero . 

V = ET , ... , ET ,, ... , ET In other implementations , the similarity between pairs of ( 1 ) 5 event sources may be determined by measuring a difference 
where between event - type probability distributions of two event 
subscript m identifies the m - th event source in the set of sources . Event - type probability distributions may be deter 

M event sources m = 1 , . . . , M ; mined as follows . Consider again the m - th event source of ETn.m'is the frequency of the “ event type n ” generated by the set of M event sources described above with reference to 
the m - th event source in the observation time window 10 Equation ( I ) in which each of the N event types occurs with 
AT ; and an event - type frequency given by 

subscript n is an event type index n = 1 , ... , N. 
The sets of frequencies of the event types of the event ET ' , . . . , ETn ..... ( 3 ) 
sources 1901-1904 described above with reference to FIG . where ETn.m " is the frequency of the “ event type n ” gener 
22 may be represented as 6 - dimensional vectors in a 6 - di- 15 ated by the m - th event source in the observation time mensional vector space as follows : V = [ 5,7,3,21,9,18 ] , V2 window AT . The probability of each event type may be [ 8,2,5,19,11,15 ] , Vz = [ 4,6,4,22,9,17 ] , and V [ 5,7,8,20,10 , calculated based on the frequency of each event type gen 17 ] . erated within the observation time window AT as follows : 

The direction of event - type frequency vectors of event 
sources may not be identical because the event sources may 20 
be run on different components and may have different ( 4a ) 
usages , but the directions of the associated event - type fre 
quency vectors are expected to be similar . The degree of 
similarity between any two event - type frequency vectors ( 4b ) 
may be quantitatively determined using cosine similarity . 25 ????? , ? = ??? ; 
The cosine similarity between any two event - type frequency 
vectors V , and V of two corresponding event sources , 
and ESk , may be calculated as follows : Consider a second k - th event source in the set of M event 

sources with event - type frequencies given by 

Pm.nl where 
ETTOT , m 

N 

nm 
n = 1 

Esm 
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where 
ETTOT , 

N 

n = 1 

( 2 ) ETA , ... , ET , ... ETNX ( 5 ) 

where ETnk is the frequency of the “ event type n ” generated 
Simcs ( m , k ) = 1 - by the k - th event source in the same observation time 

( ETÁ , m ) ( ETK ) window AT . The probabilities of each event type generated 
35 by the k - th event source may be calculated based on the 

frequencies of each event type generated over the observa 
tion time window AT as follows : 

The similarity , Simcs ( m , k ) , is calculated for each pair of 
event - type frequency vectors Vm and Vk , where m = 1 , ... , 
M , k = 2 , ... , M and k > m . The similarity Sims ( m , k ) ranges 40 ET ( 6a ) 
between 0 and 1 ( i.e. , OsSimcs ( m , k ) sl ) . When the similarity Okn 
Sim s ( m , k ) equals 0 the event - type frequency vectors V , 
and Vk are regarded as dissimilar . When the similarity ( 6b ) 
Sim ( m , k ) equals 1 the event - type frequency vectors V m , and ETTOT , * = ETA 
Vi are pointing in the same direction and may be regarded 45 
as identical . The closer the value of the similarity Simcs ( m , 
k ) is to 0 the more dissimilar the event - type frequency The probabilities of the N event types of the m - th event 
vectors Vm and Vk are to each other . The closer the value of source may be used to form a probability distribution 
the similarity Sims ( m , k ) is to 1 the more similar the denoted by { Pm.n } n = 1 ̂ . The probabilities of the N event 
event - type frequency vectors Vm and Vk are to each other . 50 types of the k - th event source may be used to form a 

