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, 1702
~ : 1712 v ~
708 / AT A

7 7
2013~12-02T10:44:24.095Z li-ge-esx5.vmware.com Rhttpproxy: 1704
-—/

[28859B80 verbose 'Proxy Req 46691'] Connected to
localhost:8307 ™~1706

2013-12-02T10:44:24.0947Z li-ge-esxb5.vmware.com Rhttpproxy:
[FFFC2BY90 verbose 'Proxy Reg 46691'] new proxy client
TCP (local-127.0.0.,1:80, peer=127.0.0.1:501355)

2013-12-02T10:44:24.093Z li-ge-esx5S.vmware.com Rhtipproxy:
[2889B90 verbose 'Proxy Req 46685'] The client closed the
stream, not unexpectedly

Dec 2 18:48:29 strata-vc 2013-12-02T18:48:30.273%
[{7FA39448B700 info 'commonvpxlro' opID=1947d6f9] [VpxLRO] -
FINISH task-internal-216352Z -- -- vim.SessionManager.logout -

2013-12-02T18:48:51.396Z strata-esxl.eng.vmware.com Vpxa:
[65BSAB90 verbose 'VpxaHalCnxHostagent' oplD=WFU-ed393333]
[WaitForUpdatesDonel Completed callback

2013-12-02T18:48:51.3852 strata-esxl.eng.vmware.com Vpxa:
[65B5ARY0 verbose 'VpxaHalCnxHostagent'® opID=WFU-ed393333]
[WaitForUpdatesDone] Starting next WaitForUpdates() call to
hostd

2013-12-02T718:48:51.39%5Z strata~esxl.eng.vmware.com VHxa;
[63B3AB90 verbose 'vpxavpxalnvivVm' opID=WFU-ed383333]
[VpralnvtVmChangeLlistener} Guest DiskInfo Changed

2013-12-02T18:48:51.393% strata-esxl.eng.vmware.com Vpxa:
[65B5ABS0 verbose 'vpxavpxalnvivVm' opID=WEFU-ed393333]
{VpxaInvtVmChangelistener] Guest DiskInfo Changed

FIG. 17
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1802 1808 1804
/. /

(2015-03~10 23:43:36.85%+0000] [Thread-1822496/127.0.0.1 INFO]
[com.vmware.loginsight.commons. executor.ProcessExecutor] [ [[/usr/lib/
loginsight/applicaticon/lib/apache-cassandra-2.0.10/bin/nodetool, ~h,
montools~prod~loginsight.vmware.com, repair]] [2015-03-10 23:43:36,716]
Repair session 51312720-¢c77e~1led-ad72-4769d614a3f2 for range
{(~6899937477723537626, -6896547230076663428) finished] R;

1602

identify tokens separated by white spaces

1806 1807 1808
[2015-03-10 23:43:36.859+0000] [Thread-1822496/127.0.0.1 INFOQO]
[com.vmware.loginsight.commons.executor. ProcessExecutor] [ [[/usr/lib/

loginsight/application/lib/apache~cassandra-2.0.10/bin/nodetcol, -h,

meontools-prod-loginsight.vmware.com, repairil [2015-03-10 23:43:36,7161
Repalir session 51312720-c77e-1lled-ad72-4769d614a3f2 for range
(—6895937477723537626, —6896547230076663429% finished]

Identify parameter values
1801812
2800208 R4y 36 480 00dd] [Thread WeRl4e 4107 3 INFO]
[com.vmware,loginsight.commons. executor. ProcessExecutor] [ [[/usr/lib/

loginsight/application/lib/apache~cassandra-2.0.10/bin/nodetool, -h,
montools-prod-loginsight . vmware.com, repairl] [ROIEAD3<14 2304394 Frd]
Repalr session W TdE 184283 for range

(RS 83IaTT T

Discard parameter values

1816
/

I 1 [Thread
INFC] [com.vmware.loginsight.commens.executor, ProcessExecutoxr] [ [[/
usr/lib/loginsight/application/lib/apache-cassandra-2.0.10/bin/
nodetool, -h, montools-prod-loginsight.vmware.com, repairl] [ ,] Repair
session for range (, ) finished] \
1820 Discard punciuation, 1818
\ parentheses, and brackets

Thread INFO com.vmware.loginsight.commons.executor.ProcessExecutor
/usr/lib/loginsight/application/lik/apache~cassandra-2.0.10
/bin/nodetool h montools-prod-loginsight.viware.com repair Repair
session for range finished

FIG. 18
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CONFIDENCE-CONTROLLED SAMPLING
METHODS AND SYSTEMS TO ANALYZE
HIGH-FREQUENCY MONITORING DATA
AND EVENT MESSAGES OF A
DISTRIBUTED COMPUTING SYSTEM

TECHNICAL FIELD

The present disclosure is directed to confidence-con-
trolled sampling in methods and systems that analyzes and
detects anomalous behavior and problems in a distributed
computing system.

BACKGROUND

Electronic computing has evolved from primitive,
vacuum-tube-based computer systems, initially developed
during the 1940s, to modern electronic computing systems
in which large numbers of multi-processor computer sys-
tems, such as server computers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies.

In order to proactively manage a distributed computing
system, system administrators are interested in detecting
anomalous behavior in the operation of the disturbed com-
puting system. Management servers have been developed to
collect thousands of different metrics from numerous and
various resources of a distributed computing system and
event messages from numerous and various event sources
running in the distributed computing system. Examples of
resources include virtual and physical resources, such as
CPU, memory, data storage, and network. Examples of the
types of metric data include CPU usage, memory, data
storage, and network traffic of a virtual or a physical object.
An event source can be an application program, an operating
system, a virtual machine, or a container. Each event mes-
sage describes an event, which can be a status report, input,
output, warning, fault, or error in the execution of the event
source. However, metric data and event messages are
recorded by management servers at a high frequency, such
as sub-second frequency, creating high density data sets. As
a result, the data sets can become extremely large, which
increases the cost of data storage and processing. In addi-
tion, management servers push the limits of memory, CPU
usage and input/output of server computers to process the
extremely large data sets, which drastically slows the deter-
mination of behavior patterns, detection of anomalies, iden-
tification of problems, and characterization of the data and
slows implementation of responses to patterns, anomalies,
and problems. System administrators seek methods and
systems to analyze the enormous amounts of metric data and
event messages.

SUMMARY

Methods and systems are directed to automated confi-
dence-controlled sampling of monitoring data and event
messages to analyze and detect anomalies and problems in
sources of a distributed computing system. A source can be
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virtual or physical object of the distributed computing
system, a resource of the distributed computing system, or
an event source running in the distributed computing sys-
tem. Monitoring data includes metric data generated by a
resource and meta-data of event messages that represents
properties of event sources. Monitoring data and event
messages generated by a source may be retrieved from a
database stored in a data-storage device of a distribution
computing system. Confidence-controlled sampling enables
random selection of a small number of data points of the
monitoring data or event messages with a selected confi-
dence level. Confidence-controlled sample is used to deter-
mine characteristics of the monitoring data, which includes
determining if the monitoring data is constant, semi-con-
stant, or non-constant monitoring data; determining if the
monitoring data is normal or sparse; determining a moni-
toring interval or the monitoring data (i.e., regular frequency
at which the monitoring data is measured); and determining
if the monitoring data is trendy or non-trendy. Confidence-
controlled sampling is used to identify periodic patterns in
the behavior of the source based on either monitoring data
or event messages. Confidence-controlled sampling is used
to compare the behavior of two sources based on either
monitoring data or event messages generated by the two
sources in the same time interval. Confidence-controlled
sampling is used to detect changes in behavior of a source
based on monitoring data or event messages generated in
two time intervals. Confidence-controlled sampling speeds
up characterization the data sets, speeds up determination of
behavior patterns, and speeds up detection and reporting of
anomalies and problems associated with the resources and
event sources of the distributed computing system without
compromising accuracy of the reported results.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a general architectural diagram for various
types of computers.

FIG. 2 shows an Internet-connected distributed computer
system.

FIG. 3 shows cloud computing.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system.

FIGS. 5A-5B show two types of virtual machine (“VM”)
and VM execution environments.

FIG. 6 shows an example of an open virtualization format
package.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center.

FIG. 9 shows a cloud-director level of abstraction.

FIG. 10 shows virtual-cloud-connector nodes.

FIG. 11 shows an example server computer used to host
three containers.

FIG. 12 shows an approach to implementing the contain-
ers on a VM.

FIG. 13 shows an example of logging event messages in
event logs.

FIG. 14 shows an example of a source code with log write
instructions.

FIG. 15 shows an example of a log write instruction.

FIG. 16 shows an example of an event message generated
by a log write instruction.

FIG. 17 shows a small, eight-entry portion of an event log.
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FIG. 18 shows an example of event-type analysis per-
formed on the event message shown in FIG. 16.

FIG. 19 shows an example of a virtualization layer located
above a physical data center.

FIGS. 20A-20B show a monitoring tool abstracted to the
virtualization layer.

FIG. 21 shows a plot of example metric time series data.

FIG. 22 shows quantification of event messages generated
by an event source.

FIG. 23 shows an interval of monitoring data with sub-
intervals of consecutive data points separated by gaps.

FIGS. 24A-24B show example plots of non-trendy and
trendy property time series data, respectively.

FIGS. 25A-25B show an example of computing a trend
statistic from randomly selected consecutive pairs of data
points of monitoring time series data.

FIG. 26 shows a plot of monitoring data and an enlarge-
ment of sampled data points of the monitoring data recorded
within the time interval.

FIG. 27 shows a plot of error probability.

FIGS. 28A-28B show a plot of monitoring data collected
over a period of time.

FIGS. 29A-29B show plots of monitoring data from two
different sources of monitoring data.

FIG. 30 shows determination of an event-type distribution
with confidence-controlled sampling applied to event mes-
sages generated by an event source.

FIG. 31 shows determination of two event-type distribu-
tions for two different event sources.

FIG. 32 shows an example of determining event-type
distributions for two different time intervals of the event log.

FIGS. 33-34 show an example of hypothesis testing to
determine if distributions of monitoring data in two periods
of time are different.

FIG. 35 shows a control-flow diagram of an automated
method to detect anomalous behavior and problems in a
distributed computing system.

FIG. 36 shows a control-flow diagram of the routine
“evaluate monitoring data” called in FIG. 35.

FIG. 37 shows a control-flow diagram of the routine
“categorize monitoring data” called in FIG. 36.

FIG. 38 shows a control-flow diagram of the routine
“perform trend analysis™ called in block 3504.

FIG. 39 shows a control-flow diagram of the routine
“search for a periodic pattern in behavior of source” called
in FIG. 35.

FIG. 40 shows a control-flow diagram of the routine
“compare behavior of sources” called in FIG. 35.

FIG. 41 shows a control-flow diagram of the routine
“compare behavior of sources” called in FIG. 35.

FIG. 42 shows a control-flow diagram of the routine
“search for change in behavior of source” called in FIG. 35.

FIG. 43 shows a control-flow diagram of the routine
“search for change in behavior of source” called in FIG. 35.

DETAILED DESCRIPTION

This disclosure presents automated computational meth-
ods and systems to sample, analyze, and detect anomalies in
monitoring data of a distributed computing system. In a first
subsection, computer hardware, complex computational sys-
tems, and virtualization are described. Containers and con-
tainers supported by virtualization layers are described in a
second subsection. Logging event messages in event logs is
described in a third subsection. Methods of confidence-
controlled sampling to analyze and detect anomalous behav-
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4

ior and problems from monitoring data and event messages
of a distributed computing system are described below in a
fourth subsection.

Computer Hardware, Complex Computational
Systems, and Virtualization

The term “abstraction” is not, in any way, intended to
mean or suggest an abstract idea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented, ultimately, using physical computer hardware, data-
storage devices, and communications systems. Instead, the
term “‘abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-
faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

FIG. 1 shows a general architectural diagram for various
types of computers. Computers that receive, process, and
store event messages may be described by the general
architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
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interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various types
of mass-storage devices 128, electronic displays, input
devices, and other such components, subcomponents, and
computational devices. It should be noted that computer-
readable data-storage devices include optical and electro-
magnetic disks, electronic memories, and other physical
data-storage devices. Those familiar with modern science
and technology appreciate that electromagnetic radiation
and propagating signals do not store data for subsequent
retrieval, and can transiently “store” only a byte or less of
information per mile, far less information than needed to
encode even the simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of server computers and worksta-
tions, and higher-end mainframe computers, but may also
include a plethora of various types of special-purpose com-
puting devices, including data-storage systems, communi-
cations routers, network nodes, tablet computers, and mobile
telephones.

FIG. 2 shows an Internet-connected distributed computer
system. As communications and networking technologies
have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted server computers or blade servers all inter-
connected through various communications and networking
systems that together comprise the Internet 216. Such dis-
tributed computing systems provide diverse arrays of func-
tionalities. For example, a PC user may access hundreds of
millions of different web sites provided by hundreds of
thousands of different web servers throughout the world and
may access high-computational-bandwidth computing ser-
vices from remote computer facilities for running complex
computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web server computers, back-end
computer systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
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pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

FIG. 3 shows cloud computing. In the recently developed
cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger orga-
nizations may elect to establish private cloud-computing
facilities in addition to, or instead of, subscribing to com-
puting services provided by public cloud-computing service
providers. In FIG. 3, a system administrator for an organi-
zation, using a PC 302, accesses the organization’s private
cloud 304 through a local network 306 and private-cloud
interface 308 and accesses, through the Internet 310, a
public cloud 312 through a public-cloud services interface
314. The administrator can, in either the case of the private
cloud 304 or public cloud 312, configure virtual computer
systems and even entire virtual data centers and launch
execution of application programs on the virtual computer
systems and virtual data centers in order to carry out any of
many different types of computational tasks. As one
example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-
base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
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comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor devices and other
system devices with other application programs and higher-
level computational entities. The device drivers abstract
details of hardware-component operation, allowing applica-
tion programs to employ the system-call interface for trans-
mitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory devices as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
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geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.
However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware. The virtualization layer
504 provides a hardware-like interface to a number of VMs,
such as VM 510, in a virtual-machine layer 511 executing
above the virtualization layer 504. Each VM includes one or
more application programs or other higher-level computa-
tional entities packaged together with an operating system,
referred to as a “guest operating system,” such as application
514 and guest operating system 516 packaged together
within VM 510. Each VM is thus equivalent to the operat-
ing-system layer 404 and application-program layer 406 in
the general-purpose computer system shown in FIG. 4. Each
guest operating system within a VM interfaces to the virtu-
alization layer interface 504 rather than to the actual hard-
ware interface 506. The virtualization layer 504 partitions
hardware devices into abstract virtual-hardware layers to
which each guest operating system within a VM interfaces.
The guest operating systems within the VMs, in general, are
unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer 504 ensures that each of the VMs cur-
rently executing within the virtual environment receive a fair
allocation of underlying hardware devices and that all VMs
receive sufficient devices to progress in execution. The
virtualization layer 504 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a VM that includes a guest operating system
designed for a particular computer architecture to run on
hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.
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The virtualization layer 504 includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the VMs executes. For execution effi-
ciency, the virtualization layer attempts to allow VMs to
directly execute non-privileged instructions and to directly
access non-privileged registers and memory. However,
when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization
layer 504, the accesses result in execution of virtualization-
layer code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
520 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-
memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 504
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B shows a second type of virtualization. In FIG. 5B,
the computer system 540 includes the same hardware layer
542 and operating system layer 544 as the hardware layer
402 and the operating system layer 404 shown in FIG. 4.
Several application programs 546 and 548 are shown run-
ning in the execution environment provided by the operating
system 544. In addition, a virtualization layer 550 is also
provided, in computer 540, but, unlike the virtualization
layer 504 discussed with reference to FIG. 5A, virtualization
layer 550 is layered above the operating system 544, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 550 comprises pri-
marily a VMM and a hardware-like interface 552, similar to
hardware-like interface 508 in FIG. 5A. The hardware-layer
interface 552, equivalent to interface 416 in FI1G. 4, provides
an execution environment for a number of VMs 556-558,
each including one or more application programs or other
higher-level computational entities packaged together with a
guest operating system.

In FIGS. 5A-5B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
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the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A VM or virtual application, described below, is encap-
sulated within a data package for transmission, distribution,
and loading into a virtual-execution environment. One pub-
lic standard for virtual-machine encapsulation is referred to
as the “open virtualization format” (“OVF”). The OVF
standard specifies a format for digitally encoding a VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an
XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a network section
630 that includes meta information about all of the logical
networks included in the OVF package, and a collection of
virtual-machine configurations 632 which further includes
hardware descriptions of each VM 634. There are many
additional hierarchical levels and elements within a typical
OVF descriptor. The OVF descriptor is thus a self-describ-
ing, XML file that describes the contents of an OVF pack-
age. The OVF manifest 606 is a list of cryptographic-hash-
function-generated digests 636 of the entire OVF package
and of the various components of the OVF package. The
OVF certificate 608 is an authentication certificate 640 that
includes a digest of the manifest and that is cryptographi-
cally signed. Disk image files, such as disk image file 610,
are digital encodings of the contents of virtual disks and
device files 612 are digitally encoded content, such as
operating-system images. A VM or a collection of VMs
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance is a software service that is
delivered as a complete software stack installed within one
or more VMs that is encoded within an OVF package.

The advent of VMs and virtual environments has allevi-
ated many of the difficulties and challenges associated with
traditional general-purpose computing. Machine and oper-
ating-system dependencies can be significantly reduced or
entirely eliminated by packaging applications and operating
systems together as VMs and virtual appliances that execute
within virtual environments provided by virtualization lay-
ers running on many different types of computer hardware.
A next level of abstraction, referred to as virtual data centers
or virtual infrastructure, provide a data-center interface to
virtual data centers computationally constructed within
physical data centers.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents. In FIG. 7, a physical data center 702 is shown below
a virtual-interface plane 704. The physical data center con-
sists of a virtual-data-center management server computer
706 and any of various different computers, such as PC 708,
on which a virtual-data-center management interface may be
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displayed to system administrators and other users. The
physical data center additionally includes generally large
numbers of server computers, such as server computer 710,
that are coupled together by local area networks, such as
local area network 712 that directly interconnects server
computer 710 and 714-720 and a mass-storage array 722.
The physical data center shown in FIG. 7 includes three
local area networks 712, 724, and 726 that each directly
interconnects a bank of eight server computers and a mass-
storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple VMs. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtual-inter-
face plane 704, a logical abstraction layer shown by a plane
in FIG. 7, abstracts the physical data center to a virtual data
center comprising one or more device pools, such as device
pools 730-732, one or more virtual data stores, such as
virtual data stores 734-736, and one or more virtual net-
works. In certain implementations, the device pools abstract
banks of server computers directly interconnected by a local
area network.

The virtual-data-center management interface allows pro-
visioning and launching of VMs with respect to device
pools, virtual data stores, and virtual networks, so that
virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used
to execute particular VMs. Furthermore, the virtual-data-
center management server computer 706 includes function-
ality to migrate running VMs from one server computer to
another in order to optimally or near optimally manage
device allocation, provides fault tolerance, and high avail-
ability by migrating VMs to most effectively utilize under-
lying physical hardware devices, to replace VMs disabled by
physical hardware problems and failures, and to ensure that
multiple VMs supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplify provisioning,
launching, and maintenance of VMs and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the devices of individual server com-
puters and migrating VMs among server computers to
achieve load balancing, fault tolerance, and high availability.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server computer and physical
server computers of a physical data center above which a
virtual-data-center interface is provided by the virtual-data-
center management server computer. The virtual-data-center
management server computer 802 and a virtual-data-center
database 804 comprise the physical components of the
management component of the virtual data center. The
virtual-data-center management server computer 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server VM 810
above the virtualization layer. Although shown as a single
server computer in FIG. 8, the virtual-data-center manage-
ment server computer (“VDC management server”) may
include two or more physical server computers that support
multiple VDC-management-server virtual appliances. The
virtual-data-center management-server VM 810 includes a
management-interface component 812, distributed services
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814, core services 816, and a host-management interface
818. The host-management interface 818 is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The host-management interface 818 allows the virtual-
data-center administrator to configure a virtual data center,
provision VMs, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
VMs within each of the server computers of the physical
data center that is abstracted to a virtual data center by the
VDC management server computer.

The distributed services 814 include a distributed-device
scheduler that assigns VMs to execute within particular
physical server computers and that migrates VMs in order to
most effectively make use of computational bandwidths,
data-storage capacities, and network capacities of the physi-
cal data center. The distributed services 814 further include
a high-availability service that replicates and migrates VMs
in order to ensure that VMs continue to execute despite
problems and failures experienced by physical hardware
components. The distributed services 814 also include a
live-virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical server
computer, and restarts the VM on the different physical
server computer from a virtual-machine state recorded when
execution of the VM was halted. The distributed services
814 also include a distributed backup service that provides
centralized virtual-machine backup and restore.

The core services 816 provided by the VDC management
server VM 810 include host configuration, virtual-machine
configuration, virtual-machine provisioning, generation of
virtual-data-center alerts and events, ongoing event logging
and statistics collection, a task scheduler, and a device-
management module. Each physical server computers 820-
822 also includes a host-agent VM 828-830 through which
the virtualization layer can be accessed via a virtual-infra-
structure application programming interface (“API”). This
interface allows a remote administrator or user to manage an
individual server computer through the infrastructure API.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for
offloading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server computer. The virtual-data-center agents
relay and enforce device allocations made by the VDC
management server VM 810, relay virtual-machine provi-
sioning and configuration-change commands to host agents,
monitor and collect performance statistics, alerts, and events
communicated to the virtual-data-center agents by the local
host agents through the interface API, and to carry out other,
similar virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional devices of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual devices of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the
cloud director introduces a multi-tenancy layer of abstrac-
tion, which partitions VDCs into tenant-associated VDCs
that can each be allocated to a particular individual tenant or
tenant organization, both referred to as a “tenant.” A given
tenant can be provided one or more tenant-associated VDCs
by a cloud director managing the multi-tenancy layer of
abstraction within a cloud-computing facility. The cloud
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services interface (308 in FIG. 3) exposes a virtual-data-
center management interface that abstracts the physical data
center.

FIG. 9 shows a cloud-director level of abstraction. In FIG.
9, three different physical data centers 902-904 are shown
below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director server computers 920-922 and associated
cloud-director databases 924-926. Each cloud-director
server computer or server computers runs a cloud-director
virtual appliance 930 that includes a cloud-director manage-
ment interface 932, a set of cloud-director services 934, and
a virtual-data-center management-server interface 936. The
cloud-director services include an interface and tools for
provisioning multi-tenant virtual data center virtual data
centers on behalf of tenants, tools and interfaces for con-
figuring and managing tenant organizations, tools and ser-
vices for organization of virtual data centers and tenant-
associated virtual data centers within the multi-tenant virtual
data center, services associated with template and media
catalogs, and provisioning of virtualization networks from a
network pool. Templates are VM that each contains an OS
and/or one or more VMs containing applications. A template
may include much of the detailed contents of VMs and
virtual appliances that are encoded within OVF packages, so
that the task of configuring a VM or virtual appliance is
significantly simplified, requiring only deployment of one
OVF package. These templates are stored in catalogs within
a tenant’s virtual-data center. These catalogs are used for
developing and staging new virtual appliances and published
catalogs are used for sharing templates in virtual appliances
across organizations. Catalogs may include OS images and
other information relevant to construction, distribution, and
provisioning of virtual appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

FIG. 10 shows virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-
1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
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as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Containers and Containers Supported by
Virtualization Layers

As mentioned above, while the virtual-machine-based
virtualization layers, described in the previous subsection,
have received widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running above a guest operating system in a
virtualized environment, traditional virtualization technolo-
gies nonetheless involve computational costs in return for
the power and flexibility that they provide.

While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system of the host. In essence, OSL virtu-
alization uses operating-system features, such as namespace
isolation, to isolate each container from the other containers
running on the same host. In other words, namespace
isolation ensures that each application is executed within the
execution environment provided by a container to be iso-
lated from applications executing within the execution envi-
ronments provided by the other containers. A container
cannot access files not included the container’s namespace
and cannot interact with applications running in other con-
tainers. As a result, a container can be booted up much faster
than a VM, because the container uses operating-system-
kernel features that are already available and functioning
within the host. Furthermore, the containers share compu-
tational bandwidth, memory, network bandwidth, and other
computational resources provided by the operating system,
without the overhead associated with computational
resources allocated to VMs and virtualization layers. Again,
however, OSL virtualization does not provide many desir-
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able features of traditional virtualization. As mentioned
above, OSL virtualization does not provide a way to run
different types of operating systems for different groups of
containers within the same host and OSL-virtualization does
not provide for live migration of containers between hosts,
high-availability functionality, distributed resource schedul-
ing, and other computational functionality provided by
traditional virtualization technologies.

FIG. 11 shows an example server computer used to host
three containers. As discussed above with reference to FIG.
4, an operating system layer 404 runs above the hardware
402 of the host computer. The operating system provides an
interface, for higher-level computational entities, that
includes a system-call interface 428 and the non-privileged
instructions, memory addresses, and registers 426 provided
by the hardware layer 402. However, unlike in FIG. 4, in
which applications run directly above the operating system
layer 404, OSL virtualization involves an OSL virtualization
layer 1102 that provides operating-system interfaces 1104-
1106 to each of the containers 1108-1110. The containers, in
turn, provide an execution environment for an application
that runs within the execution environment provided by
container 1108. The container can be thought of as a
partition of the resources generally available to higher-level
computational entities through the operating system inter-
face 430.

FIG. 12 shows an approach to implementing the contain-
ers on a VM. FIG. 12 shows a host computer similar to that
shown in FIG. 5A, discussed above. The host computer
includes a hardware layer 502 and a virtualization layer 504
that provides a virtual hardware interface 508 to a guest
operating system 1102. Unlike in FIG. 5A, the guest oper-
ating system interfaces to an OSL-virtualization layer 1104
that provides container execution environments 1206-1208
to multiple application programs.

Note that, although only a single guest operating system
and OSL virtualization layer are shown in FIG. 12, a single
virtualized host system can run multiple different guest
operating systems within multiple VMs, each of which
supports one or more OSL-virtualization containers. A vir-
tualized, distributed computing system that uses guest oper-
ating systems running within VMs to support OSL-virtual-
ization layers to provide containers for running applications
is referred to, in the following discussion, as a “hybrid
virtualized distributed computing system.”