FIG . 23 shows an example of three event - type frequency probability distribution denoted by { Qk , n } n = 1 
vectors Vi , Vj , and Vk represented by directional arrows FIG . 24 shows an example of determining an event - type 
2301-2303 . The event - type frequency vectors Vi , V ;, and Vk log 2402 of the event source 1 1901 that includes event - type 
emanate from an origin 2304 denoted by “ O. ” The event probabilities . The event - type log 2402 list the six event types 
type frequency vectors Vi , Vj , and Vk represent sets of 55 2008 and the associated frequencies 2010 determined as 
event - type frequencies of three corresponding event sources described above with reference to FIG . 20. In block 2406 , 
ES ;, ES ;, and ESE . In the example of FIG . 23 , the event - type the probabilities of each event type is calculated as described 
frequency vectors V , and Vkpoint in approximately the same above with reference to Equations ( 4 ) and ( 6 ) . The event 
general direction while the event - type frequency vector V ; type log 2402 includes column 2404 of probabilities 
points in a direction that is nearly orthogonal to the direc- 60 determined for each of the event types . The probabilities 
tions of the event - type frequency vectors V , and V Equation listed in column 2404 form the event - type probability dis 
( 2 ) may be used to calculate a similarity , Simes ( ij ) , between tribution of the event source 1 1901 . 
the event - type frequency vectors V? and V , and calculate FIG . 25 shows the event sources 1901-1904 and plots of 
similarity , Sim ( , k ) , between the event - type frequency associated probability distributions 2501-2504 . Horizontal 
vectors V , and Vk . In the example of FIG . 23 , because the 65 axes , such as horizontal axis 2506 of probability distribution 
event - type frequency vectors Vi , and Vk point in the same 2501 , represent the six different event types denoted by ET1 , 
general direction , the similarity Simcs ( j , k ) is close to one . ET2 , ET3 , ETA , ET5 , and ET .. Vertical axes , such as vertical 
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axis 2508 of the probability distribution 2501 , represent of msM . For example , similarity matrix element Sim ( 2,3 ) 
a range of probabilities . Bars represent the event - type prob 2602 represents the similarity calculated between event 
ability of an event type . For example , bar 2510 represents sources ES , and ES3 . The similarity matrix elements Sim ( m , 
the probability of the event type ETG occurring with the k ) may be calculated for each pair of event sources using any 
event source 1 1901. In the example of FIG . 25 , the 5 one of the similarities described above with reference to 
event - type probability distributions 2501 , 2502 , and 2504 Equations ( 2 ) , ( 7 ) , ( 8 ) , and ( 9 ) . For example , similarity 
appear similar while the event - type probability distribution matrix elements Sim ( m , k ) may represent cosine similarities 
2503 appears dissimilar from the event - type probability Simcs ( m , k ) , the information divergence similarities Simp 
distributions 2501 , 2502 , and 2504. Event - type logs 2006 , ( m , k ) , or Jenson - Shannon similarities Sim ; s { m , k ) . Note that 
2301 , and 2303 have similar frequencies for each of the six 10 because Sim ( m , k ) = Sim ( k , m ) the similarity matrix 2600 is 
event types . However , the frequencies of the event types of a symmetric matrix with only the upper diagonal matrix 
the event - type log 2302 differ from the frequencies of the elements represented . The diagonal elements are equal to 
event - type logs 2006 , 2301 , and 2303 , which may be indi one because Sim ( m , m ) = 1 for all in . 
cation of a problem or may be an indication of a future Hierarchical clustering analysis may be applied to the 
problem with the component 1913 that host the event source 15 similarities in the similarity matrix 2600 using an agglom 
1903. For example , the component 1913 may be identified erative approach and maximum or complete linkage crite 
for troubling shooting or monitoring . rion in order to create a dendrogram of the event sources . A 

In one implementation , the similarity between pairs of dendrogram is a branching tree diagram that represents a 
event sources may be measured using the cosine similarity hierarchy of relationships of similarities between event 
between the event - type probability distributions of the two 20 sources . The resulting dendrogram may then be used to form 
event sources as follows : clusters of event sources . 

FIG . 26B shows an example dendrogram 2604 con 
structed from similarities of pairs of event sources . Vertical 

( 7 ) axis 1606 represents the range of similarity values between 
Prmlenke 25 0 and 1 , where a similarity value of 1 represents identical 

Simcs ( m , k ) = 1 event sources and a similarity value of 0 represents com 
( Pn , m ) 2 ( On , k ) pletely different or dissimilar event sources . The dendro 

gram 2604 is a branching tree diagram in which the ends of 
the dendrogram , called “ leaves , ” represent the source ele 

In another implementation , the similarity between pairs of 30 ments . For example , leaves 2608-2610 represent three dif ferent event sources . The branches represent the similarities event sources may be measured by calculating an informa 
tion divergence , or relative entropy , between the event - type between the event sources . For example , the branch 2612 
probability distributions of the two event sources as follows : represents the similarity between the event sources 2608 and 

2609 , which corresponds to a similarity value 2614 on the 
35 similarity axis 2606. Branch 2616 represents the similarity 

( 8 ) between the event pair of event sources 2608 and 2609 and 
Simp ( m , k ) = Prmlog the event source 2610 , which corresponds to the similarity 

value 2618 on the similarity axis 2606. The height or value 
of the branches represents a degree of similarity between 

In Equation ( 8 ) when Qn = 0 implies Pn , m = 0 and 0 log 40 event sources . In the example of FIG . 26B , the smaller the 
value of the branch point , the less similar ( or more dissimi ( 0/0 ) = 0 . The similarity Simp ( m , k ) is calculated for each 

pair of event sources , where m = 1 , lar ) are the event sources at the ends of the branches . For M , k = 1 , .. M and 
k > m . example , because the similarity value 2614 is closer to one 

In still another implementation , the similarity between than the similarity value of the branch 2620 , the event 
45 sources 2608 and 2609 have greater similarity to one another pairs of event sources may be measured by calculating a than the event sources 2622 and 2624 . Jensen - Shannon divergence between the event - type prob 

ability distributions of two event sources as follows : A dissimilarity threshold may be used to separate or cut 
event sources into clusters . The dissimilarity threshold may 
be selected to obtain a desired clustering such that each of 

50 the resultant clusters satisfies a minimum similarity . Event Simjs ( m , k ) sources connected by branch points that are less than the 
dissimilarity threshold are separated or cut into clusters . For -M , log Mn + Pnym log Pn ; m + Onik log Qnk example , in FIG . 26B , dashed line 2626 represents a dis 
similarity threshold that corresponds to a minimum similar 

55 ity . Event sources connected by branch point 2628 are less 
than the dissimilarity threshold 2626 ( i.e. , minimum simi On , m + Qn , x ) / 2 . larity ) are separated into event source clusters C , and C2 . In 

The similarity Sim ; s ( m , k ) is calculated for each pair of other words , event sources that are connected by branch 
event sources , where m = 1 , ... , M , k = 1 , ... , M and k > m . points ( i.e. , similarities ) that are greater than the dissimilar 

After a similarity has been calculated for each pair of 60 ity threshold 2626 ( i.e. , minimum similarity ) form event 
event types using one of Equations ( 2 ) , ( 7 ) , ( 8 ) , and ( 9 ) , source clusters . 
hierarchical clustering analysis may be used to identify FIGS . 27A - 27L show an example of hierarchical cluster 
clusters of event sources within the observation time win ing applied to a set of seven event sources using maximum 
dow AT as follows . FIG . 26A shows an example similarity linkage criterion . The event sources are denoted by ESA , 
matrix 2600 of similarities calculated for each pair of M 65 ESB , ESC , ESD , ESE , ESF , and ESG . FIG . 27A shows an 
event sources denoted by ES1 , ES2 , ... , ESM . The similarity example similarity matrix of similarities calculated for each 
matrix elements are denoted by Sim ( m , k ) , where 1sk , pair of the seven event sources . An initial step in hierarchical 
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clustering is identifying the pair of event sources that are the revealed by the corresponding matrix elements in FIG . 27A . 
most similar . In the example of FIG . 27A , event sources ESB The average of these two similarities is 0.315 . Therefore the 
and ESF have the largest similarity value of 0.8 . In FIG . 27B , similarity between the linked event sources ( ESB , ESF ) and 
the two event sources ESB and ESF are the first two leaves the event source EScis 0.315 . The remaining elements in the 
of a dendrogram and are joined at the similarity level 0.8 . 5 row 2702 are determined in the same manner . The similarity 
After the pair of event sources have been linked , a reduced at each element of the row 2702 may be calculated as the similarity matrix is formed in FIG . 27C . The two event minimum of the events source in the linked event sources sources ESB and ESF are removed from the similarity matrix ( ESB , ESP ) with each of the remaining event sources . In in FIG . 27C and the linked event sources ( ES ) , ESp ) is 
introduced . The maximum linkage criterion may be used to 10 the similarity between ES , and ESC is 0.333 as revealed by 

particular , the similarity between ESB and ESC is 0.296 and 
determine the similarities between the linked event sources 
( ESB , ESF ) and the other event sources that appear as the corresponding matrix elements in FIG . 27A . The mini 