Running containers above a guest operating system within
a VM provides advantages of traditional virtualization in
addition to the advantages of OSL virtualization. Containers
can be quickly booted in order to provide additional execu-
tion environments and associated resources for additional
application instances. The resources available to the guest
operating system are efficiently partitioned among the con-
tainers provided by the OSL-virtualization layer 1204 in
FIG. 12, because there is almost no additional computational
overhead associated with container-based partitioning of
computational resources. However, many of the powerful
and flexible features of the traditional virtualization tech-
nology can be applied to VMs in which containers run above
guest operating systems, including live migration from one
host to another, various types of high-availability and dis-
tributed resource scheduling, and other such features. Con-
tainers provide share-based allocation of computational
resources to groups of applications with guaranteed isolation
of applications in one container from applications in the
remaining containers executing above a guest operating
system. Moreover, resource allocation can be modified at
run time between containers. The traditional virtualization
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layer provides for flexible and scaling over large numbers of
hosts within large distributed computing systems and a
simple approach to operating-system upgrades and patches.
Thus, the use of OSL virtualization above traditional virtu-
alization in a hybrid virtualized distributed computing sys-
tem, as shown in FIG. 12, provides many of the advantages
of both a traditional virtualization layer and the advantages
of OSL virtualization.

Logging Event Messages in Event Logs and
Determining Event Types

FIG. 13 shows an example of logging event messages in
event logs. In FIG. 13, a number of computer systems
1302-1306 within a distributed computing system are linked
together by an electronic communications medium 1308 and
additionally linked through a communications bridge/router
1310 to an administration computer system 1312 that
includes an administrative console 1314. One or more of the
computer systems 1302-1306 may run a log monitoring
agent that collects and forwards event messages to a log
management server that runs on the administration console
1314. As indicated by curved arrows, such as curved arrow
1316, multiple components within each of the discrete
computer systems 1302-1306 as well as the communications
bridge/router 1310 generate event messages that are for-
warded to the log management server. Event messages may
be generated by any event source. Event sources may be, but
are not limited to, application programs, operating systems,
VMs, guest operating systems, containers, network devices,
machine codes, event channels, and other computer pro-
grams or processes running on the computer systems 1302-
1306, the bridge/router 1310 and any other components of
the distributed computing system. Event messages may be
collected at various hierarchical levels within a discrete
computer system and then forwarded to the log management
server in the administration computer 1312. For example, a
log monitoring agent may collect and forward the event
messages at various hierarchical levels. The log manage-
ment server in the administration computer 1312 collects
and stores the received event messages in a data-storage
device or appliance 1318 as event logs 1320-1324. Rect-
angles, such as rectangle 1326, represent individual event
messages. For example, event log 1320 may comprise a list
of event messages generated within the computer system
1302. Each log monitoring agent has an agent monitoring
configuration that includes a log path and a log parser. The
log path specifies a unique file system path in terms of a
directory tree hierarchy that identifies the storage location of
an event log associated with the event source on the admin-
istrative console 1314 or the data-storage device or appli-
ance 1318. The log monitoring agent receives specific file
and event channel log paths to monitor event logs and the
log parser includes log parsing rules to extract and format
lines of event message into event message fields. The log
monitoring agent then sends the constructed structured event
messages to the log management server. The administrative
console 1314 and computer systems 1302-1306 can function
without log monitoring agents and a log management server,
but with less precision and certainty.

FIG. 14 shows an example of a source code 1402 of an
application program, an operating system, a VM, a guest
operating system, or any other computer program or
machine code. The source code 1402 is just one example of
an event source that generates event messages. Rectangles,
such as rectangle 1404, represent a definition, a comment, a
statement, or a computer instruction that expresses some
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action to be executed by a computer. The source code 1402
includes log write instructions that generate event messages
when certain events predetermined by the developer occur
during execution of the source code 1402. For example,
source code 1402 includes an example log write instruction
1406 that when executed generates an “event message 17
represented by rectangle 1408, and a second example log
write instruction 1410 that when executed generates “event
message 2” represented by rectangle 1412. In the example of
FIG. 14, the log write instruction 1408 is embedded within
a set of computer instructions that are repeatedly executed in
a loop 1414. As shown in FIG. 14, the same event message
1 is repeatedly generated 1416. The same type of log write
instructions may also be located in different places through-
out the source code, which in turns creates repeats of
essentially the same type of event message in the event log.

In FIG. 14, the notation “log.write( )” is a general
representation of a log write instruction. In practice, the
form of the log write instruction varies for different pro-
gramming languages. In general, event messages are rela-
tively cryptic, including generally only one or two natural-
language words and/or phrases as well as various types of
text strings that represent file names, path names, and,
perhaps various alphanumeric parameters. In practice, a log
write instruction may also include the name of the source of
the event message (e.g., name of the application program or
operating system and version) and the name of the event log
to which the event message is written. Log write instructions
may be written in a source code by the developer of an
application program or operating system in order to record
events that occur while an operating system or application
program is running. For example, a developer may include
log write instructions that are executed when certain events
occur, such as failures, logins, or errors.

FIG. 15 shows an example of a log write instruction 1502.
In the example of FIG. 15, the log write instruction 1502
includes arguments identified with “$.” For example, the log
write instruction 1502 includes a time-stamp argument
1504, a thread number argument 1505, and an internet
protocol (“IP”) address argument 1506. The example log
write instruction 1502 also includes text strings and natural-
language words and phrases that identify the type of event
that triggered the log write instruction, such as “Repair
session” 1508. The text strings between brackets “[ ]~
represent file-system paths, such as path 1510. When the log
write instruction 1502 is executed, parameters are assigned
to the arguments and the text strings and natural-language
words and phrases are stored as an event message in an event
log.

FIG. 16 shows an example of an event message 1602
generated by the log write instruction 1502. The arguments
of the log write instruction 1502 may be assigned numerical
parameters that are recorded in the event message 1602 at
the time the event message is written to the event log. For
example, the time stamp 1504, thread 1505, and IP address
1506 of the log write instruction 1502 are assigned corre-
sponding numerical parameters 1604-1606 in the event
message 1602. The time stamp 1604, in particular, repre-
sents the date and time the event message is generated. The
text strings and natural-language words and phrases of the
log write instruction 1502 also appear unchanged in the
event message 1602 and may be used to identify the type of
event that occurred during execution of the application
program or operating system.

As event messages are received from various event
sources, the event messages are stored in the order in which
the event messages are received. FIG. 17 shows a small,

10

20

25

30

35

40

45

50

55

60

65

18

eight-entry portion of an event log 1702. In FIG. 17, each
rectangular cell, such as rectangular cell 1704, of the portion
of the event log 1702 represents a single stored event
message. For example, event message 1702 includes a short
natural-language phrase 1706, date 1708 and time 1710
numerical parameters, as well as, an alphanumeric param-
eter 1712 that appears to identify a particular host computer.

FIG. 18 shows an example of event-type analysis per-
formed on the event message 1602 shown in FIG. 16. The
event message 1602 is first tokenized by considering the
event message as comprising tokens separated by non-
printed characters, referred to as “white space.” In FIG. 18,
this initial tokenization of the event message 1602 is illus-
trated by underlining of the printed or visible characters. For
example, the date 1802, time 1803, and thread 1804 at the
beginning of the text contents of the event message 1802,
following initial tokenization, become a first token 1806, a
second token 1807, and a third token 1808, as indicated by
underlining. Next, a token-recognition pass is made to
recognize any of the initial tokens as various types of
parameters. Parameters are tokens or message fields that are
likely to be highly variable over a set of messages of a
particular type. Date/time stamps, for example, are nearly
unique for each event message, with two event messages
having an identical date/time stamp only in the case that the
two event messages are generated within less than a second
of one another. Additional examples of parameters include
global unique identifiers (“GUIDs”), hypertext transfer pro-
tocol status values (“HTTP statuses™), universal resource
locators (“URLs”), network addresses, and other types of
common information entities that identify variable aspects
of'an event type. By contrast, the phrase “Repair session” in
event message 1302 likely occurs within each of many
repair session event messages. In FIG. 18, the parametric-
valued tokens in the event message following initial token
recognition are indicated by shading. For example, initial
token recognition determines that the first token 1806 is a
date and the second token 1807 is a time. The tokens
identified as parameters are identified by shaded rectangles,
such as shaded rectangle 1810 of the date 1806 and shaded
rectangle of 1812 of the time 1807. The parametric-valued
tokens are discarded leaving the non-parametric text strings,
natural language words and phrases, punctuation, parenthe-
ses, and brackets. Various types of symbolically encoded
values, including dates, times, machine addresses, network
addresses, and other such parameters can be recognized
using regular expressions or programmatically. For
example, there are numerous ways to represent dates. A
program or a set of regular expressions can be used to
recognize symbolically encoded dates in any of the common
formats. It is possible that the token-recognition process
may incorrectly determine that an arbitrary alphanumeric
string represents some type of symbolically encoded param-
eter when, in fact, the alphanumeric string only coinciden-
tally has a form that can be interpreted to be a parameter. The
currently described methods and systems do not depend on
absolute precision and reliability of the event-message-
preparation process. Occasional misinterpretations generally
do not result in mistyping of event messages and, in the rare
circumstances in which event messages may be mistyped,
the mistyping is most often discovered during subsequent
processing. In the implementation shown in FIG. 18, the
event message 1602 is subject to textualization in which an
additional token-recognition step of the non-parametric por-
tions of the event message is performed in order to remove
punctuation and separation symbols, such as parentheses
and brackets, commas, and dashes that occur as separate
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tokens or that occur at the leading and trailing extremities of
previously recognized non-parametric tokens, as shown by
underlining in the retokenized event message 1814 in FIG.
18. For example, brackets and a coma 1818 are underlined.
The punctuation, parentheses, and brackets are discarded
leaving a textualized event message of interest 1820 that
comprises only the non-parametric text strings and natural
language words and phrases of the original event message
1302. The textualized event message 1820 represents an
event type. Other textualized event messages with the same
non-parametric text strings and natural language words and
phrase as the textualized event messages 1820 are the same
event type. Another textualized event message with one or
more different non-parametric text strings or natural lan-
guage words and phrase from those of the textualized event
messages 1820 is of a different event type.

Methods of Confidence-Controlled Sampling to
Analyze and Detect Anomalous Behavior and
Problems from Monitoring Data and Event
Messages of a Distributed Computing System

FIG. 19 shows an example of a virtualization layer 1902
located above a physical data center 1904. The virtualization
layer 1902 is separated from the physical data center 1904
by a virtual-interface plane 1906. The physical data center
1904 comprises a management server computer 1908 and
any of various computers, such as PC 1910, on which a
virtual-data-center management interface may be displayed
to system administrators and other users. The physical data
center 1904 additionally includes many server computers,
such as server computers 1912-1919, that are coupled
together by local area networks, such as local area network
1920, that directly interconnects server computers 1912-
1919 and a mass-storage array 1922. The physical data
center 1904 includes three local area networks that each
directly interconnects a bank of eight server computers and
a mass-storage array. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtualization
layer 1902 includes virtual objects, such as VMs and con-
tainers, hosted by the server computers in the physical data
center 1904. Certain server computers host VMs as
described above with reference to FIGS. 5A-5B. For
example, server computer 1914 hosts two VMs 1924, server
computer 1926 hosts four VMs 1928, and server computer
1930 hosts a VM 1932. Other server computers may host
containers as described above with reference to FIGS. 11
and 12. For example, server computer 1918 hosts four
containers 1934. The virtual-interface plane 1906 abstracts
the physical data center 1904 to one or more VDCs com-
prising the virtual objects and one or more virtual data
stores, such as virtual data stores 1938 and 1940, and one or
more virtual networks. For example, one VDC may com-
prise VMs 1928 and virtual data store 1938 and another
VDC may comprise VMs 1924 and virtual data store 1940.

FIGS. 20A-20B show a monitoring tool 2002 abstracted
to the virtualization layer 1902. The monitoring tool 2002 is
a server application program hosted by the management
server computer 1908. The monitoring tool 2002 includes an
information technology (“IT”) operations management
server and a log management server. The IP operations
management server monitors, usage, performance, and
capacity of physical resources of each computer system,
data-storage device, server computer and other components
of the physical data center 1904. The physical resources
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include, but are not limited to, processors, memory, network
connections, and storage of each computer system, mass-
storage devices, and other components of the physical data
center 1904. The IP operations management server monitors
physical and virtual resources by collecting metric time
series metric data, such as CPU usage, amount of memory,
network throughput, network traffic, and amount of storage
for physical and virtual resources. CPU usage is a measure
of CPU time used to process instructions of an application
program or operating system as a percentage of CPU capac-
ity. High CPU usage may be an indication of usually large
demand for processing power, such as when an application
program enters an infinite loop. Amount of memory is the
amount of memory (e.g., GBs) a computer system uses at a
given time. The log management server receives event
messages sent by various log monitoring agents that run on
the physical of virtual objects of the distributed computing
system 1904 and receives event messages directly from
event sources running on physical or virtual objects without
log monitoring agents. The monitoring tool 2002 processes
the metric data and the event messages and generates
instructions to migrate VMs or containers from one server
computer to another in order to optimally or near optimally
manage device allocation, provide fault tolerance, and high
availability by migrating VMs to most effectively utilize
underlying physical hardware devices, to replace VMs dis-
abled by physical hardware problems and failures, to clone
VMs, and to ensure that multiple VMs supporting a high-
availability virtual appliance are executed on multiple physi-
cal computer systems so that the services provided by the
virtual appliance are continuously accessible, even when
one of the multiple virtual appliances becomes compute
bound, data-access bound, suspends execution, or fails. The
log management server maintains event logs of the massive
amounts of event messages generated by various VMs,
containers, and operating systems running in the physical
data center 1904.