mum of these two similarities is 0.296 . Therefore the simi elements along the row 2702. The similarity at each element 
of the row 2702 is the maximum of the events source in the larity between the linked event sources ( ESB , ESP ) and the 
linked event sources with each of the remaining event 15 event source ESC is 0.296 . The remaining elements in the 
sources . For example , the similarity between ESB and ESC row 2702 are determined in the same manner . 
is 0.296 and the similarity between ESF and ESc is 0.333 as After the clusters of event sources have been determined , 
revealed by the corresponding matrix elements in FIG . 27A . a local outlier factor ( “ LOF ” ) is calculated for each event 
The maximum of the two similarities is 0.333 . Therefore the source in each event source cluster . The LOF assigned to 
similarity between the linked event sources ( ESE , ESP ) and 20 each event source in an event source cluster is a degree or 
the event source ES is 0.333 as represented by the matrix measure of each event source being an outlier with respect 
element 2704. The remaining elements in the row 2702 are to other event sources in the same cluster . The LOF is local 
determined in the same manner . The largest similarity in the in that the degree ( i.e. , value of the LOF ) depends on how 
similarity matrix of FIG . 27C is 0.75 . In FIG . 27D , the two isolated an event source is with respect to a surrounding 
event sources ESA and Ese are two more leaves in the 25 neighborhood of event sources . In other words , only a dendrogram and are joined at the similarity level 0.75 . The restricted neighborhood of each event source is taken into 
rows associated with the event sources ESA and ESE are account to calculate the LOF of each event source . 
removed from the similarity matrix shown in FIG . 27E and Consider an event source cluster represented by the maximum linkage criterion is repeated for the linked 
event sources ( ES? , ESE ) in order to obtain the similarities 30 , ESp } ( 10 ) in the row 2706 in FIG . 27E . For example , the similarity 
between ( ESB , ESP ) and ES is 0.5 and the similarity The event source cluster may have been generated using 
between ( ESE , ESE ) and ESE is 0.333 as revealed by the hierarchical clustering analysis as described above . In order 
corresponding matrix elements in FIG . 27C . The maximum to calculate a LOF for each event source in the event source 
of the two similarities is 0.5 as represented by the matrix 35 cluster C , the distance is calculated between each pair of 
element 2708. The remaining elements in the row 2706 are event sources in the cluster C. The distance may calculated 
determined in the same manner . The largest similarity in the using 
similarity matrix of FIG . 27E is 0.667 . In FIG . 27F , the two 
event sources ESc and ESG are two more leaves of the 
dendrogram and are joined at the similarity level 0.667 . 40 ( 11 ) 

FIGS . 277-27L show similarity matrices and corresponding ET.ETC 
dendrograms constructed using the maximum linkage crite dist ( ESp , ES ) 
rion at each step . FIG . 27L shows the final dendrogram . ( EThp ) ( ETK ) FIG . 27L also shows dashed line 2701 that represents a 
dissimilarity threshold at 0.60 . In other words , the dissimi- 45 
larity threshold of 0.60 is a minimum similarity . Event 
sources with similarities greater than the minimum similar where 
ity of 0.60 form a cluster . For example , the events sources ES , and Es , are event sources in the event source cluster 
Ese and ESF have a similarity of 0.8 , and the event sources C ; 
ESA , ESE , ESC , and ESC have similarities that are greater 50 is the set of event - type frequencies of the 
than 0.6 . But the events sources ESE and ESF have a event source Esp ; 
similarity of 0.5 with the event sources ESA , ESE , ESC , and is the set of event - types frequencies of the 
ESc , which is less than the minimum similarity of 0.60 . event source ES , 
Therefore , the event sources Ese and ESF form an event In other implementations , event - type probability distribu 
source cluster C , and the event sources ESA , ESE , ESc , and 55 tions { Pmn } n = 1 ̂ and { Qkn } n = 1 calculated in corresponding 
ES form a different event source cluster C2 . Because the Equations ( 4 ) and ( 6 ) above may be used in Equation ( 11 ) 
event source ES , has a similarity of 0.25 with the event in place of the event - type frequencies { ET - 1 " and 
sources in the event source clusters C? and C2 , event source { ET } = 1 \ , respectively . In still other implementations , 
is in single element cluster Cz . the distance may be calculated using dist ( ES ,, ES , ) = 1 

In other implementations , average linkage criterion or 60 Simp ( m , k ) or using dist ( ESP , ESQ ) = 1 - Sim ; s { m , k ) . 
minimum linkage criterion may be used in place of the For each event source ES , in the event source cluster C , 
maximum linkage criterion . For example , returning to FIG . the distances are rank ordered and the k - th nearest neighbor 
27C , the similarity at each element of the row 2702 may be distance , also called the k - distance , is determined and 
calculated as the average of the events source in the linked denoted by dist? ( ESP ) , where k is natural number . For 
event sources ( ESB , ESP ) with each of the remaining event 65 example , consider the following distances in increasing 
sources . In particular , the similarity between ESB and EScis order dist ( ESA , ESB ) , dist ( ES 4 , ESC ) , dist ( ES4 , ESD ) , and 
0.296 and the similarity between ESF and ESc is 0.333 as dist ( ES? , ESE ) , where ESA , ESB , ES , Esp , and ESE rep 
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resent event sources in the same cluster . The second ( i.e. , FIG . 28 shows a control - flow diagram of a method to 
k = 2 ) nearest neighbor distance of the event source ESA is identify anomalous behaving components of a distributed 
dist? ( ESA ) = dist ( ESA , ESC ) . computing system . In block 2801 , event logs generated by a 

Given the k - distance of each event source ES , in the set of event sources that are run on a set of components are 
cluster C , a k - distance neighborhood of the event source ES , 5 collected within an observation time window AT . The set of 
is a set of event sources of the cluster C with a distance from event sources may be copies of the same application pro 
the event source ES , that is less than or equal to the gram , operating system , VM , or machine code running on 
k - distance of the event source ES : the set of components . In block 2802 , a routine “ determine 

frequencies of event types within the observation window " N ( ESP ) = { ES , ECI { ESp } \ dist ( ES , ES , ) sdistz ( ESP ) } ( 12 ) is called to determine the frequencies of each of event types In the example above , the 2 - distance neighborhood of the of the event logs . In block 2803 , a routine “ calculate a event source ESA is the set N2 ( ESA ) = { ESB , ESc } similarity for each pair of event sources ” is called . In block A local reachability density is calculated for each event 2804 , a routine “ determine event source clusters ” is called to 
source ES , in C as follows : determine clusters of event sources using hierarchy analysis . 

In block 2805 , a routine " determine event source outliers ” is 
called to determine event source outliers in each event || N ( ESP ) || ( 13 ) Irdk ( ESP ) = ? reach - distk ( ESp , ES ) source cluster as described above with reference to Equa 

ESGEN ( ESP ) tions ( 10 ) - ( 16 ) . In block 2806 , components that run the 
20 event sources outliers may be identified for management 

purposes , such as , but not limited to , identified for trouble where shooting , identified as having problems or issues , or may be || N , ( ESP ) || is the number of event sources in the k - distance identified for monitoring in case of future problems . An neighborhood N ( ES ) ; and example of a future problem is corruption to a data - storage reach - dist ( ES , ES ) is the reachability distance of the 25 device , such hard disk drives or solid state drives . event source ES , to the event source ES , FIG . 29 shows a control - flow diagram of the routine The reachability distance is given by “ determine frequencies of event types within the observation 
reach - dist , ( ES , ES , ) = max { dist , ( ESP ) , dist ( ES , ES , ) } window ” called in block 2802 of FIG . 28. A loop beginning ( 14 ) with block 2901 repeats the operations represented by 

An LOF is calculated for each event source ES , in C as 30 blocks 2902-2907 for each event log . A loop beginning with 
follows : block 2902 repeats the operations represented by block 

2903-2904 for each event message of an event log . In block 
03 , event - type analysis is performed on event message in 

Ird : ( ES ) ( 15 ) ? order to determines the non - parametric tokens of the event Irdk ( ESP ) ES EN ( ESp ) 35 message the non - parametric tokens identify the event type of 
LOF ( ESP ) || N ( ESP ) || the event message , as described above with reference to 

FIG . 20. In block 2904 , the count associated with the event 
type determined in block 2903 is incremented . In decision 

An LOF of the event source ES , calculated according to block 2905 , the operations represented by blocks 2903 and 
Equation ( 15 ) is an average local reachability density of the 40 2904 are repeated for each event message of the event log . 
neighboring event sources divided by the event sources local In block 2906 , the event types and associated frequencies of reachability density . An LOF of about 1 indicates that the the event types are added to an event - type log or other 
event source is comparable to the neighboring event sources meta - data structure , as described above with reference to 
and is not an outlier . An LOF value less the 1 indicates that FIG . 20. In decision block 2907 , the operations represented 
the event source is part of a dense event source region ( i.e. , 45 by blocks 2902-2906 are repeated for another event log . 
event sources are close together ) . An LOF value of an event FIG . 30 shows a control - flow diagram of the routine 
source that significantly larger than 1 is an outlier . For " calculate a similarity for each pair of event sources ” called 
example , an event source ES , in C is identified as an outlier in block 2803 of FIG . 28. A loop beginning with block 3001 when the corresponding LOf satisfies the following condi repeats the operations represented by blocks 3002-3005 for 
tion : 50 each event source indexed m = 1 , ... , M. A loop beginning 

with block 3002 repeats the operations represented by block LOF ( ES ) > Thor1 ( 15 ) 3003-3004 for each event message of an event log k = 1 , . . 
where Theof is a LOF threshold . . , M with the restriction that k > m in order to avoid repeats . 

For example , the LOF threshold Th of may be set equal to In block 3003 , a similarity is calculated for an event source 
1.5 , 1.6 , 1.7 , 1.8 , 1.9 , or 2 , or may be set to any suitable 55 In and an event source k . In certain implementations , the 
number greater than 2. The component of a distributed similarity may be calculated as described above with refer 
computing system used to host an event source with a local ence to Equations ( 1 ) and ( 2 ) . In other implementations , the 
outlier factor greater than the local outlier factor threshold similarity may be calculated as described above with refer 
may be identified for management purposes , such as iden ence to Equations ( 3 ) - ( 7 ) . In other implementations , the 
tified as having problems that may be more closely inves- 60 similarity may be calculated as described above with refer 
tigated or monitored during troubleshooting . ence to Equations ( 3 ) - ( 6 ) and ( 8 ) . In still other implemen 

The method described below with reference to FIGS . tations , the similarity may be calculated as described above 
28-31 may be stored in one or more data - storage devices as with reference to Equations ( 3 ) - ( 6 ) and ( 9 ) . In decision block 
machine - readable instructions that when executed by one or 3004 , the operation of block 3003 is repeated for another 
more processors of the computer system shown in FIG . 1 65 event source k . Otherwise , control flows to decision block 
identifies anomalous behaving components of a distributed 3005 in which the operations of blocks 3002-3004 are 
computing system . repeated for another event source m . 