As shown in FIGS. 20A-20B, directional arrows represent
metric data and event messages sent from physical and
virtual objects of the physical data center 1904 to the
monitoring tool 2002. In FIG. 20A, PC 1910, server com-
puters 1908 and 1912-1915, and mass-storage array 1922
send metric data and event messages to the monitoring tool
2002. Network events, such as network throughput and
network traffic, of each component of the physical data
center 1904 may also be sent to the monitoring tool 2002.
Network throughput is the number of bits of data transmitted
to and from a server computer or data-storage device and is
often recorded in megabits, kilobits or simply bits per
second. Network traffic at a server computer or mass-storage
array is a count of the number of data packets received and
sent at a given time. Clusters of server computers may also
send metric data and event messages to the monitoring tool
2002. For example, a cluster of server computers 1912-1915
sends cluster metric data and event messages to the moni-
toring tool 2002. In FIG. 20B, metric data and event
messages are sent from the VMs, containers, and virtual
storage to the monitoring tool 2002.

A sequence of metric time series data is denoted by

m=m(;);i=1, ... N,

where

subscript i is a time index;

N,, is the number of metric data points;

m(t;) is a data point; and

1, is a time stamp when the metric data point is recorded.

M
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FIG. 21 shows a plot of example metric time series data.
Horizontal axis 2102 represents time. Vertical axis 2104
represents a range of metric values. Dots represent indi-
vidual metric data points recorded at corresponding time
stamps. For example, dot 2106 represents a metric data point
m, recorded at a time t,. The metric time series data may
represent metric data generated by a physical or a virtual
object. For example, the time series data may represent CPU
usage of a core in a multicore processor of a server computer
at each time stamp. Alternative, the time series data may
represent the amount of virtual memory of a VM in use at
each time stamp.

FIG. 22 shows quantification of event messages generated
by an event source 2202. The event source 2202 generates
a stream of event messages that are sent by a log monitoring
agent to a log management server (not shown) that records
the event messages in an event log 2204 as described above.
Each rectangle, such as rectangle 2206, represents an event
message generated by the event source 2202. As described
above, when the log management server receives an event
message, the log management server writes a time stamp to
the event message, indicating the time when the event
message is recorded in the event log 2204. The log man-
agement server maintains one or more meta-data records of
various properties of the event source based on the event
messages generated by the event source. For example, the
log management server creates a meta-data record of the
volume (i.e., number) of event messages received in separate
time intervals. Other properties of an event source include
event message velocity (i.e., rate of event messages), event
message acceleration, and variety of event messages. Each
of these properties is a different type of meta-data obtained
from the event messages generated the event source. The
meta-data record of event messages is stored in a data-
storage device as property time series data.

A sequence of property time series data is denoted by

vi=v(E)k=1, .. . N, 2)

where

subscript j is a time index;

N, is the number of property data points; and

v(t,) is a property data point determined for time interval

(1, 41

FIG. 22 includes a plot of property time series data 2208
that represents a property of the event messages generated in
adjacent, equal duration time intervals. For example, the
properties represented by the property time series data in
FIG. 22 may be volume, velocity, acceleration, or variety of
event messages. Horizontal axis 2210 represents time. Ver-
tical axis 2212 represents a range for the property of the
event messages, such as volume, velocity, acceleration, or
variety. Dots represent property data points of the property
time series data. For example, dot 2214 represents the
property of the event messages generated by the event
source 2202 with time stamps in the time interval (t, , t].

The metric time series data and property time series date
are examples of monitoring data collected by the monitoring
tool 2002. In the follow discussion, monitoring data is
represented by

X=Xt 3

where

subscript k is an index that represents the indices i or j;
and

X, represents a discrete metric data point m; or a property
data point v,.
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In the following discussion, the term “source” refers to a
virtual or physical object or resource of the distributed
computing system that generates the monitoring data or refer
to an event source of the distributed computing system that
generates the monitoring data.

The metric data, property data, and event messages are
typically recorded by the monitoring tool 2002 at a high
frequency. For example, metric data and event messages
may be recorded at a sub-second frequency rates. As a result,
each set of metric data, property data, and event log becomes
extremely large, which increases infrastructure problems,
such as the added cost of data-storage devices. In addition,
the various management servers used to process the metric
data, property data, and event messages push the limits of
memory, CPU usage and input/output of the server comput-
ers that host the management servers, which delays charac-
terization, determination of behavior patterns, detection of
anomalies, and identification problems from the various data
sets. Methods are directed to confidence-controlled sam-
pling of monitoring data and event messages. Confidence-
controlled sampling determines a smallest number of ran-
domly selected monitoring data points or event messages
based on a selected confidence level. Confidence-controlled
sampling speeds up characterization of the monitoring data,
speeds up determination of behavior patterns, and speeds up
detection and reporting of anomalies and problems associ-
ated with the resources and event sources of the distributed
computing system without compromising accuracy of the
reported results.

Confidence-controlled sampling is a form of random
sampling with a minimum number of data points to analyze
a characteristic of a sequence of monitoring data for a
selected confidence level. In certain implementations, con-
fidence-controlled sampling is based on the binomial prob-
ability distribution:

Prob( success in # trials)=(")p'(1-P)y"~ (4a)

where

n is the number of randomly sampled elements of the
monitoring data;

P is the probability of a success in which the value of a
randomly selected element of the monitoring data
matches a defined characteristic of the monitoring data;
and

1 is the number of elements of the n randomly sampled
elements that correspond to the characteristic and is
considered a success.

The probability, P, of a randomly selected element satisfying
the characteristic of the monitoring data is the same for each
element. In other words, each random selection of an
element is independent and does change the probability of
randomly selecting other elements. The cumulative distri-
bution of the binomial probability distribution is given by:

2y _ (4b)
E ( _]P(l -
1

i=t

Peun(L 2 1) =

where [ < L<n.

An element of the monitoring data can be a data point or a
time-stamp difference between adjacent data points. The
cumulative distribution of Equation (4b) gives a confidence
level that 1 or more elements of the n randomly selected
elements will satisfy a characteristic of the monitoring data.
Equations (4a) and (4b) are used to compute the minimum
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number of randomly selected elements n and the number of
elements 1 that can be used to identify a characteristic of the
monitoring data for a minimum selected confidence level.
Confidence-controlled sampling based on Equations (4a)
and (4b) can be used to characterize the monitoring data.
Characteristics include the monitoring data is constant,
semi-constant, or non-constant time series data; the moni-
toring data is normal or sparse; and the monitoring data is
trendy or non-trendy.

Confidence-controlled sampling can be used to charac-
terize the monitoring data as constant, near-constant, semi-
constant, or non-constant time series data. Each of these
characteristics has a probability of success, P, that defines
the characteristic. For example, monitoring data may be
defined as near-constant data when 98% of more of the data
points in the monitoring data are equal valued. In other
implementations, near-constant data may be defined as hav-
ing 95% or more, 96% or more, or 97% or more equal valued
data points. The monitoring data is identified as semi-
constant data when more than 50% of the data points in the
monitoring data are equal valued. In other implementations,
semi-constant data may be defined as having 45% or more,
55% or more, or 60% or more equal valued data points. The
monitoring data is identified as non-constant data when the
confidence-controlled sampling does not result in constant,
near-constant, or semi-constant data points.

In the following examples, the minimum selected confi-
dence level is 99%. In the case of near-constant monitoring
data, let the probability of success be defined as P=98%. In
other words, near-constant monitoring data is defined as
98% of the data points are equal valued. According to
Equations (4a) and (4b), when three or more of a minimum
number of five randomly selected data points (i.e., n=5 and
1=3) from the monitoring data are equal, the confidence level
is P(L.=3)=99.99% that the monitoring data is near-constant
time series data. When monitoring data is identified as
near-constant, the monitoring data may be compressed to a
few percentage data points in order to conserve on storage
space in the data-storage device. In the case of semi-constant
monitoring data, the probability of success is defined as
P=51%. In other words, semi-constant monitoring data is
defined as 51% of the randomly selected data points are
equal valued. According to Equations (4a) and (4b), when
three or more of fifteen randomly selected data points from
the monitoring data are equal (i.e., n=15 and 1=3), the
confidence level is P(.=3)=99.71% that the monitoring data
is semi-constant time series data. When monitoring data is
identified as semi-constant, constant portions of the moni-
toring data may be compressed to a one or two data points
in order to conserve on storage space in the data-storage
device. If the data does not fall into either of the constant,
near-constant, or semi-constant categories, the monitoring
data is identified as non-constant time series data. In other
implementations, the minimum selected confidence level
may be lowered. For example, the minimum selected con-
fidence level may be lowered to 95% or even 90%.

Monitoring data is generated over a long period of time,
such as days, weeks, and months. The monitoring data may
also be regularly measured and recorded in a data-storage
device at a regular frequency, such as every 2 minutes, every
second, or every sub-second. The monitoring data may also
include gaps in time in which no monitoring data is gener-
ated or recorded. The time interval between consecutive data
points measured at a regularly frequency is called the
“monitoring interval.” Consecutive data points are regularly
measured data points that have equal magnitude differences
between time stamps of the data points. In other words, the
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monitoring interval is the duration, or interval, of time
between regularly recorded consecutive data points. The
percentage, or fraction, of the monitoring data that are
consecutive data points determines whether monitoring data
is characterized as normal or sparse. For example, monitor-
ing data with more than 60% consecutive data points may be
characterized as normal and the monitoring interval is the
duration or time interval between the time stamps of the
consecutive data points. Rather than analyzing the monitor-
ing data over a long period of time to determine if the
monitoring data is normal or sparse and determine the
monitoring interval, confidence-controlled sampling is
applied to the monitoring data to determine whether moni-
toring data is normal or sparse and the monitoring interval
of consecutive data points. In other words, Equations (4a)
and (4b) can be used to characterize the monitoring data as
normal or sparse and determine the monitoring interval of
the monitoring data.

FIG. 23 shows an example of monitoring data with
sub-intervals 2301-2303 of consecutive data points (i.e.,
regularly measured) separated by gaps 2304 and 2306 of no
reported time series data. Adjacent data points are data
points with no data points in between. Two consecutive data
points are adjacent data points, such as the data points
2301-2303. But two data points separated by a gap, such as
gaps 2304 and 2306, are adjacent data points but not
consecutive data points. Using Equations (4a) and (4b), the
monitoring may be checked for 60% or more (i.e., P=60%
is the probability of success) consecutive data points with a
minimum selected confidence level (e.g., 99%). For
example, for a probability of success equal to 60%, consider
randomly selecting 150 time-stamp differences between
adjacent data points of the monitoring data. When 76 or
more time-stamp differences (i.e., 1=76) of 150 randomly
selected time-stamp differences between adjacent data
points are equal (i.e., regularly measured), the monitoring
data is identified as normal with 60% or more of the
monitoring data comprising consecutive data points with a
confidence level of 99.2%. The regular frequency or time
interval between each of the 76 or more consecutive data
points is the monitoring interval. The monitoring data is then
subjected to additional testing for abnormal behavior or
problems. When less than 76 of the time-stamp differences
in the monitoring interval are equal, the monitoring data is
irregular. In this case, the monitoring data is considered
sparse and no further analysis of the monitoring data is
carried out and the monitoring data may be deleted from data
storage.

Alternatively, a higher percentage of consecutive data
points, such as 70%, may be selected to identify the moni-
toring data as normal and determine the monitoring interval.
For example, for a probability of success equal to 70%,
consider randomly selecting 100 time-stamp differences
between adjacent data points of the monitoring data. When
50 or more time-stamp differences (i.e., I=50) out of the 100
randomly selected time-stamp differences between adjacent
data points are equal, the monitoring data is identified as
normal with 70% or more of the monitoring data comprising
consecutive data points with a confidence level is 99.99%.
When less than 50 time-stamp differences are equal, the
monitoring data is regarded as sparse, no further analysis of
the monitoring data is carried out, and the monitoring data
may be deleted from data storage.

Confidence-controlled sampling may be used to deter-
mine if the monitoring data is trendy or non-trendy time
series data. When values of the normal monitoring data have
a tendency to follow a particular shape or pattern, the
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monitoring data may be characterized as “trendy.” Alterna-
tively, when values of the data points in the monitoring data
are randomly distributed, the monitoring data may be char-
acterized as “non-trendy.” Data points may be decomposed
into trendy and non-trendy components as follows:

X(t,)=x(t;,)+trend(z,) %)

where
x(t,) is the stochastic (i.e., random) component of the data
point X(t,); and
trend(t,) is the trend component of the data point X(t,).
For non-trendy time series data, the trend component is
essentially zero (i.e., trend(t,)~0) and each data point in the
normal monitoring data of Equation (5) reduces to

X(ty=(t) Q)

On the other hand, for trendy property time series data, the
trend component in Equation (5) is not equal to zero (i.e.,
trend(t,)=~0) and the data point representation in Equation (5)
holds.

FIGS. 24A-24B show example plots of non-trendy and
trendy property time series data, respectively. In FIGS.
24A-24B, horizontal axes 2402 represent time and vertical
axes 2404 represents ranges of property data point values. In
FIG. 24A, values of the data points of property time series
data are randomly distributed and do not exhibit a trend. By
contrast, in FIG. 24B, values of the data points of property
time series data exhibit a linear trend in which the values of
the data points tend to increase with time as represented by
dashed line 2406.

A trend for monitoring data may be determined from
confidence-controlled sampling of consecutive pairs of data
points. The Mann-Kendall (“MK”) test can be used to
compute a trend statistic given by:

Nyg Nk -1 M
So= ).

k=1 j=k+l

sign(x; — xi)

where
N, is the number of confidence-controlled sampled
pairs of data points; and

1 xj=x>0
sign(x; —x) =1 0 x-x=0

-1 x;-x <0

is called the “sign difference.”

When S,>0, the monitoring data are increasing. When S,<0,
the monitoring data are decreasing.

FIGS. 25A-25B show an example of computing a trend
statistic from randomly selected consecutive pairs of data
points of monitoring time series data. In FIGS. 25A-25B,
horizontal axes 2502 represent time and vertical axes 2504
represent ranges of data values. In FIG. 25A, randomly
selected consecutive pairs of data points 2506-2509 are
enclosed by circles. In FIG. 25B, the randomly selected pairs
of data values in FIG. 25A are displayed without the other
data points. The first and second pairs 2506 and 2507 are
decreasing, and the third and fourth pairs 2508 and 2509 are
increasing. Note that the pairs of randomly selected data
points in FIGS. 25A-25B are consecutive data points. In
alternative implementations, the pairs of data points may not
be consecutive data points. The pairs of data points may be
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randomly selected from all possible pairs of data points in
the monitoring data. If the number of data points in the
monitoring data is N, then N (N-1)/2 pairs of data points
exist.

Whether the normal monitoring data is trendy, may also
be determined according to a trend measure given by

S 8
=9 l100% ®

s =

max

where

Nuk—1 Nug
Smax= Y Y1

k=1 j=k+l

S,.ax 15 the number of possible differences in the MK test.
When the positive-to-negative sign differences computed in
the MK test are 60%-1t0-40%, respectively, the monitoring
data has a positive trend. When positive-to-negative sign
differences computed in MK test are 40%-t0-60%, respec-
tively, the monitoring data has a negative trend. According
to Equations (4a) and (4b), confidence-controlled sampling
of 150 pairs of data points (i.e., n=150) of the monitoring
data, the trend can be identified with a 99% confidence level
if 76 or more sign differences are positive or 76 or more sign
differences are negative.

Alternatively, a higher percentage of consecutive pairs of
data points may be selected to identify the monitoring data
as having a trend. When the positive-to-negative sign dif-
ferences computed in the MK test are 70%-t0-30%, respec-
tively, the monitoring data has a positive trend. When
positive-to-negative sign differences computed in MK test
are 30%-t0-70%, respectively, the monitoring data has a
negative trend. According to Equations (4a) and (4b), con-
fidence-controlled sampling of 100 pairs of data points (i.e.,
n=100) of the monitoring data, the trend can be identified
with a 99.99% confidence level if 50 or more sign differ-
ences are positive or 50 or more sign differences are nega-
tive.

Thresholds may be computed for the monitoring data
based on confidence-controlled sampling of the monitoring
data over a period of time, such as a day, days, a week,
weeks, a month or a number of months. In one implemen-
tation, the thresholds determined from the property time
series data are time-independent thresholds. Time-indepen-
dent thresholds can be determined for trendy and non-trendy
randomly distributed monitoring data. In another implemen-
tation, the thresholds determined from the property time
series data are time-dependent or dynamic thresholds.
Dynamic thresholds can be determined for trendy and non-
trendy periodic monitoring data. Methods and systems to
determine time-independent thresholds are described in US
Patent Application owned be VMware, Inc. and identified as
US Publication No. 2015/03791101A1, filed Jun. 25, 2014,
which is herein incorporated by reference. Methods and
systems to determine dynamic thresholds are described in
US Patent Application owned be VMware, Inc. and identi-
fied as US Publication No. 2014/0298098A1, filed Mar. 29,
2013, which is herein incorporated by reference.

The thresholds are used to determine dominant and typi-
cal ranges for the monitoring data, determine abnormal
states of the source of the monitoring data, and predict
behavior of the source of the monitoring data at a later time.
A threshold is a normalcy bound for the monitoring data.
When data points do not violate a threshold, the resource or
event source is operating in a normal state or as expected. In



US 10,592,372 B2

27

other words, the monitoring data does not indicate any
non-characteristic behavior. When data points violate a
threshold, the resource or event source is operating in an
abnormal state. A violation of a threshold triggers an alert,
which indicates that the source is behaving anomalously.
An alert is triggered when one or more data points of a
sequence of monitoring data points violate an upper or lower
threshold as follows:
X(t)=Th
where Th, .,
X(t)=Thigyer

©

upper

is an upper threshold; and
(10)

where Th,,,,., is a lower threshold.

The upper and lower thresholds may be time-independent
thresholds determined as described in incorporated US Pub-
lication No. 2015/03791101A1. Alternatively, the upper and
lower thresholds may be time-independent thresholds deter-
mined as described in incorporated US Publication No.
2014/0298098A1.

When a threshold is violated, as described above with
reference to Equation (9) or Equation (10), an alert is
generated, indicating that the resource or event source has
entered an abnormal state. The alert may be displayed in a
graphical user interface of a systems administration com-
puter so that a systems administrator is alerted to the type of
abnormality occurring at the source.

Confidence-controlled sampling of monitoring data is
used to determine similarity of different sets of monitoring
data and search for periodic patterns in the same sequence of
monitoring data. FIG. 26 shows a plot 2602 of monitoring
data. Horizontal axis 2604 represents time. Vertical axis
2606 represents a range of data values. Curve 2608 repre-
sents time variation in the monitoring data. FIG. 26 shows
an enlargement 2610 of data values of the monitoring data
2608 recorded within a time interval 2612. FIG. 26 shows a
plot of an empirical distribution 2614 computed from the
values of data points in the time interval 2612. Horizontal
axis 2616 represents a range of values of the data point in the
time interval 2612. Vertical axis 2618 represents a range of
probability values. An empirical distribution is a histogram
of probabilities determined by the number of data values in
each sub-interval of the range of the data values. The range
of data point values in the time interval 2612 is partitioned
into N smaller data value ranges. The probability of a data
value randomly selected from the data points in the time
interval 2612 lying in the r-th data value range is given by:

ny
Npy

an

where
n, is the number of data points in the r-th data value range;
and
N, is the total number of data points recorded in the time
interval.
Each bar in the empirical distribution 2614 represents the
probability that a randomly selected data point in the time
interval 2612 falls within one of the smaller data value
ranges. For example, bar 2620 represents the probability a
randomly selected data point falls within a data value range
2622. An empirical distribution of monitoring data in a time

interval is represented by
P=(p,ps, - - -, On) 12

where N is the number of data value ranges.
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Confidence-controlled sampling is performed with a low
error probability given by Equation (17) that guarantees a
large enough number of random samples are selected. FIG.
26 shows an enlargement of sampled data points 2624 of the
monitoring data 2608 recorded within the time interval
2612. The sampled data points 2624 are determined by
confidence-controlled sampling of the data points 2610.
FIG. 26 shows a plot of an empirical distribution 2626 of the
sampled data points 2624 in the time interval 2612 with
values in the N data value ranges. The probability that a
sampled data point randomly selected from the sampled data
points 2624 lies in the r-th data value range is given by:

n (13)

where
n', is the number of sampled data points in the r-th data
value range; and
Nz 1s the total number of sampled data points recorded
in the time interval.
Sample empirical distribution of the confidence-controlled
sampling applied to monitoring data in a time interval is
represented by

0=q192 - - -, an) 14

The similarity between the empirical distribution of Equa-
tion (12) and the sample empirical distribution of Equation
(14) can be computed using

1s)

N
3 na.
=1
N N
21 (p)? 21 (g:)?

The similarity D 4(P, Q) ranges between 0 and 1 (i.e., 0=
D (P, Q)=1). When the similarity D ~o(P, Q) equals O the
distributions P and Q are regarded as dissimilar. When the
similarity D (P, Q) equals 1 the distributions P and Q are
identical. The closer the similarity £ ~(P, Q) is to 0 the more
dissimilar the distributions P and Q are to each other. The
closer the similarity £ ~o(P, Q) is to 1 the more similar the
distributions P and Q are to each other.

In still another implementation, the similarity between
distributions may also be measured by computing a Jensen-
Shannon divergence between the distributions P and Q as
follows:

2
Dcs(P, Q) =1~ =cos
Fie

Dys(P, Q) = (16)

N 1 N N
—Z M,loght, + 5 Z prlogpr+2 g, logg,
=1 =1 =1

where M, = (p, +g,)/2.

The Jensen-Shannon divergence also ranges between 0 and
1 and has the properties in that the distributions P and Q are
dissimilar the closer D 5 (P, Q) is to 0 and are similar the
closer D (P, Q) is to 1. In the following discussion, the
similarity D (P, Q) represents the similarity computed using

D o(P, Q) or D ,i(P, Q).
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An error probability of observing atypical sequences of
randomly sampled data points in a time interval decreases
exponentially as the number of samples n increases:

Pr{observation is of type Q}=<27" D@ (17a)

where
n is the number of randomly selected data points of the
monitoring data; and

v » (17b)
Diu(P, Q)= ) prlog
=1 r

The Kullback-Leibler divergence £ ., (P, Q) ranges between
0 at one extreme and is unbounded at the other extreme. The
Kullback-Leibler divergence is a measure of how similarity
the distributions P and Q are to one another. The distribu-
tions P and Q are similar and approach equality the closer
Do, (P, Q) is to 0 and are increasingly dissimilar (i.e.,
diverge) as D, (P, Q) increases in value. With n equal to
several hundred data points we can achieve a very low error
probability (and high confidence of approximation) that we
get a “not good enough” reproduction of the original empiri-
cal distribution P. Confidence-controlled sampling in the
case is determined by the probability that the sample empiri-
cal distribution Q does not match the empirical distribution
P decreases as the number of random samples n increases.
For example, if the monitoring data has approximately
30,000 data points, about 1% can be randomly selected,
which is approximately n=300 randomly selected data
points. The probability that 300 randomly selected data
points will have an empirical distribution Q that is farther
from P by 0.1 (i.e., D (P, Q)=0.1) is less than 27°°, which is
a very low probability. A low probability, 27" D x5
corresponds to a high confidence in the number n of ran-
domly sampled data points used to form the empirical
distribution Q that is close to P. The similarity £ (P, Q) may
range between 0.1 and 0.5.

FIG. 27 shows a plot of the error probability of Equation
(17) for a fixed value of the similarity D (P, Q). Horizontal
axis 2702 represents a range for the number of samples n.
Vertical axis 2704 represents a range of error probabilities.
Curve 2706 represents the error probability for a fixed
similarity D (P, Q) a range of number of samples n. The error
probability curve 2706 demonstrates as the number of
samples n increases, the error probability of observing
atypical sequences of randomly sampled data points in a
time interval decreases exponentially. By contrast, as n
decreases, the error probability of observing atypical
sequences of randomly sampled data points increases expo-
nentially.

One computationally expensive procedure in behavioral
pattern analysis of monitoring data is the search for periodic
patterns in the monitoring data. The objective is to determine
if the monitoring data contains similar patterns within dif-
ferent periods of time which can be used to test for possible
cycles, such as cycles that repeat daily, once or week of once
a month. Similarity analysis is performed with less com-
plexity using confidence-controlled sampling of data points
to determine a sample empirical distribution for each time
interval to approximate the actual empirical distribution of
each time interval than when using unsampled monitoring
data. In other words, in order to determine if a sequence of
monitoring data contains a specific cycle, a similarity of
sample empirical distributions of the monitoring data is
computed for the time intervals.
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Let Q,=(qy 15 912 - - - » Qi ,») Tepresent a first sample
empirical distribution computed from applying confidence-
controlled sampling of the monitoring data in a first time
interval. Let Q,=(qs,55 92,2, - - - » Qa.) Tepresent a second
sample empirical distribution is computed from applying
confidence-controlled sampling of the monitoring data in a
second time interval. A similarity D (Q,, Q,) between the
first and second empirical distributions is computed for the
first and second sample empirical distributions. If the simi-
larity satisfies a condition given by

D(Ql:Qz)EThQ (18)

where 0<Th,=1 (e.g., Th,=0.9 or 0.95) is an empirical
distribution similarity threshold,
the sample empirical distributions are identified as similar.
When the similarity D (Q,, Q,) fails to satisfy the condition
of Equation (18), the sample empirical distributions are
dissimilar.