- 
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FIG . 31 shows a control - flow diagram of the routine system to identify anomalous behaving components of a 
“ determine event source clusters ” called in block 2804 of distributed computing system , the method comprising : 
FIG . 28. In block 3101 , the largest similarity in a similarity collecting event messages generated by event sources 
matrix is identified as described above with reference to within an observation time window , the event sources 
FIG . 27A . In block 3102 , a corresponding branch in a hosted by a number of the components of the distrib 
dendrogram is created . The branch has the associated simi uted computing system ; 
larity in a range of similarities as described above with determining frequencies of event types of the event mes 
reference to FIG . 27B . In block 3102 , the similarity matrix sages within the observation time window ; 
is reduced by removing the m - th row and k - th column that calculating a similarity for each pair of event sources 
correspond to the event sources with the largest similarity in 10 based on the frequencies of the event types ; 
the similarity matrix . In block 3104 , similarities a linked determining event source clusters based on the similarities 
event source comprising the event source of with largest determined for each pair of event sources ; 
similarity are calculated using one of the linkage criterion . determining a local outlier factor for each event source of 
For example , the linkage criterion may be the maximum each event source cluster ; 
linkage criterion described above with reference to FIG . 15 identifying anomalously behaving components of the set 
27C . In other implementations , the linkage criterion may be of components that host the event sources when a 
the average linkage criterion described above . In still other corresponding local outlier factor is greater than a local 
implementations , the linkage criterion may be the minimum outlier factor threshold ; and 
linage criterion describe above . In decision block 3105 , the migrating virtual machines from one or more server 
computational operations represented by blocks 3101-3104 20 computers having the anomalously behaving compo 
may be repeated the reduced similarity matrix obtained in nents to one or more server computers having normal 
block 3103. In block 3106 , a dissimilarity threshold is behaving components . 
applied to the dendrogram created from blocks 3101-3105 . 2. The method of claim 1 , wherein the event sources are 
In block 3107 , event source clusters are formed for event copies of the same type of event source running on the 
sources connected by similarities that are greater than the 25 components . 
dissimilarity threshold , as described above with reference to 3. The method of claim 1 , wherein determining frequen 
FIGS . 26B and 27L . cies of event types within the observation time window 

FIG . 32 shows a control flow diagram of the routine comprises : 
" determine event source outliers ” called in block 2805 of determining an event type of each event message recorded 
FIG . 28. A loop beginning with block 3201 repeats the 30 within the observation time window using event type 
operations represented by blocks 3202-3209 for each of the analysis , and 
event source clusters determined in the routine " determine counting a number of times each event type occurs within 
event source clusters ” of FIG . 31. In block 3202 , a distance the observation time window , the number of each event 
is calculated between each pair of event sources according type being the frequency of the event type . 
to Equation ( 11 ) . In block 3203 , a k - th nearest neighbor 35 4. The method of claim 1 , wherein calculating the simi 
distance is calculated for each event source in the event larity for each pair of event sources comprises : 
source cluster as described above . In block 3204 , a k - dis identifying frequencies of event types of a first event 
tance neighborhood is determined for each event source source of the pair of event sources as a first event - type 
based on the k - th nearest neighbor distance of the event frequency vector ; 
source , as described above with reference to Equation ( 12 ) . 40 identifying frequencies of event types of a second event 
In block 3205 , a local reachability density is calculated for source of the pair of event sources as a second event 
each event source in the event source cluster , as described type frequency vector , and 
above with reference to Equations ( 13 ) and ( 14 ) . In block calculating a similarity between the first and second 
3206 , an LOF is calculated for each event source in the event event - type frequency vectors , the similarity being a 
source cluster as described above with reference to Equation 45 measure of closeness between the pair of event sources . 
( 15 ) . In decision block 3208 , when the LOF calculated in 5. The method of claim 1 , where calculating the similarity 
block 3206 is greater than an LOF threshold as described for each pair of event sources comprises : 
above with reference to Equation ( 16 ) control flows to block calculating a first probability distribution of the frequen 
3209 where the corresponding event source is identified as cies of event types generated by a first event source of 
an event source outlier . In decision block 3210 , the opera- 50 the pair of event sources ; 
tions represented by blocks 3202-3209 are repeated for calculating a first probability distribution of frequencies 
another event source cluster . of event types generated by a second event source of 