Confidence-controller sampling of data points in different
time intervals of a sequence of monitoring data may be used
to search for repeated patterns in the monitoring data. FIGS.
28A-28B show a plot of monitoring data collected over a
period of time. Horizontal axes 2802 represent time. Vertical
axes 2804 represent a range of values for the monitoring
data. Curves 2806 and 2808 represent different portions of
the same sequence of monitoring data. In FIG. 28A, the
monitoring data is partitioned based on series of time
intervals with the same duration d, such as time intervals
2810 and 2812. The monitoring data is randomly sampled
using confidence-controlled sampling in each time interval,
as described above with reference to FIG. 27, and a sample
empirical distribution is computed from the sampled moni-
toring data. For example, a first sample empirical distribu-
tion Q,=(q, 1,9 2, - - - » 9; &) 18 computed from the randomly
sampled monitoring data 2814 in the time interval 2810. A
second sample empirical distribution Q,=(q,, 922, - - - »
Qs,n) is computed from the randomly sampled monitoring
data 2816 in the time interval 2812. The similarity may be
computed for various pairs of sample empirical distributions
separated by a period of time, A, to determine in any
periodicity exist in the distribution of monitoring data. For
example, in FIG. 28B, the sample empirical distributions of
the sampled monitoring data in the time intervals 2810 and
2812 are separated by a period of time A 2818 and satisfy the
condition of Equation (16). The durations of the time
interval 0 and the period of time A may be varied to continue
the search for periodicity in the monitoring data.

Sample empirical distributions that satisfy the condition
of Equation (18) and are identified as periodic and notice is
posted indicating that a periodicity has been identified and
the time intervals and period are displayed in graphical user
interface of an administration computer. The periodic time
intervals may be used to monitor and assign or reassign
virtual and physical resources. For example, suppose the
monitoring data in FIG. 28B represents metric data for a
physical resource of a server computer that hosts a VM that,
in turn, runs a server application program, the period A is 24
hours, and duration 8 of the time intervals 2810 and 2812 is
1 hour. A similarity of the sample empirical distributions of
the monitoring data in the time intervals 2810 and 2812 that
satisfies Equation (18) is an indication of a repeated pattern
in use of the resource by the VM. Suppose the VM expe-
riences a spike in workload during the same time intervals
each day. The VM may be scheduled to receive an increase
in the allocation of the resource to handle the spike in
workload during the same time interval each day.
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Confidence-controlled sampling of data points in the same
time interval of two different sequences of monitoring data
may be used to determine if the sources of the two sequences
behave in a similar manner. FIGS. 29A-29B show plots of
monitoring data from two different sources of monitoring
data. Horizontal axes 2902 represent time. Vertical axes
2904 represent a range of values for the two sequences of
monitoring data. The monitoring data 2906 and 2908 may be
generated by similarly configured VMs, containers, or cop-
ies of the same event source. In one implementation, the two
sequences of monitoring data 2906 and 2908 may be com-
pared in the same time interval [t, ;] 2912 by computing a
first sample empirical distribution Q,=(q; 1, Q125 - - - » A1 )
of the monitored data 2910 in a time interval [t,, t,] 2912 and
computing a second sample empirical distribution Q,=(qs, ;,
Q2,25 - - - » q2,) of the monitored data 2910 in a time interval
[t. t] 2912. When the similarity D(Q,, Q,) satisfies the
condition of Equation (18), the two sources are performing
in a similar manner within the time interval [t,, t] 2912. On
the other hand, when the similarity D (Q,, Q,) does not
satisfy Equation (18), the two sources are not performing in
the same manner within the time interval [t, t] 2912, which
may trigger an alert indicating that there may be a problem
with the VMs, container, and event sources or the computer
systems these objects run on.

In an alternative implementation, confidence-controlled
sampling using Equations (4a) and (4b) may be used to
randomly select pairs of data points {(X,, Y,)},_," in the
time interval [t, t] 2912, where N is the number of
randomly selected data points, X; is a data points in the
monitoring data 2906; Y, is a data points in the monitoring
data 2908. Pairs of data points, (X;, Y;) and (X,, Y,), are
concordant if both X >X, and Y >Y, or if both X;<X; and
Y,<Y,. The same pair of data point are discordant if both
X>X; and Y <Y, or if both X >X; and Y,<Y,. A Kendall-tau
coeflicient is computed as follows:

_ 2ACeon = Cais)
TONW- D)

a9

where

C._.,, 1s the number of concordant pairs of data points; and

C s 1s the number of discordant pairs of data points.
The Kendall-tau coefficient T ranges between -1 and 1 (i.e.,
-1=t=1). The Kendall-tau coefficient is a measure of the
correlation between the sets of data points {X;} _,* and
{Y,},-,™. A positive coeflicient indicates the ranks of the
two sets are increasing. On the other hand, a negative
coeflicient indicates that as the rank of one set of data points
increases, the rank of the other set of data points decreases.
When the coefficient equals 1, the agreement between the
two rankings are the same (i.e., correlated). When the
coeflicient equals -1, one ranking is the reverse of the other
ranking (i.e., not correlated). When the coefficient is close to
zero, the sets of data points {X;}_,™ and {Y,},.," are
independent. Confidence-controlled sampling may be
accomplished by defining a probability of success as corre-
sponding to a coefficient T equal to at least 0.70. Consider
100 pairs of data points {(X,, Y)},,'® (i.e., N,=100)
randomly selected from the time interval [t,, t] 2912. When
more than 50 pairs (i.e., 1=50) are concordant, the monitor-
ing data 2906 and monitoring data 2908 in the time interval
[t;, t,] 2912 are correlated with a confidence level equal to
99.99%. When more than 50 pairs are discordant, the
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monitoring data 2906 and monitoring data 2908 in the time
interval [t,, t] 2912 are not correlated with a confidence level
equal to 99.99%.

Confidence-controlled sampling may be used to compute
an approximate distribution of a selected set of event types
within time window comprising hundreds of thousands of
event messages recorded in an event log as described above
with reference to Equation (17). The size of the time window
is determined by the number of event messages recorded
within the time window. A large time window, for example,
might be a day, a week, or a month of event messages,
depending on the number of event messages recorded within
the time window. For example, if the number of event
messages in a time window is approximately 10,000, about
2% can be randomly selected, which is approximately
n=200 randomly selected event messages. The probability
that the 200 randomly selected event messages will have an
event-type distribution Q that is farther from the event-type
distribution P of all the event messages in the time window
by 0.2 (i.e., D(P, Q)=0.2) is less than 27*°, which is a very
low probability. The event type distribution obtained
through the confidence-controlled sampling serves as a
“fingerprint image” of an event source and may be used in
change and anomaly detection, similarity analysis of the
event source with other event sources, and analysis of
extreme events.

FIG. 30 shows determination of event-type distribution
with confidence-controlled sampling applied to event mes-
sages generated by an event source 3002 and recorded in an
event log 3004. In block 3006, confidence-controlled sam-
pling is applied to sampled event messages within a time
interval (t, t+9]. In block 3008, event-type analysis is applied
to each event message to determine the event type. Event-
type analysis reduces the event message to text strings and
natural-language words and phrases (i.e., non-parametric
tokens), as described above with reference to FIG. 18. In
block 3010, relative frequencies of the event types deter-
mined in block 3008 are computed according to

"
LCD
N,

20

where
n(et;) is the number of times an event type, denoted by et,,
appears in the sampled set of event messages recorded
in the time interval (t, t+8]; and
N, is the total number of sampled event messages col-
lected in the time interval (t, t+9].
An event-type log 3012 is formed from the different event
types and associated relative frequencies. The event-type log
3012 comprises a list of the different event types 3014 of the
event messages and corresponding relative frequencies 3016
of each event type. FIG. 30 also shows a histogram 3018 of
an event-type distribution. Horizontal axis 3020 represents
the event types. Vertical axis 3032 represents a range of
relative frequencies. Shaded bars represent the relative fre-
quency of each event type in the set of sampled event types.
For example, shaded bar 3034 represents the relative fre-
quency RF; of the event type et,. The event-type distribution
3018 obtained from confidence-controlled sampling serves
as a “fingerprint image” for the event source 3002 and can
be used to compare the event source 3002 with the behavior
of a similar event source.
FIG. 31 shows determination of two event-type distribu-
tions for two different event sources using event messages
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collected in the same time interval (t, t+3]. Event source 1
generates event messages recorded in an event log 3102.
Event source 2 generates event messages recorded in an
event log 3104. In block 3106, confidence-controlled sam-
pling is applied to event messages recorded in the time
interval (t, t+3] followed by applying event-type analysis to
the sampled event messages in block 3108 and determina-
tion of relative frequencies of the event types in block 3110
to obtain the relative frequencies 3112 for event source 1. In
block 3114, confidence-controlled sampling is applied to
event messages recorded in the same time interval (t, t+3]
followed by applying event-type analysis to the sampled
event messages in block 3116 and determination of relative
frequencies of the event types in block 3118 to obtain the
relative frequencies 3120 for event source 2. Behavior of the
event sources 1 and 2 may be compared by computing a
similarity between the event-type distributions 3112 and
3120.

Let ETD ,=(RF,,, RF,,, . . ., RF,,) represent the
event-type distribution 3112 and ET D ,=(RF, ;, RF, ,, . . .,
RF, ) represent the event-type distribution 3120. The simi-
larity between the two distributions may be computed using
either of Equations (15) and (16). When the similarity
satisfies a condition given by

DErD  ETD ye1hg, @

where 0<Th;,=1 (e.g., Thz;,=0.9 or 0.95) is event-type
distribution similarity threshold,
the two event-type distributions are similar and the event
sources 1 and 2 do not appear to be behaving differently. On
the other hand, when the similarity D (ET D |, ET D ,) fails to
satisfy the condition of Equation (18), an alert may be
generated indicating that the event sources 1 and 2 are not
behaving in the same manner. For example, if the event
sources are VMs or containers running the same server
application program and the similarity fails to satisfy the
condition of Equation (18), an alert may be generated
indicating the behavior of one or both the event sources has
changed and requires troubleshooting.

Hypothesis testing may be used to determine if a change
has occurred in two different periods of time of a stream of
event messages generated by an event source. Unexpected
behavior detected in a distributed computing system may be
categorized as an anomaly or a change. An anomaly is an
extreme event of a random process that has essentially the
same overall characteristics in the present as in the past. On
the other hand, a change is an alteration in the characteristics
and distribution of the random process itself. A change point
is a point in time when the behavior of an event source
differs significantly from past behavior. The similarity
between event-type distributions obtained from confidence-
controlled sampling of different portions of the same stream
of event messages generated by an event source can be used
to determine if the behavior of the event source has changed.

FIG. 32 shows an example of determining event-type
distributions for two different time intervals of the event log
3004 in FIG. 30. In block 3202, confidence-controlled
sampling is applied to sampled event messages within a time
interval (', t'+d] that occurs later in time than the time
interval (t, t+0] described in FIG. 30. In block 3203, event-
type analysis is applied to each event message obtained from
confidence-controlled sampling to determine the different
event types. In block 3204, relative frequencies of the event
types are computed according to Equation (17) to determine
an event-type distribution 3206 for event messages gener-
ated in the time interval (', t'+8]. The similarity is computed
between the event-type distributions 3018 and 3206 by
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letting ETD =(RF, ,, RF,,, . . ., RF, ) represent the
event-type distribution 3112 and ET D ,=(RF, ;, RF, ,, . . .,
RF, ) represent the event-type distribution 3206. The simi-
larity between the event-type distributions may be computed
using either of Equations (15) and (16). When the similarity
satisfies the condition given by Equation (21) is satisfied the
two event-type distributions are similar and there does not
appear to have been a change in behavior of the event source
3002. On the other hand, when Equation (18) is not satisfied,
at some point in time between the recording of the event
messages of the event-type distribution 3018 and the event
messages of the event-type distribution 3206 a change has
occurred with execution of the event source 3002 and event
messages recorded in the event log prior to the time t' may
be discarded. Alternative, the change point may be deter-
mined using methods for determining the change point of an
event source described in U.S. patent application Ser. No.
15/627,925, filed Jun. 20, 2017, owned by VMware, Inc.,
which is herein incorporated by reference.

Hypothesis testing may be used to determine if a change
has occurred in the monitoring data recorded in two different
periods of time. The Kolmogorov-Smirnov test is used to
measure the difference between two distributions of moni-
toring data in the two different time periods. Empirical
cumulative distributions are computed from confidence-
controlled sampling of the monitoring data in the two
periods of time. An empirical cumulative distribution is
computed from sample empirical distributions represented
in Equation (14) as follows:

X (22)
FXO=) g
i=1

where X is an integer value in 1=X=<N.
A maximum absolute difference between a first empirical
cumulative distribution from monitoring data in the first
period of time and a second empirical cumulative distribu-
tion computed from monitoring data in the second period of
time is determined as follows:

K = max|Fi(X) - F(X)| 23
When the following condition is satisfied
Thg=K (24)

where Th, is a cumulative distribution difference thresh-
old (e.g., Th,=0.1 or 0.05),
the distributions of monitoring data in the time periods have
not changed. On the other hand, when K>Th,, the distri-
butions of monitoring data in the time periods have changed,
and an alert is triggered indicating that a change occurred
between the time periods.