It is appreciated that the previous description of the the pair of event sources ; and 
disclosed embodiments is provided to enable any person calculating an information divergence between the first 
skilled in the art to make or use the present disclosure . 55 probability distribution and the second probability dis 
Various modifications to these embodiments will be readily tribution , the information divergence being a measure 
apparent to those skilled in the art , and the generic principles of the similarity between the pair of event sources . 
defined herein may be applied to other embodiments without 6. The method of claim 1 , where calculating the similarity 
departing from the spirit or scope of the disclosure . Thus , the for each pair of event sources comprises : 
present disclosure is not intended to be limited to the 60 calculating a first probability distribution of the frequen 
embodiments shown herein but is to be accorded the widest cies of event types generated by a first event source of 
scope consistent with the principles and novel features the pair of event sources ; 
disclosed herein . calculating a first probability distribution of frequencies 

of event types generated by a second event source of 
The invention claimed is : the pair of event sources ; and 
1. A method stored in one or more data - storage devices calculating a Jensen - Shannon divergence between the 

and executed using one or more processors of a computer first probability distribution and the second probability 
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distribution , the Jensen - Shannon divergence being a determining an event type of each event message recorded 
measure of the similarity between the pair of event within the observation time window using event type 
sources . analysis ; and 

7. The method of claim 1 , wherein determining the event counting a number of times each event type occurs within 
source clusters comprises : the observation time window , the number of each event 

applying hierarchical clustering analysis to the similari type being the frequency of the event type . 
ties of event sources in order to generate a dendrogram 12. The system of claim 9 , wherein calculating the simi 
of the event source similarities ; and larity for each pair of event sources comprises : 

forming the event source clusters for event sources con identifying frequencies of event types of a first event 
nected by similarities that are greater than a dissimi source of the pair of event sources as a first event - type 
larity threshold . frequency vector ; 

8. The method of claim 1 , wherein determining the local identifying frequencies of event types of a second event 
outlier factor for each event source of each the event source source of the pair of event sources as a second event 
cluster comprises : type frequency vector ; and 

calculating a distance between each pair of the event calculating a similarity between the first and second 
sources in the event source cluster ; event - type frequency vectors , the similarity being a 

calculating a k - th nearest neighbor distance for event measure of closeness between the pair of event sources . 
source of the event source cluster ; 13. The system of claim 9 , where calculating the similar 

determining a k - distance neighborhood for each event 20 ity for each pair of event sources comprises : 
source of the event source cluster based on the k - th calculating a first probability distribution of the frequen 
nearest neighbor distance of each event source ; cies of event types generated by a first event source of 

calculating local reachability density for each event the pair of event sources ; 
source based on the k - distance neighborhood of each calculating a first probability distribution of frequencies 
event source ; of event types generated by a second event source of 

calculating a local outlier factor for each event source the pair of event sources ; and 
based on the local reachability density of event sources calculating an information divergence between the first 
within the k - distance neighborhood ; and probability distribution and the second probability dis 

identifying an event source in the event source cluster as tribution , the information divergence being a measure 
an event source outlier when the local outlier factor of of the similarity between the pair of event sources . 
the event source is greater than the local outlier factor 14. The system of claim 9 , where calculating the similar 

ity for each pair of event sources comprises : threshold . calculating a first probability distribution of the frequen 9. A system to identify anomalous behaving components cies of event types generated by a first event source of of a distributed computing system , the system comprising : the pair of event sources ; one or more processors ; calculating a first probability distribution of frequencies 
one or more data - storage devices ; and of event types generated by a second event source of 
machine - readable instructions stored in the one or more the pair of event sources ; and 

data - storage devices that when executed using the one calculating a Jensen - Shannon divergence between the 
or more processors controls the system to carry out first probability distribution and the second probability 
collecting event messages generated by event sources distribution , the Jensen - Shannon divergence being a 

within an observation time window , the event measure of the similarity between the pair of event 
sources hosted by a number of the components of the 
distributed computing system ; 15. The system of claim 9 , wherein determining the event 

determining frequencies of event types of the event 45 source clusters comprises : 
messages within the observation time window ; applying hierarchical clustering analysis to the similari 

calculating a similarity for each pair of event sources ties of event sources in order to generate a dendrogram 
based on the frequencies of the event types ; of the event source similarities ; and 

determining event source clusters based on the simi forming the event source clusters for event sources con 
larities determined for each pair of event sources ; nected by similarities that are greater than a dissimi 

determining a local outlier factor for each event source larity threshold . 
of each event source cluster ; 16. The system of claim 9 , wherein determining the local 

identifying anomalously behaving components of the outlier factor for each event source of each the event source 
set of components that host the event sources when cluster comprises : 
a corresponding local outlier factor is greater than a 55 calculating a distance between each pair of the event 
local outlier factor threshold ; and sources in the event source cluster ; 

migrating virtual machines from one or more server calculating a k - th nearest neighbor distance for event 
computers having the anomalously behaving com source of the event source cluster ; 
ponents to one or more server computers having determining a k - distance neighborhood for each event 
normal behaving components . source of the event source cluster based on the k - th 

10. The system of claim 9 , wherein the event sources are nearest neighbor distance of each event source ; 
copies of the same type of event source running on the calculating a local reachability density for each event 
components . source based on the k - distance neighborhood of each 

11. The system of claim 9 , wherein determining frequen event source ; 
cies of event types within the observation time window 65 calculating a local outlier factor for each event source 
comprises for each event log generated by one of the event based on the local reachability density of event sources 
sources , within the k - distance neighborhood ; and 
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identifying an event source in the event source cluster as 21. The medium of claim 17 , where calculating the 
an event source outlier when the local outlier factor of similarity for each pair of event sources comprises : 
the event source is greater than the local outlier factor calculating a first probability distribution of the frequen 
threshold . cies of event types generated by a first event source of 

17. A non - transitory computer - readable medium encoded 5 the pair of event sources ; 
calculating a first probability distribution of frequencies with machine - readable instructions that implement a method of event types generated by a second event source of carried out by one or more processors of a computer system the pair of event sources ; and to perform the operations of calculating an information divergence between the first 

collecting event messages generated by event sources probability distribution and the second probability dis 
within an observation time window , the event sources tribution , the information divergence being a measure 
hosted by a number of the components of the distrib of the similarity between the pair of event sources . 
uted computing system ; 22. The medium of claim 17 , where calculating the 

determining frequencies of event types of the event mes similarity for each pair of event sources comprises : 
sages within the observation time window ; calculating a first probability distribution of the frequen 

calculating a similarity for each pair of event sources cies of event types generated by a first event source of 
based on the frequencies of the event types ; the pair of event sources ; 

determining event source clusters based on the similarities calculating a first probability distribution of frequencies 
determined for each pair of event sources ; of event types generated by a second event source of 

determining a local outlier factor for each event source of the pair of event sources , and 
each event source cluster ; calculating a Jensen - Shannon divergence between the 

identifying anomalously behaving components of the set first probability distribution and the second probability 
distribution , the Jensen - Shannon divergence being a of components that host the event sources when a 

corresponding local outlier factor is greater than a local measure of the similarity between the pair of event 
outlier factor threshold ; and 

migrating virtual machines from one or more server 23. The medium of claim 17 , wherein determining the 
computers having the anomalously behaving compo event source clusters comprises : 
nents to one or more server computers having normal applying hierarchical clustering analysis to the similari 
behaving components . ties of event sources in order to generate a dendrogram 

18. The medium of claim 17 , wherein the event sources of the event source similarities ; and 
are copies of the same type of event source running on the forming the event source clusters for event sources con 
components . nected by similarities that are greater than a dissimi 

19. The medium of claim 17 , wherein determining fre larity threshold . 
quencies of event types within the observation time window 24. The medium of claim 17 , wherein determining the 

local outlier factor for each event source of each the event comprises for each event log generated by one of the event source cluster comprises : sources , 
determining an event type of each event message recorded calculating a distance between each pair of the event 

within the observation time window using event type sources in the event source cluster ; 
analysis ; and calculating a k - th nearest neighbor distance for event 

source of the event source cluster ; counting a number of times each event type occurs within 
the observation time window , the number of each event determining a k - distance neighborhood for each event 

source of the event source cluster based on the k - th type being the frequency of the event type . 
20. The medium of claim 17 , wherein calculating the nearest neighbor distance of each event source ; 

similarity for each pair of event sources comprises : calculating a local reachability density for each event 
source based on the k - distance neighborhood of each identifying frequencies of event types of a first event 
event source ; source of the pair of event sources as a first event - type 

frequency vector ; calculating a local outlier factor for each event source 
identifying frequencies of event types of a second event based on the local reachability density of event sources 

source of the pair of event sources as a second event within the k - distance neighborhood ; and 
identifying an event source in the event source cluster as an type frequency vector ; and event source outlier when the local outlier factor of the event calculating a similarity between the first and second 

event - type frequency vectors , the similarity being a source is greater than the local outlier factor threshold . 
measure of closeness between the pair of event sources . 
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