FIGS. 33-34 show an example of hypothesis testing to
determine if the distributions of monitoring data in two
periods of time are different. FIG. 33 shows a plot 3302 of
monitoring data recorded over a long period of time. Hori-
zontal axis 3304 represents time. Vertical axis 3306 repre-
sents a range of data values. Curves 3308 and 3310 represent
different portions of the same sequence of monitoring data.
An empirical distribution 3312 is generated from confi-
dence-controlled sampling of monitoring data in the time
interval [t, t] 3314. An empirical distribution 3316 is
generated from confidence-controlled sampling of monitor-
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ing data in the time interval [t', t'] 3318. Equation (22) is
used to compute an empirical cumulative distribution shown
in plot 3320 from the empirical distribution in plot 3312 and
compute an empirical cumulative distribution shown in plot
3322 from the empirical distribution 3316. Each horizontal
line segment represents a cumulative sum of the empirical
distribution according to Equation (22). In plot 3320, solid-
line segments represent the cumulative sums of empirical
distribution in plot 3312. In plot 3322, dashed-line segments
represent the cumulative sums of empirical distribution in
plot 3316. For example, solid line segment 3324 represents
a sum of probabilities represented by shaded bars 3326 in
plot 3320. FIG. 34 shows a single plot of the empirical
cumulative distributions in plots 3320 and 3322 in FIG. 30.
Directional arrow 3402 is the maximum absolute difference
according to Equation (23).

The methods described below with reference to FIGS.
35-43 are stored in one or more data-storage devices as
machine-readable instructions that when executed by one or
more processors of the computer system shown in FIG. 1
perform automated confidence-controlled sampling to ana-
lyze and detect anomalies in operations of a distributed
computing system.

FIG. 35 shows a control-flow diagram of an automated
method to detect anomalous behavior and problems in a
distributed computing system. In block 3501, monitoring
data generated by a source is retrieved from a database
stored in a data-storage device of a distribution computing
system. The source can be a virtual or physical object or a
resource of the distributed computing system or the source
can be an event source running on a computer system of the
distributed computing system. In block 3502, a routine
“evaluate monitoring data” is called to determine if the
monitoring data is normal (i.e., sufficient fraction of con-
secutive data points) or sparse. In decision block 3503, when
the monitoring data is identified as acceptable in block 3502,
control flows to block 3504. In block 3504, a routine
“perform trend analysis™ on the monitoring data is called. In
block 3505, a routine “search for a periodic pattern in
behavior of source” is called. In block 3506, a routine
“compare behavior of sources” is called. In block 3507, a
routine “detect change in behavior of source” between two
time intervals is called.

FIG. 36 shows a control-flow diagram of the routine
“evaluate monitoring data” called in block 3502 of FIG. 35.
In block 3601, a percentage of consecutive data points of the
monitoring data is determined using confidence-controlled
sampling monitoring data, as described above with reference
to FIG. 23. The monitoring data may be characterized as
normal or sparse. The monitoring interval is determined for
normal monitoring data as described above with reference to
FIG. 23. In decision block 3602, when the monitoring data
is normal, control flows to block 3603. In block 3603, a
routine “categorize monitoring data” is called to categorize
the monitoring data as constant, semi-constant, or non-
constant. In decision block 3604, when the monitoring data
is semi-constant or constant, the routine returns that the
monitoring data is acceptable for further processing. Other-
wise, when the monitoring data is not acceptable or constant,
the routine return the monitoring data is not acceptable.

FIG. 37 shows a control-flow diagram of the routine
“categorize monitoring data” called in block 3603 of FIG.
36. In block 3701, n data points are randomly selected from
the monitoring data as described above with reference to
Equations (4a) and (4b) for a probability of success that
corresponds to constant time series data (e.g., P=98%). In
decision block 3702, when a quantity of 1 or more of the n
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data points are equal with a confidence level greater than a
minimum confidence level (e.g., 99%), control flows to
block 3703 and the monitoring data is identified as constant.
In block 3704, n' data points are randomly selected from the
monitoring data as described above with reference to Equa-
tions (4a) and (4b) for a probability of success that corre-
sponds to semi-constant time series data (e.g., P>51%). In
decision block 3705, when a quantity of I' or more of the n'
data points are equal with a confidence level greater than a
minimum confidence level (e.g., 99%), control flows to
block 3706 and the monitoring data is identified as semi-
constant. In block 3707, the monitoring data is identified as
non-constant.

FIG. 38 shows a control-flow diagram of the routine
“perform trend analysis™ called in block 3504 of FIG. 35. In
block 3801, n pairs of the monitoring data are randomly
selected from the monitoring data for a probability of
success P, as described above with reference to FIG. 25A.
For example, the probability of success may be 60% positive
sign differences to 40% sign differences. The number of
pairs n selected is the minimum number of pairs of data
points for a ratio of positive-to-negative sign differences
defined for trendy increasing data or defined for trendy
decreasing data using Equations (4a) and (4b) with a mini-
mum confidence level. In block 3802, sign differences are
computed for each pair of the n randomly selected moni-
toring data in Equation (7) and FIG. 25B. In decision block
3803, when the number of positive sign differences 1 of the
n pairs of monitoring data is greater than a minimum
confidence level, control flows to block 3804. In block 3804,
the monitoring data is identified as trendy increasing moni-
toring data. In decision block 3805, when the number of
negative sign differences 1 of the n pairs of monitoring data
is greater than a minimum confidence level, control flows to
block 3806. In block 3806, the monitoring data is identified
as trendy decreasing monitoring data. In block 3807, the
monitoring data is characterized as non-trendy monitoring
data. In block 3808, thresholds are computed for the moni-
toring data based on the confidence-controlled samples. If
the monitoring data is trendy and periodic, then dynamic
thresholds may be computed. If the monitoring data is
non-trendy, hard thresholds may be computed.

FIG. 39 shows a control-flow diagram of the routine
“search for a periodic pattern in behavior of source” called
in block 3505 of FIG. 35. In block 3901, a time range of the
monitoring data is partitioned into time intervals of duration
d as described above with reference to FIG. 28A. A loop
beginning with block 3902, repeats the represented by
blocks 3903-3908 for each pair of time intervals separated
by a period of time A. In block 3903, confidence-controlled
sampling is applied to data points in each pair of time
intervals. In block 3904, sample empirical distributions are
computed from the sampled data points in each pair of time
intervals as described above with reference to Equation (14)
and FIG. 28B. In block 3905, a similarity £ is computed for
the sample empirical distributions as described above with
reference to Equations (15) and (16). In decision block 3906,
when the similarity is greater than a similarity threshold,
control flows to block 3907. Otherwise, control flows to
decision block 3908. In block 3907, the pair of time intervals
are identified as periodic with period of time A. In decision
block 3908, blocks 3902-3907 are repeated for another
period of time A. In decision block 3908, blocks 3901-3908
are repeated for another time interval duration 0.

FIG. 40 shows a control-flow diagram of the routine
“compare behavior of sources” called in block 3506 of FIG.
35. FIG. 40 compares the behavior of two event sources
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based on event messages generated by the two event sources
in the same time interval. In block 4001, confidence-con-
trolled sampling is applied event messages of first event
source in a time interval, as described above with reference
to FIG. 30. In block 4002, even-type analysis is applied to
the event messages to determine even types, as described
above with reference to FIG. 18. In block 4003, relative
frequencies of the event types are computed as described
above with reference to Equation (21). In block 4004,
confidence-controlled sampling is applied event messages of
second event source in the same time interval, as described
above with reference to FIG. 30. In block 4005, even-type
analysis is applied to the event messages to determine even
types, as described above with reference to FI1G. 18. In block
40006, relative frequencies of the event types are computed
as described above with reference to Equation (21). In block
4007, a similarity D is computed for the relative frequencies
as described above with reference to Equations (15) and
(16). In decision block 4008, when the similarity D satisfies
the condition given by Equation (21), control flows to block
4010. Otherwise, control flows to block 4009. In block 4009,
the event sources are identified as behaving dissimilar and
an alert may be generated identifying the event sources. In
block 4010, the event sources are identified as behaving
similar.

FIG. 41 shows a control-flow diagram of the routine
“compare behavior of sources” called in block 3506 of FIG.
35. FIG. 41 compares the behavior of two monitoring data
sources based on monitoring data generated by the two
sources in the same time interval. In block 4101, confidence-
controlled sampling is applied to monitoring data of a first
source in a time interval, as described above with reference
to FIG. 29A. In block 4102, a first sample empirical distri-
bution is computed from the samples of data points, as
described above with reference to FIG. 29A. In block 4101,
confidence-controlled sampling is applied to monitoring
data of a second source in the same time interval, as
described above with reference to FIG. 29B. In block 4102,
a second sample empirical distribution is computed from the
samples of data points, as described above with reference to
FIG. 29B. In block 4105, a similarity Dis computed for the
first and second empirical distributions, as described above
with reference to Equations (15) and (16). In decision block
4106, when the similarity Dsatisfies the condition given by
Equation (18), control flows to block 4107. Otherwise,
control flows to block 4108. In block 4107, the sources are
identified as behaving dissimilar and an alert may be gen-
erated identifying the sources. In block 4108, the sources are
identified as behaving similar.

FIG. 42 shows a control-flow diagram of the routine
“search for change in behavior of source” between two time
intervals called in block 3507 of FIG. 35. FIG. 42 compares
the behavior of event messages generated by the same
sources two different time interval to detect a change in
behavior. In block 4201, confidence-controlled sampling is
applied to event messages of an event source in a time
interval, as described above with reference to FIG. 32. In
block 4202, even-type analysis is applied to the event
messages to determine even types, as described above with
reference to FIG. 18. In block 4203, relative frequencies of
the event types are computed as described above with
reference to Equation (20). In block 4204, confidence-
controlled sampling is applied to event messages of the
event source in a later occurring second time interval, as
described above with reference to FIG. 32. In block 4205,
even-type analysis is applied to the event messages to
determine even types, as described above with reference to
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FIG. 18. In block 4206, relative frequencies of the event
types are computed as described above with reference to
Equation (20). In block 4207, a similarity D is computed for
the relative frequencies in the two time intervals as
described above with reference to Equations (15) and (16).
In decision block 4208, when the similarity £does not
satisfy the condition given by Equation (20), control flows
to block 4209. In block 4209, an alert is generated indicating
that a change in behavior of the event source has occurred.

FIG. 43 shows a control-flow diagram of the routine
“search for change in behavior of source” between two time
intervals called in block 3507 of FIG. 35. FIG. 43 compares
the behavior of a sources based on monitoring data gener-
ated in two different time intervals to detect a change in
behavior. In block 4301, confidence-controlled sampling is
applied to monitoring data generated by a source in a first
time interval, as described above with reference to FIG. 33.
In block 4302, a first sample empirical distribution is com-
puted from the samples of data points, as described above
with reference to FIG. 33. In block 4303, a first empirical
cumulative distribution is computed from the first sample
empirical distribution as described above with reference to
FIG. 33. In block 4304, confidence-controlled sampling is
applied to monitoring data generated by a source in a later
occurring second time interval, as described above with
reference to FIG. 33. In block 4305, a second sample
empirical distribution is computed from the samples of data
points, as described above with reference to FIG. 33. In
block 4306, a second empirical cumulative distribution is
computed from the first sample empirical distribution as
described above with reference to FIG. 33. In block 4307, a
maximum absolute difference K is determined between the
first and second empirical cumulative distributions, as
described above with reference Equation (23) and FIG. 34.
In decision block 4308, when the maximum absolute dif-
ference K is greater than a cumulative distribution difference
threshold, control flows to block 4309. In block 4309, an
alert is generated indicating that a change in behavior of the
source has occurred.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. An automated method stored in one or more data-
storage devices and executed using one or more processors
of'a computer system to analyze the behavior of a distributed
computing system, the method comprising:

reading a sequence of monitoring data from a database

stored in a data-storage device of a distributed com-
puting system, the monitoring data generated by a first
source in the distributed computing system;
evaluating the monitoring data to determine a monitoring
interval of the monitoring data and if the monitoring
data is normal or sparse based on confidence-controlled
sampling of the monitoring data, wherein confidence-
controlled sampling of the monitoring data includes
randomly selecting monitoring data points of the moni-
toring data based on a selected confidence level;
when the monitoring data is normal,
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searching for a periodic pattern in behavior of the first
source based on repeated confidence-controlled sam-
pling of the monitoring data in two different time
intervals separated by a period of time;
searching for a change in behavior of the first source
based on a similarity of the monitoring data com-
puted from confidence-controlled samples of the
monitoring data in two different time intervals;
displaying an alert in a graphical user interface of an
administrative console when a periodic pattern in the
behavior of the first source is discovered; and
displaying an alert in the graphical user interface of the
administrative console when a change in behavior of
the first source is detected.
2. The method of claim 1 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data
based on a probability of success of increasing-to-
decreasing monitoring data to obtain random samples
of the monitoring data;
performing trend analysis on the samples of monitoring
data to determine if the monitoring data is trendy or
non-trendy monitoring data;
computing a threshold for the monitoring data based on
the trendy or non-trendy samples of monitoring data;
and
displaying an alert in the graphical user interface of the
administrative console, the alert indicating the first
source is exhibiting anomalous behavior when the
monitoring data violates the threshold.
3. The method of claim 1 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data in
a time interval to obtain random samples of the moni-
toring data in the time interval;
confidence-controlled sampling of a second sequence of
monitoring data generated by a second source in the
time interval to obtain random samples of the second
sequence of monitoring data in the time interval;
determining a correlation between the first source and the
second source based on the random samples of the
monitoring data and the random samples of the second
source of monitoring data; and
displaying a notice in the graphical user interface of the
administrative console regarding correlation of the first
source and the second source based on the correlation.
4. The method of claim 1 wherein evaluating the moni-
toring data comprises:
confidence-controlled sampling of time-stamp differences
between data points of the monitoring data in the
monitoring interval based on a probability of success
that corresponds to a percentage of consecutive data
points in the monitoring interval;
when more than half of the sampled time-stamp differ-
ences in the monitoring interval are equal,
identifying the monitoring data as normal, and
determining a monitoring interval as a time interval
between the more than half sampled time-stamp
differences that are equal;
identifying the monitoring data as sparse when less than
half of the sampled time-stamp differences in the
monitoring interval are equal; and
when the monitoring data is normal, categorizing the
monitoring data as constant, near-constant, semi-con-
stant, or non-constant based on confidence-controlled
sampling of the monitoring data.
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5. The method of claim 1 wherein searching for the
periodic pattern in behavior of the first source comprises:
partitioning time range of the monitoring data into time
intervals; and
for each pair of time intervals separated by the period of
time,
confidence-controlled sampling of the monitoring data
in each of the time intervals,
computing a first sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a second sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a similarity between the first and second
sample empirical distribution, and
when the similarity is greater than an empirical distri-
bution similarity threshold, identifying the pair of
time intervals as corresponding to a periodic pattern
in the behavior of the first source.
6. The method of claim 1 wherein searching for the
change in behavior of the first source comprises:
confidence-controlled sampling of the monitoring data in
a first time interval,
computing a first sample empirical distribution from
values of sample data points in the first time interval;
computing a first empirical cumulative distribution based
on the first sample empirical distribution;
confidence-controlled sampling of the monitoring data in
a second time interval;
computing a second sample empirical distribution from
values of sample data points in the second time inter-
val;
computing a second empirical cumulative distribution
based on the second sample empirical distribution;
determining a maximum absolute difference between the
first and second empirical cumulative distributions; and
when the similarity is greater than a cumulative distribu-
tion difference threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that behavior of the first source has
changed.
7. The method of claim 1 further comprises:
confidence-controlled sampling of event messages gener-
ated by the first source in a time interval;
determine event types of event messages generated by the
first source;
determine relative frequencies of the event types gener-
ated by the first source;
confidence-controlled sampling of event messages gener-
ated by a second source in the time interval;
determine event types of event messages generated by the
second source;
determine relative frequencies of the event types gener-
ated by the second source;
computing a similarity based on relative frequencies of
the event types generated by the first source and the
second source; and
when the similarity is greater than an event-type distri-
bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that the first source and second
source have dissimilar behavior.
8. The method of claim 1 further comprises:
confidence-controlled sampling of event messages gener-
ated by the first source in a first time interval;
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determine event types of event messages in the first time
interval,
determine relative frequencies of the event types in the
first time interval;
confidence-controlled sampling of event messages gener-
ated by the first source in a second time interval;
determine event types of event messages in the second
time interval,
determine relative frequencies of the event types in the
second time interval;
computing a similarity based on relative frequencies of
the event types in the first and second time intervals;
and
when the similarity is greater than an event-type distri-
bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating a change in behavior of the first
source.
9. A system to analyze behavior of a distributed comput-
ing system, the system comprising:
one or more processors;
one or more data-storage devices; and
machine-readable instructions stored in the one or more
data-storage devices that when executed using the one
or more processors controls the system to perform
operations comprising:
reading a sequence of monitoring data from a database
stored in a data-storage device of a distributed com-
puting system, the monitoring data generated by a
first source in the distributed computing system;
evaluating the monitoring data to determine a monitor-
ing interval of the monitoring data and if the moni-
toring data is normal or sparse based on confidence-
controlled sampling of the monitoring data, wherein
confidence-controlled sampling of the monitoring
data includes randomly selecting monitoring data
points of the monitoring data based on a selected
confidence level;
when the monitoring data is normal,
searching for a periodic pattern in behavior of the
first source based on repeated confidence-con-
trolled sampling of the monitoring data in two
different time intervals separated by a period of
time;
searching for a change in behavior of the first source
based on a similarity of the monitoring data com-
puted from confidence-controlled samples of the
monitoring data in two different time intervals;
displaying an alert in a graphical user interface of an
administrative console when a periodic pattern in
the behavior of the first source is discovered; and
displaying an alert in the graphical user interface of
the administrative console when a change in
behavior of the first source is detected.
10. The system of claim 9 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data
based on a probability of success of increasing-to-
decreasing monitoring data to obtain random samples
of the monitoring data;
performing trend analysis on the samples of monitoring
data to determine if the monitoring data is trendy or
non-trendy monitoring data;
computing a threshold for the monitoring data based on
the trendy or non-trendy samples of monitoring data;
and

10

20

25

30

40

45

55

60

65

42

displaying an alert in the graphical user interface of the
administrative console, the alert indicating the first
source is exhibiting anomalous behavior when the
monitoring data violates the threshold.
11. The system of claim 9 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data in
a time interval to obtain random samples of the moni-
toring data in the time interval;
confidence-controlled sampling of a second sequence of
monitoring data generated by a second source in the
time interval to obtain random samples of the second
sequence of monitoring data in the time interval;
determining a correlation between the first source and the
second source based on the random samples of the
monitoring data and the random samples of the second
source of monitoring data; and
displaying a notice in the graphical user interface of the
administrative console regarding correlation of the first
source and the second source based on the correlation.
12. The system of claim 9 wherein evaluating the moni-
toring data comprises:
confidence-controlled sampling of time-stamp differences
between data points of the monitoring data based on a
probability of success that corresponds to a percentage
of consecutive data points in the monitoring interval;
when more than half of the sampled time-stamp differ-
ences in the monitoring interval are equal
identifying the monitoring data as normal;
determining a monitoring interval as a time interval
between the more than half sampled time-stamp
differences that are equal;
identifying the monitoring data as sparse when less than
half of the sampled time-stamp differences in the
monitoring interval are equal; and
when the monitoring data is normal, categorizing the
monitoring data as constant, near-constant, semi-con-
stant, or non-constant based on confidence-controlled
sampling of the monitoring data.
13. The system of claim 9 wherein searching for the
periodic pattern in behavior of the first source comprises:
partitioning time range of the monitoring data into time
intervals; and
for each pair of time intervals separated by the period of
time,
confidence-controlled sampling of the monitoring data
in each of the time intervals,
computing a first sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a second sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a similarity between the first and second
sample empirical distribution, and
when the similarity is greater than an empirical distri-
bution similarity threshold, identifying the pair of
time intervals as corresponding to a periodic pattern
in the behavior of the first source.
14. The system of claim 9 wherein searching for the
change in behavior of the first source comprises:
confidence-controlled sampling of the monitoring data in
a first time interval,
computing a first sample empirical distribution from
values of sample data points in the first time interval;
computing a first empirical cumulative distribution based
on the first sample empirical distribution;
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confidence-controlled sampling of the monitoring data in
a second time interval;

computing a second sample empirical distribution from
values of sample data points in the second time inter-
val;
computing a second empirical cumulative distribution
based on the second sample empirical distribution;

determining a maximum absolute difference between the
first and second empirical cumulative distributions; and

when the similarity is greater than a cumulative distribu-
tion difference threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that behavior of the first source has
changed.

15. The system of claim 9 further comprises:

confidence-controlled sampling of event messages gener-

ated by the first source in a time interval;

determine event types of event messages generated by the

first source;

determine relative frequencies of the event types gener-

ated by the first source;

confidence-controlled sampling of event messages gener-

ated by a second source in the time interval;
determine event types of event messages generated by the
second source;

determine relative frequencies of the event types gener-

ated by the second source;

computing a similarity based on relative frequencies of

the event types generated by the first source and the
second source; and

when the similarity is greater than an event-type distri-

bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that the first source and second
source have dissimilar behavior.

16. The system of claim 9 further comprises:

confidence-controlled sampling of event messages gener-

ated by the first source in a first time interval;
determine event types of event messages in the first time
interval,

determine relative frequencies of the event types in the

first time interval;

confidence-controlled sampling of event messages gener-

ated by the first source in a second time interval;
determine event types of event messages in the second
time interval,

determine relative frequencies of the event types in the

second time interval;

computing a similarity based on relative frequencies of

the event types in the first and second time intervals;
and

when the similarity is greater than an event-type distri-

bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating a change in behavior of the first
source.

17. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations comprising:

reading a sequence of monitoring data from a database

stored in a data-storage device of a distributed com-
puting system, the monitoring data generated by a first
source in the distributed computing system;
evaluating the monitoring data to determine a monitoring
interval of the monitoring data and if the monitoring
data is normal or sparse based on confidence-controlled
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sampling of the monitoring data, wherein confidence-
controlled sampling of the monitoring data includes
randomly selecting monitoring data points of the moni-
toring data based on a selected confidence level;
when the monitoring data is normal,
searching for a periodic pattern in behavior of the first
source based on repeated confidence-controlled sam-
pling of the monitoring data in two different time
intervals separated by a period of time;
searching for a change in behavior of the first source
based on a similarity of the monitoring data com-
puted from confidence-controlled samples of the
monitoring data in two different time intervals;
displaying an alert in a graphical user interface of an
administrative console when a periodic pattern in the
behavior of the first source is discovered; and
displaying an alert in the graphical user interface of the
administrative console when a change in behavior of
the first source is detected.
18. The medium of claim 17 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data
based on a probability of success of increasing-to-
decreasing monitoring data to obtain random samples
of the monitoring data;
performing trend analysis on the samples of monitoring
data to determine if the monitoring data is trendy or
non-trendy monitoring data;
computing a threshold for the monitoring data based on
the trendy or non-trendy samples of monitoring data;
and
displaying an alert in the graphical user interface of the
administrative console, the alert indicating the first
source is exhibiting anomalous behavior when the
monitoring data violates the threshold.
19. The medium of claim 17 further comprises when the
monitoring data is normal,
confidence-controlled sampling of the monitoring data in
a time interval to obtain random samples of the moni-
toring data in the time interval;
confidence-controlled sampling of a second sequence of
monitoring data generated by a second source in the
time interval to obtain random samples of the second
sequence of monitoring data in the time interval;
determining a correlation between the first source and the
second source based on the random samples of the
monitoring data and the random samples of the second
source of monitoring data; and
displaying a notice in the graphical user interface of the
administrative console regarding correlation of the first
source and the second source based on the correlation.
20. The medium of claim 17 wherein evaluating the
monitoring data comprises:
confidence-controlled sampling of time-stamp differences
between data points of the monitoring data based on a
probability of success that corresponds to a percentage
of consecutive data points in the monitoring interval;
when more than half of the sampled time-stamp differ-
ences are equal,
identifying the monitoring data as normal;
determining a monitoring interval as a time interval
between the more than half sampled time-stamp
differences that are equal;
identifying the monitoring data as sparse when less than
half of the sampled time-stamp differences in the
monitoring interval are equal; and
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when the monitoring data is normal, categorizing the
monitoring data as constant, near-constant, semi-con-
stant, or non-constant based on confidence-controlled
sampling of the monitoring data.
21. The medium of claim 17 wherein searching for the
periodic pattern in behavior of the first source comprises:
partitioning time range of the monitoring data into time
intervals; and
for each pair of time intervals separated by the period of
time,
confidence-controlled sampling of the monitoring data
in each of the time intervals,
computing a first sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a second sample empirical distribution from
values of sample data points in one of the time
intervals,
computing a similarity between the first and second
sample empirical distribution, and
when the similarity is greater than an empirical distri-
bution similarity threshold, identifying the pair of
time intervals as corresponding to a periodic pattern
in the behavior of the first source.
22. The medium of claim 17 wherein searching for the
change in behavior of the first source comprises:
confidence-controlled sampling of the monitoring data in
a first time interval,
computing a first sample empirical distribution from
values of sample data points in the first time interval;
computing a first empirical cumulative distribution based
on the first sample empirical distribution;
confidence-controlled sampling of the monitoring data in
a second time interval;
computing a second sample empirical distribution from
values of sample data points in the second time inter-
val;
computing a second empirical cumulative distribution
based on the second sample empirical distribution;
determining a maximum absolute difference between the
first and second empirical cumulative distributions; and
when the similarity is greater than a cumulative distribu-
tion difference threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that behavior of the first source has
changed.
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23. The medium of claim 17 further comprises:

confidence-controlled sampling of event messages gener-
ated by the first source in a time interval;

determine event types of event messages generated by the
first source;

determine relative frequencies of the event types gener-
ated by the first source;

confidence-controlled sampling of event messages gener-
ated by a second source in the time interval;

determine event types of event messages generated by the
second source;

determine relative frequencies of the event types gener-
ated by the second source;

computing a similarity based on relative frequencies of
the event types generated by the first source and the
second source; and

when the similarity is greater than an event-type distri-
bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating that the first source and second
source have dissimilar behavior.

24. The medium of claim 17 further comprises:

confidence-controlled sampling of event messages gener-
ated by the first source in a first time interval;

determine event types of event messages in the first time
interval,

determine relative frequencies of the event types in the
first time interval,;

confidence-controlled sampling of event messages gener-
ated by the first source in a second time interval;

determine event types of event messages in the second
time interval,

determine relative frequencies of the event types in the
second time interval;

computing a similarity based on relative frequencies of
the event types in the first and second time intervals;
and

when the similarity is greater than an event-type distri-
bution similarity threshold, displaying an alert in the
graphical user interface of the administrative console,
the alert indicating a change in behavior of the first
source.



